1
|
The role of N-methyl-d-aspartate receptors and metabotropic glutamate receptor 5 in the prepulse inhibition paradigms for studying schizophrenia: pharmacology, neurodevelopment, and genetics. Behav Pharmacol 2018; 29:13-27. [DOI: 10.1097/fbp.0000000000000352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Gebhardt C, Albrecht D. Glutamate receptor GluA1 subunit is implicated in capsaicin induced modulation of amygdala LTP but not LTD. Learn Mem 2018; 25:1-7. [PMID: 29246976 PMCID: PMC5733465 DOI: 10.1101/lm.045948.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/14/2017] [Indexed: 11/24/2022]
Abstract
Capsaicin has been shown to modulate synaptic plasticity in various brain regions including the amygdala. Whereas in the lateral amygdala the modulatory effect of capsaicin on long-term potentiation (LA-LTP) is mediated by TRPV1 channels, we have recently shown that capsaicin-induced enhancement of long term depression (LA-LTD) is mediated by TRPM1 receptors. However, the underlying mechanism by which capsaicin modulates synaptic plasticity is poorly understood. In the present study, we investigate the modulatory effect of capsaicin on synaptic plasticity in mice lacking the AMPAR subunit GluA1. Capsaicin reduced the magnitude of LA-LTP in slices derived from wild-type mice as previously described, whereas this capsaicin-induced suppression was absent in GluA1-deficient mice. In contrast, neither LA-LTD nor the capsaicin-mediated enhancement of LA-LTD was changed in GluA1 knockout mice. Our data indicate that capsaicin-induced modulation of LA-LTP via TRPV1 involves GluA1-containing AMPARs whereas capsaicin-induced modulation of LA-LTD via TRPM1 is independent of the expression of the AMPAR GluA1 subunit.
Collapse
|
3
|
Kabir ZD, Martínez-Rivera A, Rajadhyaksha AM. From Gene to Behavior: L-Type Calcium Channel Mechanisms Underlying Neuropsychiatric Symptoms. Neurotherapeutics 2017; 14:588-613. [PMID: 28497380 PMCID: PMC5509628 DOI: 10.1007/s13311-017-0532-0] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The L-type calcium channels (LTCCs) Cav1.2 and Cav1.3, encoded by the CACNA1C and CACNA1D genes, respectively, are important regulators of calcium influx into cells and are critical for normal brain development and plasticity. In humans, CACNA1C has emerged as one of the most widely reproduced and prominent candidate risk genes for a range of neuropsychiatric disorders, including bipolar disorder (BD), schizophrenia (SCZ), major depressive disorder, autism spectrum disorder, and attention deficit hyperactivity disorder. Separately, CACNA1D has been found to be associated with BD and autism spectrum disorder, as well as cocaine dependence, a comorbid feature associated with psychiatric disorders. Despite growing evidence of a significant link between CACNA1C and CACNA1D and psychiatric disorders, our understanding of the biological mechanisms by which these LTCCs mediate neuropsychiatric-associated endophenotypes, many of which are shared across the different disorders, remains rudimentary. Clinical studies with LTCC blockers testing their efficacy to alleviate symptoms associated with BD, SCZ, and drug dependence have provided mixed results, underscoring the importance of further exploring the neurobiological consequences of dysregulated Cav1.2 and Cav1.3. Here, we provide a review of clinical studies that have evaluated LTCC blockers for BD, SCZ, and drug dependence-associated symptoms, as well as rodent studies that have identified Cav1.2- and Cav1.3-specific molecular and cellular cascades that underlie mood (anxiety, depression), social behavior, cognition, and addiction.
Collapse
Affiliation(s)
- Zeeba D Kabir
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
| | - Arlene Martínez-Rivera
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA
| | - Anjali M Rajadhyaksha
- Pediatric Neurology, Pediatrics, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Autism Research Program, Weill Cornell Medicine, New York, NY, USA.
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
4
|
Gebhardt C, von Bohlen und Halbach O, Hadler MD, Harteneck C, Albrecht D. A novel form of capsaicin-modified amygdala LTD mediated by TRPM1. Neurobiol Learn Mem 2016; 136:1-12. [DOI: 10.1016/j.nlm.2016.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 09/02/2016] [Accepted: 09/10/2016] [Indexed: 10/21/2022]
|
5
|
Krishnan B, Scott MT, Pollandt S, Schroeder B, Kurosky A, Shinnick-Gallagher P. Fear potentiated startle increases phospholipase D (PLD) expression/activity and PLD-linked metabotropic glutamate receptor mediated post-tetanic potentiation in rat amygdala. Neurobiol Learn Mem 2016; 128:65-79. [PMID: 26748024 PMCID: PMC4744522 DOI: 10.1016/j.nlm.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/08/2015] [Accepted: 12/25/2015] [Indexed: 12/30/2022]
Abstract
Long-term memory (LTM) of fear stores activity dependent modifications that include changes in amygdala signaling. Previously, we identified an enhanced probability of release of glutamate mediated signaling to be important in rat fear potentiated startle (FPS), a well-established translational behavioral measure of fear. Here, we investigated short- and long-term synaptic plasticity in FPS involving metabotropic glutamate receptors (mGluRs) and associated downstream proteomic changes in the thalamic-lateral amygdala pathway (Th-LA). Aldolase A, an inhibitor of phospholipase D (PLD), expression was reduced, concurrent with significantly elevated PLD protein expression. Blocking the PLD-mGluR signaling significantly reduced PLD activity. While transmitter release probability increased in FPS, PLD-mGluR agonist and antagonist actions were occluded. In the unpaired group (UNP), blocking the PLD-mGluR increased while activating the receptor decreased transmitter release probability, consistent with decreased synaptic potentials during tetanic stimulation. FPS Post-tetanic potentiation (PTP) immediately following long-term potentiation (LTP) induction was significantly increased. Blocking PLD-mGluR signaling prevented PTP and reduced cumulative PTP probability but not LTP maintenance in both groups. These effects are similar to those mediated through mGluR7, which is co-immunoprecipitated with PLD in FPS. Lastly, blocking mGluR-PLD in the rat amygdala was sufficient to prevent behavioral expression of fear memory. Thus, our study in the Th-LA pathway provides the first evidence for PLD as an important target of mGluR signaling in amygdala fear-associated memory. Importantly, the PLD-mGluR provides a novel therapeutic target for treating maladaptive fear memories in posttraumatic stress and anxiety disorders.
Collapse
MESH Headings
- Amygdala/enzymology
- Amygdala/physiology
- Animals
- Conditioning, Classical/drug effects
- Conditioning, Classical/physiology
- Cyclopropanes/pharmacology
- Electric Stimulation
- Excitatory Postsynaptic Potentials/drug effects
- Fear/drug effects
- Fear/physiology
- Fructose-Bisphosphate Aldolase/metabolism
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Long-Term Potentiation/drug effects
- Male
- Memory, Long-Term/drug effects
- Memory, Long-Term/physiology
- Neural Pathways/drug effects
- Neural Pathways/physiology
- Phospholipase D/antagonists & inhibitors
- Phospholipase D/metabolism
- Phospholipase D/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/agonists
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/physiology
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Thalamus/physiology
Collapse
Affiliation(s)
- Balaji Krishnan
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States; UTMB Mitchell Center for Neurodegenerative Diseases, Department of Neurology, University of Texas Medical Branch, Galveston, TX, United States.
| | - Michael T Scott
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Sebastian Pollandt
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Bradley Schroeder
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Alexander Kurosky
- UTMB NHLBI Proteomics Center, Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | | |
Collapse
|
6
|
Gee CE, Peterlik D, Neuhäuser C, Bouhelal R, Kaupmann K, Laue G, Uschold-Schmidt N, Feuerbach D, Zimmermann K, Ofner S, Cryan JF, van der Putten H, Fendt M, Vranesic I, Glatthar R, Flor PJ. Blocking metabotropic glutamate receptor subtype 7 (mGlu7) via the Venus flytrap domain (VFTD) inhibits amygdala plasticity, stress, and anxiety-related behavior. J Biol Chem 2014; 289:10975-10987. [PMID: 24596089 DOI: 10.1074/jbc.m113.542654] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The metabotropic glutamate receptor subtype 7 (mGlu7) is an important presynaptic regulator of neurotransmission in the mammalian CNS. mGlu7 function has been linked to autism, drug abuse, anxiety, and depression. Despite this, it has been difficult to develop specific blockers of native mGlu7 signaling in relevant brain areas such as amygdala and limbic cortex. Here, we present the mGlu7-selective antagonist 7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-one (XAP044), which inhibits lateral amygdala long term potentiation (LTP) in brain slices from wild type mice with a half-maximal blockade at 88 nm. There was no effect of XAP044 on LTP of mGlu7-deficient mice, indicating that this pharmacological effect is mGlu7-dependent. Unexpectedly and in contrast to all previous mGlu7-selective drugs, XAP044 does not act via the seven-transmembrane region but rather via a binding pocket localized in mGlu7's extracellular Venus flytrap domain, a region generally known for orthosteric agonist binding. This was shown by chimeric receptor studies in recombinant cell line assays. XAP044 demonstrates good brain exposure and wide spectrum anti-stress and antidepressant- and anxiolytic-like efficacy in rodent behavioral paradigms. XAP044 reduces freezing during acquisition of Pavlovian fear and reduces innate anxiety, which is consistent with the phenotypes of mGlu7-deficient mice, the results of mGlu7 siRNA knockdown studies, and the inhibition of amygdala LTP by XAP044. Thus, we present an mGlu7 antagonist with a novel molecular mode of pharmacological action, providing significant application potential in psychiatry. Modeling the selective interaction between XAP044 and mGlu7's Venus flytrap domain, whose three-dimensional structure is already known, will facilitate future drug development supported by computer-assisted drug design.
Collapse
Affiliation(s)
- Christine E Gee
- Novartis Institutes for BioMedical Research, Novartis AG, CH-4057 Basel, Switzerland,; Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, D-20249 Hamburg, Germany
| | - Daniel Peterlik
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Christoph Neuhäuser
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Rochdi Bouhelal
- Novartis Institutes for BioMedical Research, Novartis AG, CH-4057 Basel, Switzerland
| | - Klemens Kaupmann
- Novartis Institutes for BioMedical Research, Novartis AG, CH-4057 Basel, Switzerland
| | - Grit Laue
- Novartis Institutes for BioMedical Research, Novartis AG, CH-4057 Basel, Switzerland
| | - Nicole Uschold-Schmidt
- Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany
| | - Dominik Feuerbach
- Novartis Institutes for BioMedical Research, Novartis AG, CH-4057 Basel, Switzerland
| | - Kaspar Zimmermann
- Novartis Institutes for BioMedical Research, Novartis AG, CH-4057 Basel, Switzerland
| | - Silvio Ofner
- Novartis Institutes for BioMedical Research, Novartis AG, CH-4057 Basel, Switzerland
| | - John F Cryan
- Novartis Institutes for BioMedical Research, Novartis AG, CH-4057 Basel, Switzerland,; Department of Anatomy and Neuroscience, University of Cork, Cork, Ireland, and
| | - Herman van der Putten
- Novartis Institutes for BioMedical Research, Novartis AG, CH-4057 Basel, Switzerland
| | - Markus Fendt
- Novartis Institutes for BioMedical Research, Novartis AG, CH-4057 Basel, Switzerland,; Institute of Pharmacology and Toxicology and Center of Behavioral Brain Sciences, University of Magdeburg, D-39120 Magdeburg, Germany
| | - Ivo Vranesic
- Novartis Institutes for BioMedical Research, Novartis AG, CH-4057 Basel, Switzerland
| | - Ralf Glatthar
- Novartis Institutes for BioMedical Research, Novartis AG, CH-4057 Basel, Switzerland,.
| | - Peter J Flor
- Novartis Institutes for BioMedical Research, Novartis AG, CH-4057 Basel, Switzerland,; Faculty of Biology and Preclinical Medicine, Laboratory of Molecular and Cellular Neurobiology, University of Regensburg, D-93053 Regensburg, Germany,.
| |
Collapse
|
7
|
Martínez-Rivera A, Rodríguez-Borrero E, Matías-Alemán M, Montalvo-Acevedo A, Guerrero-Figuereo K, Febo-Rodríguez LJ, Morales-Rivera A, Maldonado-Vlaar CS. Metabotropic glutamate receptor 5 within nucleus accumbens shell modulates environment-elicited cocaine conditioning expression. Pharmacol Biochem Behav 2013; 110:154-60. [PMID: 23850523 DOI: 10.1016/j.pbb.2013.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 06/05/2013] [Accepted: 06/23/2013] [Indexed: 10/26/2022]
Abstract
The metabotropic glutamate receptors 5 (mGluRs5) within the Nucleus Accumbens (NAc) have been implicated in the modulation of psychostimulant reward. We hypothesized that blockade of mGluR5 within the NAc shell would impair cocaine conditioning in rats. For this study, animals were implanted with cannulae within the NAc shell, and separate groups were exposed to a multimodal environment within activity chambers that signaled cocaine (cocaine-paired) or saline (controls, cocaine-unpaired) injections. Prior to placing the animals in the chambers, rats received systemic intraperitoneal injections of saline or cocaine for 10 consecutive sessions. In the test session (D12), animals were exposed to the multimodal environment without any cocaine or saline pre-treatment. Before placing the rats in the chambers, separate groups of animals were infused within the NAc shell with 2.5, 12 or 25 nmol/0.5 μl/side of 2-methyl-6-(phenylethynyl) pyridine (MPEP), an antagonist of mGluR5 or with vehicle. Blockade of the mGluR5 subtype at a 2.5 nmol dose showed no significant difference in either the ambulatory distance (AD) or the vertical plane move time (VPT). In contrast, mGluR5 blockade at 12 nmol and 25 nmol decreased conditioned locomotion in the cocaine-paired groups. An association of the environmental cues with the effects of cocaine implies the involvement of memory process during the conditioning response. Our results suggest that mGluR5 within the NAc shell could be modulating the expression of memory related to the association of environmental cues with the effects of cocaine. We suggest that mGluR5 could be taking into account to further studies related with cocaine exposure and cocaine addiction treatments.
Collapse
|
8
|
Ex vivo depotentiation of conditioning-induced potentiation at thalamic input synapses onto the lateral amygdala requires GluN2B-containing NMDA receptors. Neurosci Lett 2012; 530:121-6. [PMID: 23069667 DOI: 10.1016/j.neulet.2012.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 09/25/2012] [Accepted: 10/05/2012] [Indexed: 12/26/2022]
Abstract
We have previously characterized the ex vivo depotentiation (depotentiation(ex vivo)) of conditioning-induced synaptic potentiation at thalamic input synapses onto the lateral amygdala (T-LA synapses) as a potential cellular substrate for fear extinction: both depotentiation(ex vivo) and fear extinction require NMDA receptors, mitogen-activated protein kinases, metabotropic glutamate receptor 1, de novo protein synthesis and AMPA receptor internalization in the amygdala. Surprisingly, as shown in our and other previous studies, ifenprodil, an antagonist of GluN2B-containing NMDA receptors, fails to inhibit depotentiation(ex vivo) at a saturating concentration (10μM), although it has been suggested that GluN2B-containing NMDA receptors are required for fear extinction. Because ifenprodil is also known to act on other molecular targets in addition to GluN2B-containing NMDA receptors, especially at high concentrations (i.e., ≥10μM), the ineffectiveness of 10μM of ifenprodil may be due to its side effects. Therefore, in the present study, we tested Ro25-6981, a more specific antagonist of GluN2B-containing NMDA receptors, and a lower concentration (3μM) of ifenprodil, which may reduce any possible side effects. Ro25-6981 (3μM) blocked both depotentiation(ex vivo) and late-phase long-term potentiation at T-LA synapses. While 10μM ifenprodil failed to inhibit depotentiation(ex vivo), a lower concentration (3μM) of ifenprodil blocked depotentiation(ex vivo). Together, our findings suggest that depotentiation(ex vivo) requires GluN2B-containing NMDA receptors.
Collapse
|
9
|
Fear conditioning occludes late-phase long-term potentiation at thalamic input synapses onto the lateral amygdala in rat brain slices. Neurosci Lett 2011; 506:121-5. [PMID: 22079527 DOI: 10.1016/j.neulet.2011.10.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/08/2011] [Accepted: 10/27/2011] [Indexed: 01/03/2023]
Abstract
Late-phase long-term potentiation (L-LTP) of excitatory synaptic transmission at thalamic input synapses onto the lateral amygdala (T-LA synapses) has been proposed as a cellular substrate for long-term fear memory. This notion is evidenced primarily by previous reports in which the same pharmacological treatments block both T-LA L-LTP and the consolidation of fear memory. In this study, we report that fear conditioning occludes L-LTP at T-LA synapses in brain slices prepared after fear memory consolidation. L-LTP was restored either when synaptic depotentiation was induced prior to L-LTP induction in brain slices prepared from conditioned rats or when brain slices were prepared from conditioned rats that had been exposed to subsequent fear extinction, which is a behavior paradigm known to induce in vivo synaptic depotentiation at T-LA synapses. These results suggest that fear conditioning recruits L-LTP-like mechanisms that are reversible and saturable at T-LA synapses.
Collapse
|
10
|
Zschenderlein C, Gebhardt C, von Bohlen und Halbach O, Kulisch C, Albrecht D. Capsaicin-induced changes in LTP in the lateral amygdala are mediated by TRPV1. PLoS One 2011; 6:e16116. [PMID: 21249195 PMCID: PMC3020947 DOI: 10.1371/journal.pone.0016116] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 12/14/2010] [Indexed: 01/15/2023] Open
Abstract
The transient receptor potential vanilloid type 1 (TRPV1) channel is a well recognized polymodal signal detector that is activated by painful stimuli such as capsaicin. Here, we show that TRPV1 is expressed in the lateral nucleus of the amygdala (LA). Despite the fact that the central amygdala displays the highest neuronal density, the highest density of TRPV1 labeled neurons was found within the nuclei of the basolateral complex of the amygdala. Capsaicin specifically changed the magnitude of long-term potentiation (LTP) in the LA in brain slices of mice depending on the anesthetic (ether, isoflurane) used before euthanasia. After ether anesthesia, capsaicin had a suppressive effect on LA-LTP both in patch clamp and in extracellular recordings. The capsaicin-induced reduction of LTP was completely blocked by the nitric oxide synthase (NOS) inhibitor L-NAME and was absent in neuronal NOS as well as in TRPV1 deficient mice. The specific antagonist of cannabinoid receptor type 1 (CB1), AM 251, was also able to reduce the inhibitory effect of capsaicin on LA-LTP, suggesting that stimulation of TRPV1 provokes the generation of anandamide in the brain which seems to inhibit NO synthesis. After isoflurane anesthesia before euthanasia capsaicin caused a TRPV1-mediated increase in the magnitude of LA-LTP. Therefore, our results also indicate that the appropriate choice of the anesthetics used is an important consideration when brain plasticity and the action of endovanilloids will be evaluated. In summary, our results demonstrate that TRPV1 may be involved in the amygdala control of learning mechanisms.
Collapse
Affiliation(s)
- Carsten Zschenderlein
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, CVK, Berlin, Germany
| | - Christine Gebhardt
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, CVK, Berlin, Germany
| | | | - Christoph Kulisch
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, CVK, Berlin, Germany
| | - Doris Albrecht
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, CVK, Berlin, Germany
| |
Collapse
|
11
|
Parkes SL, Westbrook RF. Role of the basolateral amygdala and NMDA receptors in higher-order conditioned fear. Rev Neurosci 2011; 22:317-33. [DOI: 10.1515/rns.2011.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Zhang Z, Bodznick D. The importance of N-methyl-d-aspartate (NMDA) receptors in subtraction of electrosensory reafference in the dorsal nucleus of skates. J Exp Biol 2010; 213:2700-9. [DOI: 10.1242/jeb.041186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SUMMARY
The dorsal nucleus of the little skate is a cerebellum-like sensory structure that adaptively filters out predictable electrosensory inputs. The filter's plasticity is mediated by anti-Hebbian associative depression at the synapses between parallel fibers and ascending efferent neurons (AENs). Changes in synaptic strength are indicated by the formation of a cancellation signal which is initiated by co-activation of parallel fibers and AENs, and can be reversed by parallel fiber activity in the absence of AEN activation. In other cerebellum-like sensory structures, the formation of the cancellation signal requires activation of postsynaptic NMDA receptors on the principal neurons. We demonstrate here by immunohistochemistry that the somas and the initial portion of both apical and basal dendrites of the AENs are labeled with antibodies raised against the NR1 subunit of NMDA receptors from a South American electric fish. In in vivo physiological experiments, we show that the formation of the cancellation signal induced by coupling an electrosensory stimulus to ventilatory movements or direct parallel fiber stimulation is blocked when either of the NMDA receptor antagonists 2-amino-5-phosphonovaleric acid (APV) or MK801 is injected into the molecular layer above the recorded AEN. Blocking NMDA receptors prevented formation of a cancellation signal in 79% (15/19; APV) and 60% (3/5; MK801) of the AENs. This blockage was reversible in 40% (6/15) of the AENs after APV removal. Thus, in the dorsal nucleus, the activity-dependent, long-lasting but reversible change in synaptic strength of the parallel fiber–AEN synapses appears to be an NMDA receptor-dependent process.
Collapse
Affiliation(s)
- Zhi Zhang
- Biology Department, Wesleyan University, Middletown, CT 06459, USA and Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - David Bodznick
- Biology Department, Wesleyan University, Middletown, CT 06459, USA and Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
13
|
Kim J, Song B, Hong I, Kim J, Lee J, Park S, Yong Eom J, Lee CJ, Lee S, Choi S. Reactivation of fear memory renders consolidated amygdala synapses labile. J Neurosci 2010; 30:9631-40. [PMID: 20631192 PMCID: PMC6632454 DOI: 10.1523/jneurosci.0940-10.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 05/15/2010] [Accepted: 06/09/2010] [Indexed: 12/26/2022] Open
Abstract
It is believed that memory reactivation transiently renders consolidated memory labile and that this labile or deconsolidated memory is reconsolidated in a protein synthesis-dependent manner. The synaptic correlate of memory deconsolidation upon reactivation, however, has not been fully characterized. Here, we show that 3,5-dihydroxyphenylglycine (DHPG), an agonist for group I metabotropic glutamate receptors (mGluRI), induces synaptic depotentiation only at thalamic input synapses onto the lateral amygdala (T-LA synapses) where synaptic potentiation is consolidated, but not at synapses where synaptic potentiation is not consolidated. Using this mGluRI-induced synaptic depotentiation (mGluRI-depotentiation) as a marker of consolidated synapses, we found that mGluRI-depotentiation correlated well with the state of memory deconsolidation and reconsolidation in a predictable manner. DHPG failed to induce mGluRI-depotentiation in slices prepared immediately after reactivation when the reactivated memory was deconsolidated. DHPG induced mGluRI-depotentiation 1 h after reactivation when the reactivated memory was reconsolidated, but it failed to do so when reconsolidation was blocked by a protein synthesis inhibitor. To test the memory-specificity of mGluRI-depotentiation, conditioned fear was acquired twice using two discriminative tones (2.8 and 20 kHz). Under this condition, mGluRI-depotentiation was fully impaired in slices prepared immediately after reactivation with both tones, whereas mGluRI-depotentiation was partially impaired immediately after reactivation with the 20 kHz tone. Consistently, microinjection of DHPG into the LA 1 h after reactivation reduced fear memory retention, whereas DHPG injection immediately after reactivation failed to do so. Our findings suggest that, upon memory reactivation, consolidated T-LA synapses enter a temporary labile state, displaying insensitivity to mGluRI-depotentiation.
Collapse
Affiliation(s)
- Jeongyeon Kim
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Beomjong Song
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Ingie Hong
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Jihye Kim
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Junuk Lee
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Sungmo Park
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Jae Yong Eom
- Department of Biochemistry, Cornell University, Ithaca, New York 14853
| | - C. Justin Lee
- Center for Neural Science, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea, and
| | - Sukwon Lee
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| | - Sukwoo Choi
- School of Biological Sciences, Seoul National University, Seoul 151-747, Republic of Korea
| |
Collapse
|
14
|
Pape HC, Pare D. Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 2010; 90:419-63. [PMID: 20393190 DOI: 10.1152/physrev.00037.2009] [Citation(s) in RCA: 766] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The last 10 years have witnessed a surge of interest for the mechanisms underlying the acquisition and extinction of classically conditioned fear responses. In part, this results from the realization that abnormalities in fear learning mechanisms likely participate in the development and/or maintenance of human anxiety disorders. The simplicity and robustness of this learning paradigm, coupled with the fact that the underlying circuitry is evolutionarily well conserved, make it an ideal model to study the basic biology of memory and identify genetic factors and neuronal systems that regulate the normal and pathological expressions of learned fear. Critical advances have been made in determining how modified neuronal functions upon fear acquisition become stabilized during fear memory consolidation and how these processes are controlled in the course of fear memory extinction. With these advances came the realization that activity in remote neuronal networks must be coordinated for these events to take place. In this paper, we review these mechanisms of coordinated network activity and the molecular cascades leading to enduring fear memory, and allowing for their extinction. We will focus on Pavlovian fear conditioning as a model and the amygdala as a key component for the acquisition and extinction of fear responses.
Collapse
Affiliation(s)
- Hans-Christian Pape
- Institute of Physiology, Westfaelische Wilhelms-University, Muenster, Germany; and Rutgers State University, Newark, New Jersey, USA.
| | | |
Collapse
|
15
|
Du Y, Wu X, Li L. Emotional learning enhances stimulus-specific top-down modulation of sensorimotor gating in socially reared rats but not isolation-reared rats. Behav Brain Res 2010; 206:192-201. [DOI: 10.1016/j.bbr.2009.09.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 09/03/2009] [Accepted: 09/07/2009] [Indexed: 11/16/2022]
|
16
|
Hong I, Song B, Lee S, Kim J, Kim J, Choi S. Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala. Eur J Neurosci 2009; 30:2089-99. [PMID: 20128847 DOI: 10.1111/j.1460-9568.2009.07004.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The amygdala is known to be a critical storage site of conditioned fear memory. Among the two major pathways to the lateral amygdala (LA), the cortical pathway is known to display a presynaptic long-term potentiation which is occluded with fear conditioning. Here we show that fear extinction results in a net depression of conditioning-induced potentiation at cortical input synapses onto the LA (C-LA synapses). Fear conditioning induced a significant potentiation of excitatory postsynaptic currents at C-LA synapses compared with naïve and unpaired controls, whereas extinction apparently reversed this potentiation. Paired-pulse low-frequency stimulation (pp-LFS) induced synaptic depression in the C-LA pathway of fear-conditioned rats, but not in naïve or unpaired controls, indicating that the pp-LFS-induced depression is specific to associative learning-induced changes (pp-LFS-induced depotentiation(ex vivo)). Importantly, extinction occluded pp-LFS-induced depotentiation(ex vivo), suggesting that extinction shares some mechanisms with the depotentiation. pp-LFS-induced depotentiation(ex vivo) required NMDA receptor (NMDAR) activity, consistent with a previous finding that blockade of amygdala NMDARs impaired fear extinction. In addition, pp-LFS-induced depotentiation(ex vivo) required activity of group II metabotropic glutamate receptors (mGluRs), known to be present at presynaptic terminals, but not AMPAR internalization, consistent with a presynaptic mechanism for pp-LFS-induced depotentiation(ex vivo). This result is in contrast with another form of ex vivo depotentiation in the thalamic pathway that requires both group I mGluR activity and AMPAR internalization. We thus suggest that extinction of conditioned fear involves a distinct form of depotentiation at C-LA synapses, which depends upon both NMDARs and group II mGluRs.
Collapse
Affiliation(s)
- Ingie Hong
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
17
|
Li L, Du Y, Li N, Wu X, Wu Y. Top–down modulation of prepulse inhibition of the startle reflex in humans and rats. Neurosci Biobehav Rev 2009; 33:1157-67. [DOI: 10.1016/j.neubiorev.2009.02.001] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 02/02/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
|
18
|
Muller T, Albrecht D, Gebhardt C. Both NR2A and NR2B subunits of the NMDA receptor are critical for long-term potentiation and long-term depression in the lateral amygdala of horizontal slices of adult mice. Learn Mem 2009; 16:395-405. [DOI: 10.1101/lm.1398709] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Chauveau F, Piérard C, Corio M, Célérier A, Christophe T, Vouimba RM, Guillou JL, Béracochéa D. Mediodorsal thalamic lesions block the stress-induced inversion of serial memory retrieval pattern in mice. Behav Brain Res 2009; 203:270-8. [PMID: 19464320 DOI: 10.1016/j.bbr.2009.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 05/11/2009] [Accepted: 05/13/2009] [Indexed: 12/16/2022]
Abstract
This study examines the effects of ibotenic acid lesions of the mediodorsal nucleus of the thalamus (MD) on serial contextual memory retrieval in non-stress and stress conditions. Independent groups of mice learned two successive contextual serial discriminations (D1 and D2) in a four-hole board. The discriminations differed each by the color and texture of the floor. Twenty-four hours later, memory testing occurred in independent groups of mice on one of the two floors of the initial acquisition session. Half of the subjects received three electric footschocks (0.9mA, 2s) 5min prior to testing. Results showed that (i) stress induced a plasma corticosterone rise of same magnitude in sham-operated and MD-lesioned mice; (ii) non-stressed sham-operated mice accurately remembered D1 but not D2, whereas stressed sham-operated animals remembered D2 but not D1; (iii) non-stressed MD-lesioned mice exhibited a memory retrieval pattern similar to that observed in non-stressed sham-operated mice; (iv) however, the stress-induced inversion of the memory retrieval pattern was not observed in MD animals. The effects of MD lesions on memory retrieval in this task are similar to those observed in earlier studies in prefrontal cortex or amygdala-lesioned mice [Chauveau F, Piérard C, Coutan M, Drouet I, Liscia P, Béracochéa D. Prefrontal cortex or basolateral amygdala lesions blocked the stress-induced inversion of serial memory pattern in mice. Neurobiol Learn Mem 2008;90:395-403]; they are however in sharp contrast with mice exhibiting hippocampal lesions [Chauveau F, Pierard C, Tronche C, Coutan M, Drouet I, Liscia P, et al. The hippocampus and prefrontal cortex are differentially involved in serial memory retrieval in non-stress and stress condition. Neurobiol Learn Mem; in press; Chauveau F, Pierard C, Tronche C, Coutan M, Drouet I, Liscia P, et al. Rapid stress-induced corticosterone rise in the hippocampus reverses serial memory retrieval pattern. Hippocampus; in press]. Overall, the present findings highlight the involvement of the MD in an AMG/PFC system mediating the rapid effects of stress on serial memory retrieval.
Collapse
Affiliation(s)
- Frédéric Chauveau
- Universités de Bordeaux, Centre de Neurosciences Intégratives et Cognitives (CNIC), UMR CNRS 5228, Bâtiment de Biologie Animale, Avenue des Facultés, 33405 Talence Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Amygdala depotentiation ex vivo requires mitogen-activated protein kinases and protein synthesis. Neuroreport 2009; 20:517-20. [DOI: 10.1097/wnr.0b013e328329412d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Zheng J, Wu X, Li L. Metabotropic glutamate receptors subtype 5 are necessary for the enhancement of auditory evoked potentials in the lateral nucleus of the amygdala by tetanic stimulation of the auditory thalamus. Neuroscience 2008; 152:254-64. [PMID: 18065158 DOI: 10.1016/j.neuroscience.2007.10.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2007] [Revised: 10/30/2007] [Accepted: 10/31/2007] [Indexed: 11/17/2022]
Abstract
The lateral nucleus of the amygdala (LA) receives axonal projections from the auditory thalamus, the medial geniculate nucleus (MGN), and mediates auditory fear conditioning. Tetanic electrical stimulation of the MGN can induce long-term potentiation of acoustically-evoked responses (AEPs) recorded in the LA of anesthetized rats. The present study investigated the temporal development of tetanus-induced AEP potentiation recorded in the LA of anesthetized rats during the recording time up to 120 min after tetanization. In addition, the present study investigated whether the artificially-induced AEP potentiation is mediated by the metabotropic glutamate receptors subtype 5 (mGluR5). The results show that AEPs recorded in the LA to a broadband-noise burst were significantly enhanced immediately after tetanic but not low-frequency stimulation of the MGN. The AEP potentiation was well retained up to 120 min after tetanization. High-dose (1.5 microg/4 microl) microinjection of the selective antagonist of mGluR5, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), into the ipsilateral lateral ventricle 30 min before tetanization completely blocked the AEP potentiation without affecting the baseline AEP. Low-dose (0.5 microg/4 microl) microinjection partially suppressed the AEP potentiation. When the high-dose MPEP was injected 40 min after tetanization, the AEP potentiation was not affected. These results indicate that in anesthetized rats mGluR5 receptors are necessary for the induction or early maintenance (40 min) of AEP potentiation in the LA by tetanic stimulation of the MGN.
Collapse
Affiliation(s)
- J Zheng
- Department of Psychology, Speech and Hearing Research Center, State Key Laboratory on Machine Perception, Peking University, 5 Yiheyuan Road, Beijing, China 100871
| | | | | |
Collapse
|
22
|
Yu SY, Wu DC, Liu L, Ge Y, Wang YT. Role of AMPA receptor trafficking in NMDA receptor-dependent synaptic plasticity in the rat lateral amygdala. J Neurochem 2008; 106:889-99. [DOI: 10.1111/j.1471-4159.2008.05461.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Clem RL, Celikel T, Barth AL. Ongoing in vivo experience triggers synaptic metaplasticity in the neocortex. Science 2008; 319:101-4. [PMID: 18174444 DOI: 10.1126/science.1143808] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In vivo experience can occlude subsequent induction of long-term potentiation and enhance long-term depression of synaptic responses. Although a reduced capacity for synaptic strengthening may function to prevent excessive excitation, such an effect paradoxically implies that continued experience or training should not improve and may even degrade neural representations. In mice, we examined the effect of ongoing whisker stimulation on synaptic strengthening at layer 4-2/3 synapses in the barrel cortex. Although N-methyl-d-aspartate receptors were required to initiate strengthening, they subsequently suppressed further potentiation at these synapses in vitro and in vivo. Despite this transition, synaptic strengthening continued with additional sensory activity but instead required the activation of metabotropic glutamate receptors, suggesting a mechanism by which continued experience can result in increasing synaptic strength over time.
Collapse
Affiliation(s)
- Roger L Clem
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
24
|
Adamec R, Head D, Soreq H, Blundell J. The role of the read through variant of acetylcholinesterase in anxiogenic effects of predator stress in mice. Behav Brain Res 2008; 189:180-90. [PMID: 18243359 DOI: 10.1016/j.bbr.2007.12.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/19/2007] [Accepted: 12/27/2007] [Indexed: 10/22/2022]
Abstract
This study examined the role of the read through variant of acetylcholinesterase (AChE-R) in lasting changes in murine affective behavior produced by a brief predator stress. AChE-R is elevated by stress in limbic cholinergic circuits implicated in anxiogenic effects of predator stress. The expression of AChE-R was blocked with a systemically administered central acting antisense oligonucleotide for AChE-R (EN101). EN101 was injected at multiple points prior to and after a predator stress in male C57 mice. Seven days after the last injection, behavior was tested. Predator stress caused a significant increase in startle amplitude, which EN101 blocked. This effect was specific to EN101, as the negative control inactive form of EN101, INVEN101 was without effect on stress effects on startle. Neither EN101 nor INVEN101 altered the anxiogenic effects of predator stress on behavior in the elevated plus maze, and both drugs partially reduced stress suppression of time active in the hole board. In the light dark box test, INVEN101 exhibited a weak block of stress effects on behavior for reasons which are unclear. Taken together, findings support the view that multiple neural systems are responsible for the different changes in behavior produced by predator stress. Present findings also suggest a role for AChE-R in specific anxiogenic (hyperarousal) effects following predator stress. Since AChE-R manipulations took place starting 23 h prior to predator stress and continued 48 h after predator stress, further research is necessary to determine the role of AChE-R in initiation and/or consolidation of hyperarousal effects of predator stress.
Collapse
Affiliation(s)
- Robert Adamec
- Department of Psychology, Memorial University, 232 Elizabeth Avenue, St. John's, NF, A1B 3X9 Canada.
| | | | | | | |
Collapse
|
25
|
Group I mGluRs and long-term depression: potential roles in addiction? Mol Neurobiol 2007; 36:232-44. [PMID: 17955198 DOI: 10.1007/s12035-007-0037-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 01/10/2007] [Indexed: 01/16/2023]
Abstract
Addiction is an enormous societal problem. A number of recent studies have focused on adaptations at glutamatergic synapses that may play a role in the behavioral responses to drugs of abuse. These studies have largely focused on NMDA receptor-dependent forms of synaptic plasticity such as NMDA receptor-dependent long-term potentiation (LTP) and long-term depression (LTD). A growing body of evidence, however, suggests that metabotropic glutamate receptors (mGluRs) also play important roles in the behavioral responses to drugs of abuse and participate in producing synaptic plasticity at glutamate synapses. In this review, we focus first on the evidence supporting a role for mGluRs in addiction and then on the properties of mGluR-dependent forms of synaptic plasticity, focusing in particular on Gq-linked receptor-induced LTD.
Collapse
|
26
|
Adamec R, Muir C, Grimes M, Pearcey K. Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress. Behav Brain Res 2007; 179:192-207. [PMID: 17335916 DOI: 10.1016/j.bbr.2007.02.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Revised: 01/04/2007] [Accepted: 02/01/2007] [Indexed: 10/23/2022]
Abstract
The roles of beta-NER (beta-noradrenergic receptor), GR (glucocorticoid) and mineral corticoid receptors (MR) in the consolidation of anxiogenic effects of predator stress were studied. One minute after predator stress, different groups of rats were injected (ip) with vehicle, propranolol (beta-NER blocker, 5 and 10 mg/kg), mifepristone (RU486, GR blocker, 20 mg/kg), spironolactone (MR blocker, 50 mg/kg), propranolol (5 mg/kg) plus RU486 (20 mg/kg) or the anxiolytic, chloradiazepoxide (CPZ, 10 mg/kg). One week later, rodent anxiety was assessed in elevated plus maze, hole board, light/dark box, social interaction and acoustic startle. Considering all tests except startle, propranolol dose dependently blocked consolidation of lasting anxiogenic effects of predator stress in all tests. GR receptor block alone was ineffective. However, GR block in combination with an ineffective dose of propranolol did blocked consolidation of predator stress effects in all tests, suggesting a synergism between beta-NER and GR. Surprisingly, MR block prevented consolidation of anxiogenic effects in all tests except the light/dark box. CPZ post stress was ineffective against the anxiogenic impact of predator stress. Study of startle was complicated by the fact that anxiogenic effects of stress on startle amplitude manifested as both an increase and a decrease in startle amplitude. Suppression of startle occurred in stressed plus vehicle injected groups handled three times prior to predator stress. In contrast, stressed plus vehicle rats handled five times prior to predator stress showed increases in startle, as did all predator stressed only groups. Mechanisms of consolidation of the different startle responses appear to differ. CPZ post stress blocked startle suppression but not enhancement of startle. Propranolol post stress had no effect on either suppression or enhancement of startle. GR block alone post stress prevented suppression of startle, but not enhancement. In contrast blocking GR and beta-NER together prevented startle enhancement. MR block also prevented startle enhancement. Effects of MR block on startle suppression were not tested. Delay of habituation to startle was found in all stressed rats. Consolidation of delay of habituation was blocked or attenuated by post stress MR block, GR plus beta-NER block and CPZ but not by post stress GR or beta-NER block alone. Taken together, present findings suggest consolidation of lasting anxiogenic effects of predator stress may share some of the same neurochemical mechanisms implicated in some forms of fear memory consolidation. Implications of these findings for the study of stress-induced changes in affect including posttraumatic stress disorder (PTSD) are discussed.
Collapse
MESH Headings
- Adrenergic beta-Antagonists/therapeutic use
- Analysis of Variance
- Animals
- Anti-Anxiety Agents/therapeutic use
- Anxiety/etiology
- Anxiety/metabolism
- Anxiety/prevention & control
- Association Learning/drug effects
- Association Learning/physiology
- Chi-Square Distribution
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Interactions
- Male
- Mifepristone/therapeutic use
- Mineralocorticoid Receptor Antagonists
- Propranolol/therapeutic use
- Random Allocation
- Rats
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Glucocorticoid/antagonists & inhibitors
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/metabolism
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Statistics, Nonparametric
- Stress Disorders, Post-Traumatic/drug therapy
- Stress Disorders, Post-Traumatic/physiopathology
- Stress, Psychological/complications
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- R Adamec
- Department of Psychology, Memorial University, St. John's, Newfoundland, Canada A1B 3X9.
| | | | | | | |
Collapse
|
27
|
Zou D, Huang J, Wu X, Li L. Metabotropic glutamate subtype 5 receptors modulate fear-conditioning induced enhancement of prepulse inhibition in rats. Neuropharmacology 2007; 52:476-86. [PMID: 17011597 DOI: 10.1016/j.neuropharm.2006.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 06/14/2006] [Accepted: 08/01/2006] [Indexed: 11/23/2022]
Abstract
Non-startling acoustic events presented shortly before an intense startling sound can inhibit the acoustic startle reflex. This phenomenon is called prepulse inhibition (PPI), and is widely used as a model of sensorimotor gating. The present study investigated whether PPI can be modulated by fear conditioning, whose acquisition can be blocked by the specific antagonist of metabotropic glutamate receptors subtype 5 (mGluR5), 2-methyl-6-(phenylethynyl)-pyridine (MPEP). The results show that a gap embedded in otherwise continuous noise sounds, which were delivered by two spatially separated loudspeakers, could inhibit the startle reflex induced by an intense sound that was presented 50 ms after the gap. The inhibitory effect depended on the duration of the gap, and was enhanced by fear conditioning that was introduced by temporally pairing the gap with footshock. Intraperitoneal injection of MPEP (0.5 or 5mg/kg) 30 min before fear conditioning blocked the enhancing effect of fear conditioning on PPI, but did not affect either the baseline startle magnitude or PPI if no fear conditioning was introduced. These results indicate that PPI is enhanced when the prepulse signifies an aversive event after fear conditioning. Also, mGlu5Rs play a role in preserving the fear-conditioning-induced enhancement of PPI.
Collapse
Affiliation(s)
- Dan Zou
- Department of Psychology, National Key Laboratory on Machine Perception, Speech and Hearing Research Center, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
28
|
Barad M. Divide and conquer: An L-type voltage-gated calcium channel subtype finds a role in conditioned fear. Learn Mem 2006; 13:560-1. [PMID: 17015854 DOI: 10.1101/lm.402806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Mark Barad
- Veterans Health Administration, West Los Angeles, California 90073, and Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California 90095, USA.
| |
Collapse
|
29
|
Choi SY, Chang J, Jiang B, Seol GH, Min SS, Han JS, Shin HS, Gallagher M, Kirkwood A. Multiple receptors coupled to phospholipase C gate long-term depression in visual cortex. J Neurosci 2006; 25:11433-43. [PMID: 16339037 PMCID: PMC6725895 DOI: 10.1523/jneurosci.4084-05.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Long-term depression (LTD) in sensory cortices depends on the activation of NMDA receptors. Here, we report that in visual cortical slices, the induction of LTD (but not long-term potentiation) also requires the activation of receptors coupled to the phospholipase C (PLC) pathway. Using immunolesions in combination with agonists and antagonists, we selectively manipulated the activation of alpha1 adrenergic, M1 muscarinic, and mGluR5 glutamatergic receptors. Inactivation of these PLC-coupled receptors prevents the induction of LTD, but only when the three receptors were inactivated together. LTD is fully restored by activating any one of them or by supplying intracellular D-myo-inositol-1,4,5-triphosphate (IP3). LTD was also impaired by intracellular application of PLC or IP3 receptor blockers, and it was absent in mice lacking PLCbeta1, the predominant PLC isoform in the forebrain. We propose that visual cortical LTD requires a minimum of PLC activity that can be supplied independently by at least three neurotransmitter systems. This essential requirement places PLC-linked receptors in a unique position to control the induction of LTD and provides a mechanism for gating visual cortical plasticity via extra-retinal inputs in the intact organism.
Collapse
Affiliation(s)
- Se-Young Choi
- Mind/Brain Institute, Department of Neurosciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Gravius A, Pietraszek M, Schmidt WJ, Danysz W. Functional interaction of NMDA and group I metabotropic glutamate receptors in negatively reinforced learning in rats. Psychopharmacology (Berl) 2006; 185:58-65. [PMID: 16402194 DOI: 10.1007/s00213-005-0249-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Accepted: 10/28/2005] [Indexed: 10/25/2022]
Abstract
RATIONALE The role of glutamatergic system in learning and memory has been extensively studied, and especially N-methyl-D: -aspartate (NMDA) receptors have been implicated in different learning and memory processes. Less is known, however, about group I metabotropic glutamate (mGlu) receptors in this field. Recent studies indicated that the coactivation of both NMDA and group I mGlu receptors is required for the induction of long-term potentiation (LTP) and learning. OBJECTIVE The purpose of the study is to evaluate if there is a functional interaction between NMDA and group I mGlu receptors in two different models of aversive learning. METHODS Effects of NMDA, mGlu1, and mGlu5 receptor antagonists on acquisition were tested after systemic coadministration of selected ineffective doses in passive avoidance (PA) and fear-potentiated startle (FPS). RESULTS Interaction in aversive learning was investigated using selective antagonists: (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM) for mGlu1, [(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) for mGlu5, and (+)-5-methyl-10,11-dihydro-5H-dibenzocyclohepten-5,10-imine maleate [(+)MK-801] for NMDA receptors. In PA, the coapplication of MTEP at a dose of 5 mg/kg and (+)MK-801 at a dose of 0.1 mg/kg 30 min before training impaired the acquisition tested 24 h later. Similarly, EMQMCM (2.5 mg/kg) plus (+)MK-801 (0.1 mg/kg), given during the acquisition phase, blocked the acquisition of the PA response. In contrast, neither the combination of MTEP (1.25 mg/kg) nor EMQMCM (5 mg/kg) plus (+)MK-801 (0.05 mg/kg) was effective on the acquisition assessed in the FPS paradigm. CONCLUSION The findings suggest differences in the interaction of the NMDA and mGlu group I receptor types in aversive instrumental conditioning vs conditioning to a discrete light cue.
Collapse
MESH Headings
- Animals
- Avoidance Learning/drug effects
- Avoidance Learning/physiology
- Behavior, Animal/drug effects
- Behavior, Animal/radiation effects
- Conditioning, Psychological
- Fear
- Learning/drug effects
- Learning/physiology
- Long-Term Potentiation/drug effects
- Long-Term Potentiation/physiology
- Male
- Models, Biological
- Rats
- Rats, Sprague-Dawley
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/physiology
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Reinforcement, Psychology
Collapse
Affiliation(s)
- A Gravius
- Preclinical R&D, Merz Pharmaceuticals, Eckenheimer Landstrasse 100, 60318 Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
31
|
Schmid S, Fendt M. Effects of the mGluR8 agonist (S)-3,4-DCPG in the lateral amygdala on acquisition/expression of fear-potentiated startle, synaptic transmission, and plasticity. Neuropharmacology 2005; 50:154-64. [PMID: 16188284 DOI: 10.1016/j.neuropharm.2005.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 08/04/2005] [Accepted: 08/07/2005] [Indexed: 10/25/2022]
Abstract
The lateral amygdala plays an important role in emotional learning. Previous studies found that amygdaloid plasticity processes involve the activation of metabotropic glutamate receptors. In the present study we examined the effect of the highly specific mGluR8 agonist (S)-3,4-DCPG on conditioned fear in vivo measuring fear-potentiated startle. Both, acquisition and expression of conditioned fear were dose-dependently inhibited by (S)-3,4-DCPG injections into the amygdala. Since synaptic long-term potentiation in the lateral amygdala has been correlated with the acquisition of conditioned fear in rats, the effect of (S)-3,4-DCPG in vitro on synaptic transmission, short- and long-term plasticity in the lateral amygdala was evaluated in parallel. Patch clamp recordings in rat brain slices revealed that (S)-3,4-DCPG strongly attenuated synaptic transmission from sensory afferents. The lack of detectable effects on postsynaptic neurons and altered short-term plasticity indicate that (S)-3,4-DCPG acts at presynaptic sites. Long-term potentiation of thalamic afferent fiber synapses induced by a pairing protocol was slightly attenuated in the presence of (S)-3,4-DCPG, but long-term potentiation by tetanic afferent stimulation was inhibited. We conclude that mGluR8 activation is not specifically involved in long-term plasticity processes but that it rather provides a powerful inhibitory control of synaptic transmission within the lateral amygdala, with the ability to reduce activity in such a way that the expression and the acquisition of learned fear become strongly impaired in vivo.
Collapse
Affiliation(s)
- Susanne Schmid
- Tierphysiologie, Zool. Institut, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany.
| | | |
Collapse
|
32
|
Adamec R, Blundell J, Burton P. Role of NMDA receptors in the lateralized potentiation of amygdala afferent and efferent neural transmission produced by predator stress. Physiol Behav 2005; 86:75-91. [PMID: 16102787 DOI: 10.1016/j.physbeh.2005.06.026] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 06/15/2005] [Accepted: 06/24/2005] [Indexed: 01/02/2023]
Abstract
The present study investigated the role of NMDA receptors in behavioral and neuroplastic changes in amygdala efferent (central amygdala to periaqueductal gray-ACE-PAG) and amygdala afferent (ventral angular bundle to basolateral amygdala-VAB-BLA) pathways in response to predator stress. Effects on brain and behavioral response to predator stress of competitive block of NMDA receptors with a dose of 10 mg/kg of CPP (3-(2-carboxypiperazin4-yl)propyl-l-phosphonic acid) were studied. Behavioral response to stress was tested with hole board, elevated plus maze, light/dark box, social interaction and acoustic startle tests. CPP was administered i.p. 30 min prior to predator stress and blocked the effects of predator on some but not all behaviors measured 8-9 days later. Effects of predator stress and CPP on potentials evoked in the PAG by single pulse stimulation of the ACE and in the BLA by single pulse stimulation of VAB were assessed 10-11 days after predator stress. Predator stress potentiated ACE-PAG evoked potentials in the right but not the left hemisphere, replicating previous work. Predator stress potentiated VAB-BLA transmission in both hemispheres 10-11 days after predator stress. Right hemisphere VAB-BLA potentiation replicated and extended past studies showing right hemisphere potentiation at 1 and 9 days after stress. Left VAB-BLA potentiation effects differed from the long term depression seen in VAB-BLA at 1 and 9 days after stress in previous studies. CPP blocked predator stress-induced potentiation of ACE-PAG and VAB-BLA evoked potentials in the right hemisphere. CPP did not block left VAB-BLA potentiation, rather CPP amplified it. Left hemisphere effects of CPP were interpreted as reflecting block of NMDA dependent long term depression, which unmasked a non-NMDA dependent potentiation. Taken together, the findings add to a body of evidence suggesting that a syndrome of behavioral changes follows predator stress. Components of this syndrome likely depend on changes in separable neural substrates. Potentiation of ACE-PAG and VAB-BLA evoked potentials in the right hemisphere likely mediates a subset of changes in behavior. Moreover, a medial ACE-PAG pathway is implicated in mediating stress-induced changes in startle amplitude. In contrast, a lateral ACE-PAG pathway is implicated in mediating changes in startle habituation. Finally, consistent with cat and human studies, the right hemisphere appears particularly important in long term response to stress.
Collapse
Affiliation(s)
- Robert Adamec
- Department of Psychology, Memorial University, St. John's, NF, Canada.
| | | | | |
Collapse
|
33
|
Blundell J, Adamec R, Burton P. Role of NMDA receptors in the syndrome of behavioral changes produced by predator stress. Physiol Behav 2005; 86:233-43. [PMID: 16102786 DOI: 10.1016/j.physbeh.2005.07.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 05/17/2005] [Accepted: 07/18/2005] [Indexed: 11/24/2022]
Abstract
Effects on behavioral response to predator stress of competitive block of NMDA receptors with doses of .1, 1.0 and 10 mg/kg of CPP (3-(2-carboxypiperazin4-yl)propyl-l-phosphonic acid) were studied. An affect test battery assessed behavioral response to stress and employed hole board, elevated plus maze, light/dark box, social interaction, social avoidance and response to acoustic startle tests. Doses of 1-10 mg/kg of CPP administered ip 30 min prior to predator stress blocked the effects of predator stress on some but not all behaviors measured 8-9 days later. Predator stress normally reduces open arm exploration and risk assessment in the plus maze, decreases entries into the lighted arm of the light dark box and delays habituation of the acoustic startle response. CPP blocked all of these effects of predator stress. A dose of 10 mg/kg of CPP was required for all behaviors except habituation to startle. Block of effects on habituation to startle occurred at 1 and 10 mg/kg. Behaviors in which effects of predator stress were not blocked by CPP included reduction in unprotected head dips in the elevated plus maze and reduced social interaction. In addition, predator stress was without effect on social avoidance measured with the Haller test. These findings extend previous work showing NMDA receptor dependence of effects of predator stress on behavior in the elevated plus maze and on amplitude of acoustic startle response. Novel findings include NMDA receptor dependence of predator stress effects on light dark box behavior and startle habituation. Taken together, the findings add to a body of evidence showing that a syndrome of behavioral changes follows predator stress. Components of this syndrome of behavioral changes likely depend on changes in separable neural substrates initiated in part by NMDA receptors as well as by other neurochemical means.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Avoidance Learning/drug effects
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Behavioral Symptoms/drug therapy
- Behavioral Symptoms/etiology
- Behavioral Symptoms/psychology
- Cats
- Dose-Response Relationship, Drug
- Excitatory Amino Acid Antagonists/administration & dosage
- Handling, Psychological
- Interpersonal Relations
- Male
- Organophosphonates/administration & dosage
- Periodicity
- Piperazines/administration & dosage
- Predatory Behavior/physiology
- Random Allocation
- Rats
- Rats, Long-Evans
- Receptors, N-Methyl-D-Aspartate/physiology
- Reflex, Startle/drug effects
- Stress, Psychological/complications
- Stress, Psychological/drug therapy
- Stress, Psychological/psychology
Collapse
|
34
|
Adamec RE, Blundell J, Burton P. Neural circuit changes mediating lasting brain and behavioral response to predator stress. Neurosci Biobehav Rev 2005; 29:1225-41. [PMID: 16099042 DOI: 10.1016/j.neubiorev.2005.05.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 04/24/2005] [Accepted: 05/01/2005] [Indexed: 11/21/2022]
Abstract
This paper reviews recent work which points to critical neural circuitry involved in lasting changes in anxiety like behavior following unprotected exposure of rats to cats (predator stress). Predator stress may increase anxiety like behavior in a variety of behavioral tests including: elevated plus maze, light dark box, acoustic startle, and social interaction. Studies of neural transmission in two limbic pathways, combined with path and covariance analysis relating physiology to behavior, suggest long term potentiation like changes in one or both of these pathways in the right hemisphere accounts for stress induced changes in all behaviors changed by predator stress except light dark box and social interaction. Findings will be discussed within the context of what is known about neural substrates activated by predator odor.
Collapse
Affiliation(s)
- Robert E Adamec
- Dept. of Psychology, Memorial University, 232 Elizabeth Ave., St. John's, Nl, Canada.
| | | | | |
Collapse
|
35
|
Bills C, Schachtman TR, Serfozo P, Spooren WPJM, Gasparini F, Simonyi A. Effects of metabotropic glutamate receptor 5 on latent inhibition in conditioned taste aversion. Behav Brain Res 2005; 157:71-8. [PMID: 15617773 DOI: 10.1016/j.bbr.2004.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 03/22/2004] [Accepted: 06/11/2004] [Indexed: 11/19/2022]
Abstract
Latent inhibition (LI) is a phenomenon by which pre-exposure of a conditioned stimulus (CS) prior to the CS-unconditioned stimulus (US) pairings retards conditioned responding (CR). LI has been demonstrated in a variety of learning tasks including conditioned taste aversion (CTA). Earlier work has shown that systemic administration of 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective metabotropic glutamate receptor 5 (mGlu5) antagonist, is able to disrupt classical conditioning in CTA. The present study investigated the involvement of mGlu5 receptors in LI using a CTA procedure. In the first experiment, rats received either water (non-pre-exposed, NPE) or a saccharin solution (pre-exposed, PE) on 2 consecutive days. The animals then received conditioning in which a fixed amount of saccharin was paired with lithium chloride and then the CR to the taste was tested. Either MPEP (3, 6, 12 mg/kg) or vehicle was injected intraperitoneally prior to taste pre-exposure or testing. Animals in the vehicle control groups displayed LI. MPEP injections before pre-exposure trials attenuated LI but also reduced consumption during pre-exposure, which obscured interpretation of the LI effect. The second experiment used four pre-exposure trials and controlled access to fixed amount of the solutions during the pre-exposure as well as the conditioning trials. Rats were injected before pre-exposure trials but not before the test trial. The results found that MPEP attenuates latent inhibition suggesting that the mGlu5 receptor exerts an influence on the processes that underlie the effects of taste pre-exposure on conditioning.
Collapse
Affiliation(s)
- Carla Bills
- Department of Psychological Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
36
|
de Labra C, Rivadulla C, Cudeiro J. Modulatory effects mediated by metabotropic glutamate receptor 5 on lateral geniculate nucleus relay cells. Eur J Neurosci 2005; 21:403-10. [PMID: 15673439 DOI: 10.1111/j.1460-9568.2005.03847.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glutamate is thought to be the excitatory neurotransmitter in the lateral geniculate nucleus (LGN) of the cat, mediating visual transmission from the retina via ionotropic receptors of both D,L-alpha-amino-3-hydroxy-5-alpha-methyl-4-isoxazolepropionate and N-methyl-D-aspartate subtypes. Moreover, glutamate also exerts an important modulatory influence on LGN cells, where metabotropic glutamate receptors (mGluRs) seem to play a crucial role. Here we show in anesthetized adult cats that iontophoretic application of the specific mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) produced two, distinctly different, effects on LGN neurons. Visual responses to flashing spots and drifting gratings were attenuated (decreased by an average of 59%) in 13 of 23 of the cells but augmented (increased by an average of 60%) in 10 of 23 of the cells. Further, in each case when the specific mGluR5 agonist (R,S)-2-chloro-5-hydroxyphenylglycine was applied, the effects obtained were the opposite to those of MPEP. Data obtained in a second group of experiments to determine a possible interaction between mGluR5 blockade by MPEP and glutamate ionotropic receptors show that, in the majority of neurons (11 of 15, 73%), the MPEP-mediated effects seem to be independent of N-methyl-D-aspartate and D,L-alpha-amino-3-hydroxy-5-alpha-methyl-4-isoxazolepropionate receptor activity. Our results demonstrate a physiological role for mGluR5 in controlling retinal input and show, in vivo, a more intricate scenario than previously suggested, highlighting the complexity of metabotropic receptor interactions with excitatory and inhibitory elements in the thalamus.
Collapse
Affiliation(s)
- Carmen de Labra
- NEUROcom (Neuroscience and Motor Control Group), Department of Medicine and INEF-Galicia, Campus de Oza, University of A Coruña, 15006, A Coruña, Spain
| | | | | |
Collapse
|
37
|
Rodrigues SM, Schafe GE, LeDoux JE. Molecular Mechanisms Underlying Emotional Learning and Memory in the Lateral Amygdala. Neuron 2004; 44:75-91. [PMID: 15450161 DOI: 10.1016/j.neuron.2004.09.014] [Citation(s) in RCA: 359] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fear conditioning is a valuable behavioral paradigm for studying the neural basis of emotional learning and memory. The lateral nucleus of the amygdala (LA) is a crucial site of neural changes that occur during fear conditioning. Pharmacological manipulations of the LA, strategically timed with respect to training and testing, have shed light on the molecular events that mediate the acquisition of fear associations and the formation and maintenance of long-term memories of those associations. Similar mechanisms have been found to underlie long-term potentiation (LTP) in LA, an artificial means of inducing synaptic plasticity and a physiological model of learning and memory. Thus, LTP-like changes in synaptic plasticity may underlie fear conditioning. Given that the neural circuit underlying fear conditioning has been implicated in emotional disorders in humans, the molecular mechanisms of fear conditioning are potential targets for psychotherapeutic drug development.
Collapse
|
38
|
Adamec RE, Blundell J, Burton P. Phosphorylated cyclic AMP response element binding protein expression induced in the periaqueductal gray by predator stress: its relationship to the stress experience, behavior and limbic neural plasticity. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:1243-67. [PMID: 14659479 DOI: 10.1016/j.pnpbp.2003.09.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Electrophysiological studies in cats and recently in rats implicate neuroplasticity in the periaqueductal gray (PAG) and its afferents in stressor-induced increases in fearful behavior and anxiety-like behavior (ALB). Such increases may model aspects of affective changes following traumatic stress in humans. The present study explored the role of neuroplasticity in PAG and its connection with the central nucleus of the amygdala (ACE) in male rodent anxiety-like response to predator stress. In the first of two studies, the effects of predator stress on the induction of phosphorylated cyclic AMP response element binding protein (pCREB) were investigated. pCREB expression in the PAG and ventromedial hypothalamus (VMH) was examined immunohistochemically. Predator stress increased the degree of pCREB expression in PAG cells (measured densitometrically) but did not increase the number of cells expressing pCREB (measured stereologically). Moreover, predator stress-specific increase in pCREB-like immunoreactivity (lir) was restricted to the right lateral column of the PAG. In addition, pCREB lir in the right lateral column likely reflects aspects of the stress experience because the stressor (cat behavior) and the response to the stressor (rat defensive behavior) are highly predictive of degree of pCREB expression. There was no effect of predator stress on pCREB lir in the VMH. Because pCREB expression has been associated with long-lasting potentiation (LLP) of neural transmission, we examined the effects of predator stress on transmission in the ACE-PAG pathway in a second study. Predator stress elevated evoked potential measures of ACE-PAG transmission in the right hemisphere but not in the left hemisphere 11-12 days after predator stress. This finding is consistent with the longer-lived effects of pharmacological stress on amygdalo-PAG transmission in the right hemisphere but not in the left hemisphere in cats. Of interest is the fact that the same aspects of the stressor experience and reaction to it, which are predictive of the degree of pCREB expression, are also highly predictive of the degree of potentiation of measures of ACE-PAG transmission. Behavioral analyses revealed that the most consistent effects of predator stress are on behavior in the plus maze (open arm exploration and risk assessment) and on startle. In addition, covariance analysis suggests that ACE-PAG potentiation mediates some but not all of the changes in ALB produced by predator stress. Because pCREB expression may be a precursor to neuroplastic changes in certain forms of memory and LLP, the present findings complement studies in the cat, showing that neuroplastic changes in the PAG underlie changes in affect following stress. Furthermore, these findings suggest that neuroplastic changes in PAG may be important mediators of predator stress-induced changes in affective behavior in rodents. Finally, consistent with cat and human studies, the right hemisphere appears particularly important in long-term response to stress.
Collapse
Affiliation(s)
- Robert E Adamec
- Department of Psychology, Memorial University, 232 Elizabeth Avenue, A1B 3X9, St. John's, Newfoundland, Canada.
| | | | | |
Collapse
|
39
|
Yaniv D, Vouimba RM, Diamond DM, Richter-Levin G. Simultaneous induction of long-term potentiation in the hippocampus and the amygdala by entorhinal cortex activation: mechanistic and temporal profiles. Neuroscience 2003; 120:1125-35. [PMID: 12927217 DOI: 10.1016/s0306-4522(03)00386-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The medial temporal lobe, including the entorhinal cortex, the amygdala and the hippocampus, has an important role in learning and memory, and its circuits exhibit synaptic plasticity (long-term potentiation [LTP]). The entorhinal cortex is positioned to exert a potent influence on the amygdala and the hippocampus given its extensive monosynaptic projections to both areas. We therefore studied the effects of activation of the entorhinal cortex with simultaneous recording of LTP in the hippocampus and amygdala in the anesthetized rat. theta Burst stimulation of the lateral entorhinal cortex induced LTP simultaneously in the basal amygdaloid nucleus and in the dentate gyrus. However, the mechanisms involved in the induction of LTP in the two areas differed. The N-methyl-D-aspartate receptor antagonist 3-[(+/-)-2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid delivered 1 h before LTP induction (10 mg/kg, i.p.), blocked LTP in the dentate gyrus but not in the amygdala. In addition we found that the basal amygdala as well as the dentate gyrus sustained late-phase LTP (10 h) which may participate in memory encoding and/or modulation processes. Overall, the results suggest a coordinating role for the entorhinal cortex by simultaneously modulating activity and plasticity in these structures, albeit through different mechanisms. Interactive encoding of this sort is believed to endow memories with a different, more integrative, quality than when either pathway is activated alone.
Collapse
Affiliation(s)
- D Yaniv
- Department of Psychology, Laboratory of Behavioral Neuroscience, and The Brain and Behavior Research Center, University of Haifa, 31905, Haifa, Israel
| | | | | | | |
Collapse
|