1
|
Irannejad H, Unsal Tan O, Ozadali K, Dadashpour S, Tuylu Kucukkilinc T, Ahangar N, Ahmadnejad M, Emami S. 1,2-Diaryl-2-hydroxyiminoethanones as Dual COX-1 and β
-Amyloid Aggregation Inhibitors: Biological Evaluation and In Silico
Study. Chem Biol Drug Des 2014; 85:494-503. [DOI: 10.1111/cbdd.12435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Hamid Irannejad
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
| | - Oya Unsal Tan
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Hacettepe University; 06100 Ankara Turkey
| | - Keriman Ozadali
- Department of Pharmaceutical Chemistry; Faculty of Pharmacy; Hacettepe University; 06100 Ankara Turkey
| | - Sakineh Dadashpour
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
- Student Research Committee; Faculty of Pharmacy; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
| | - Tuba Tuylu Kucukkilinc
- Department of Biochemistry; Faculty of Pharmacy; Hacettepe University; Sihhiye 06100 Ankara Turkey
| | - Nematollah Ahangar
- Department of Toxicology and Pharmacology; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
| | - Mahsa Ahmadnejad
- Faculty of Pharmacy; Mazandaran University of Medical Sciences-Ramsar International Branch; Ramsar Iran
| | - Saeed Emami
- Department of Medicinal Chemistry; Faculty of Pharmacy and Pharmaceutical Sciences Research Center; Mazandaran University of Medical Sciences; PO Box 48175-861 Sari Iran
| |
Collapse
|
2
|
Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer's disease. Alzheimers Dement 2014; 10:S76-83. [PMID: 24529528 DOI: 10.1016/j.jalz.2013.12.010] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/05/2013] [Indexed: 02/06/2023]
Abstract
A link between Alzheimer's disease (AD) and metabolic disorders has been established, with patients with type 2 diabetes at increased risk of developing AD and vice versa. The incidence of metabolic disorders, including insulin resistance and type 2 diabetes is increasing at alarming rates worldwide, primarily as a result of poor lifestyle habits. In parallel, as the world population ages, the prevalence of AD, the most common form of dementia in the elderly, also increases. In addition to their epidemiologic and clinical association, mounting recent evidence indicates shared mechanisms of pathogenesis between metabolic disorders and AD. We discuss the concept that peripheral and central nervous system inflammation link the pathogenesis of AD and metabolic diseases. We also explore the contribution of brain inflammation to defective insulin signaling and neuronal dysfunction. Last, we review recent evidence indicating that targeting neuroinflammation may provide novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Julia R Clarke
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Theresa R Bomfim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Choi SH, Aid S, Caracciolo L, Minami SS, Niikura T, Matsuoka Y, Turner RS, Mattson MP, Bosetti F. Cyclooxygenase-1 inhibition reduces amyloid pathology and improves memory deficits in a mouse model of Alzheimer's disease. J Neurochem 2012; 124:59-68. [PMID: 23083210 DOI: 10.1111/jnc.12059] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/28/2012] [Accepted: 10/10/2012] [Indexed: 01/09/2023]
Abstract
Several epidemiological and preclinical studies suggest that non-steroidal anti-inflammatory drugs (NSAIDs), which inhibit cyclooxygenase (COX), reduce the risk of Alzheimer's disease (AD) and can lower β-amyloid (Aβ) production and inhibit neuroinflammation. However, follow-up clinical trials, mostly using selective cyclooxygenase (COX)-2 inhibitors, failed to show any beneficial effect in AD patients with mild to severe cognitive deficits. Recent data indicated that COX-1, classically viewed as the homeostatic isoform, is localized in microglia and is actively involved in brain injury induced by pro-inflammatory stimuli including Aβ, lipopolysaccharide, and interleukins. We hypothesized that neuroinflammation is critical for disease progression and selective COX-1 inhibition, rather than COX-2 inhibition, can reduce neuroinflammation and AD pathology. Here, we show that treatment of 20-month-old triple transgenic AD (3 × Tg-AD) mice with the COX-1 selective inhibitor SC-560 improved spatial learning and memory, and reduced amyloid deposits and tau hyperphosphorylation. SC-560 also reduced glial activation and brain expression of inflammatory markers in 3 × Tg-AD mice, and switched the activated microglia phenotype promoting their phagocytic ability. The present findings are the first to demonstrate that selective COX-1 inhibition reduces neuroinflammation, neuropathology, and improves cognitive function in 3 × Tg-AD mice. Thus, selective COX-1 inhibition should be further investigated as a potential therapeutic approach for AD.
Collapse
Affiliation(s)
- Sang-Ho Choi
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Li X, Rose SE, Montine KS, Keene CD, Montine TJ. Antagonism of neuronal prostaglandin E(2) receptor subtype 1 mitigates amyloid β neurotoxicity in vitro. J Neuroimmune Pharmacol 2012; 8:87-93. [PMID: 22718277 DOI: 10.1007/s11481-012-9380-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 06/04/2012] [Indexed: 01/28/2023]
Abstract
Multiple lines of evidence indicate that regional brain eicosanoid signaling is important in initiation and progression of neurodegenerative conditions that have neuroinflammatory pathologic component, such as AD. We hypothesized that PGE(2) receptor subtype 1 (EP1) signaling (linked to intracellular Ca(2+) release) regulates Aβ peptide neurotoxicity and tested this in two complementary in vitro models: a human neuroblastoma cell line (MC65) producing Aβ(1-40) through conditional expression of the APP C-terminal portion, and murine primary cortical neuron cultures exposed to Aβ(1-42). In MC65 cells, EP1 receptor antagonist SC-51089 reduced Aβ neurotoxicity ~50 % without altering high molecular weight Aβ immunoreactive species formation. Inositol-3-phosphate receptor antagonist 2-aminoethoxy-diphenyl borate offered similar protection. SC-51089 largely protected the neuron cultures from synthetic Aβ(1-42) neurotoxicity. Nimodipine, a Ca(2+) channel blocker, was completely neuroprotective in both models. Based on these data, we conclude that suppressing neuronal EP1 signaling may represent a promising therapeutic approach to ameliorate Aβ peptide neurotoxicity.
Collapse
Affiliation(s)
- Xianwu Li
- Department of Pathology, University of Washington, Box 359645, Seattle, WA 98104, USA.
| | | | | | | | | |
Collapse
|
5
|
Rubio-Perez JM, Morillas-Ruiz JM. A review: inflammatory process in Alzheimer's disease, role of cytokines. ScientificWorldJournal 2012; 2012:756357. [PMID: 22566778 PMCID: PMC3330269 DOI: 10.1100/2012/756357] [Citation(s) in RCA: 546] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/11/2011] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder to date. Neuropathological hallmarks are β-amyloid (Aβ) plaques and neurofibrillary tangles, but the inflammatory process has a fundamental role in the pathogenesis of AD. Inflammatory components related to AD neuroinflammation include brain cells such as microglia and astrocytes, the complement system, as well as cytokines and chemokines. Cytokines play a key role in inflammatory and anti-inflammatory processes in AD. An important factor in the onset of inflammatory process is the overexpression of interleukin (IL)-1, which produces many reactions in a vicious circle that cause dysfunction and neuronal death. Other important cytokines in neuroinflammation are IL-6 and tumor necrosis factor (TNF)-α. By contrast, other cytokines such as IL-1 receptor antagonist (IL-1ra), IL-4, IL-10, and transforming growth factor (TGF)-β can suppress both proinflammatory cytokine production and their action, subsequently protecting the brain. It has been observed in epidemiological studies that treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) decreases the risk for developing AD. Unfortunately, clinical trials of NSAIDs in AD patients have not been very fruitful. Proinflammatory responses may be countered through polyphenols. Supplementation of these natural compounds may provide a new therapeutic line of approach to this brain disorder.
Collapse
Affiliation(s)
- Jose Miguel Rubio-Perez
- Department of Food and Nutrition Technology, St. Anthony Catholic University, Campus de Los Jerónimos, s/n Guadalupe, 30107 Murcia, Spain
| | - Juana Maria Morillas-Ruiz
- Department of Food and Nutrition Technology, St. Anthony Catholic University, Campus de Los Jerónimos, s/n Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
6
|
Dargahi L, Nasiraei-Moghadam S, Abdi A, Khalaj L, Moradi F, Ahmadiani A. Cyclooxygenase (COX)-1 activity precedes the COX-2 induction in Aβ-induced neuroinflammation. J Mol Neurosci 2010; 45:10-21. [PMID: 20549385 DOI: 10.1007/s12031-010-9401-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/26/2010] [Indexed: 12/31/2022]
Abstract
Two different isoforms of cyclooxygenases, COX-1 and COX-2, are constitutively expressed under normal physiological conditions of the central nervous system, and accumulating data indicate that both isoforms may be involved in different pathological conditions. However, the distinct role of COX-1 and COX-2 and the probable interaction between them in neuroinflammatory conditions associated with Alzheimer's disease are conflicting issues. The aim of this study was to elucidate the comparable role of each COX isoform in neuroinflammatory response induced by β-amyloid peptide (Aβ). Using histological and biochemical methods, 13 days after stereotaxic injection of Aβ into the rat prefrontal cortex, hippocampal neuroinflammation and neuronal injury were confirmed by increased expression of tumor necrosis factor-alpha (TNF-α) and COX-2, elevated levels of prostaglandin E2 (PGE2), astrogliosis, activation of caspase-3, and neuronal cell loss. Selective COX-1 or COX-2 inhibitors, SC560 and NS398, respectively, were chronically used to explore the role of COX-1 and COX-2. Treatment with either COX-1 or COX-2 selective inhibitor or their combination equally decreased the level of TNF-α, PGE2, and cleaved caspase-3 and attenuated astrogliosis and neuronal cell loss. Interestingly, treatment with COX-1 selective inhibitor or the combined COX inhibitors prevented the induction of COX-2. These results indicate that the activity of both isoforms is detrimental in neuroinflammatory conditions associated with Aβ, but COX-1 activity is necessary for COX-2 induction and COX-2 activity seems to be the main source of PGE2 increment.
Collapse
Affiliation(s)
- Leila Dargahi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
7
|
Donev R, Kolev M, Millet B, Thome J. Neuronal death in Alzheimer's disease and therapeutic opportunities. J Cell Mol Med 2009; 13:4329-48. [PMID: 19725918 PMCID: PMC4515050 DOI: 10.1111/j.1582-4934.2009.00889.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is an age-related neurodegenerative disease that affects approximately 24 million people worldwide. A number of different risk factors have been implicated in AD; however, neuritic (amyloid) plaques are considered as one of the defining risk factors and pathological hallmarks of the disease. In the past decade, enormous efforts have been devoted to understand the genetics and molecular pathogenesis leading to neuronal death in AD, which has been transferred into extensive experimental approaches aimed at reversing disease progression. Modern medicine is facing an increasing number of treatments available for vascular and neurodegenerative brain diseases, but no causal or neuroprotective treatment has yet been established. Almost all neurological conditions are characterized by progressive neuronal dysfunction, which, regardless of the pathogenetic mechanism, finally leads to neuronal death. The particular emphasis of this review is on risk factors and mechanisms resulting in neuronal loss in AD and current and prospective opportunities for therapeutic interventions. This review discusses these issues with a view to inspiring the development of new agents that could be useful for the treatment of AD.
Collapse
Affiliation(s)
- Rossen Donev
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff, UK
| | | | | | | |
Collapse
|
8
|
A role for cyclooxygenase-1 in beta-amyloid-induced neuroinflammation. Aging (Albany NY) 2009; 1:350-3. [PMID: 20157521 PMCID: PMC2806016 DOI: 10.18632/aging.100039] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Accepted: 04/13/2009] [Indexed: 12/02/2022]
|
9
|
Choi SH, Bosetti F. Cyclooxygenase-1 null mice show reduced neuroinflammation in response to beta-amyloid. Aging (Albany NY) 2009; 1:234-44. [PMID: 20157512 PMCID: PMC2806008 DOI: 10.18632/aging.100021] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 02/10/2009] [Indexed: 11/25/2022]
Abstract
Several independent
epidemiological studies indicate that chronic use of non-steroidal
anti-inflammatory drugs can reduce the risk of developing Alzheimer's
disease (AD), supporting the inflammatory cascade hypothesis. Although the
first clinical trial with indomethacin, a preferential cyclooxygenase
(COX)-1 inhibitor, showed beneficial effects, subsequent large clinical
trials, mostly using COX-2 inhibitors, failed to show any beneficial effect
in AD patients with mild to severe cognitive impairment. These combined
data suggest that either an early treatment is crucial to stop the
mechanisms underlying the disease before the onset of the symptoms, or that
preferential COX-1 inhibition, rather than COX-2, is beneficial. Therefore,
a full understanding of the physiological, pathological, and/or
neuroprotective role of COX isoforms may help to develop better therapeutic
strategies for the prevention or treatment of AD. In this study, we
examined the effect of COX-1 genetic deletion on the inflammatory response
and neurodegeneration induced by β-amyloid. β-amyloid (Aβ1-42)
was centrally injected in the lateral ventricle of COX-1-deficient (COX-1-/-)
and their respective wild-type (WT) mice. In COX-1-/-
mice, Aβ1-42-induced inflammatory response and neuronal
damage were attenuated compared to WT mice, as shown by Fluoro-Jade B and
nitrotyrosine staining. These results indicate that inhibition of COX-1
activity may be valid therapeutic strategy to reduce brain inflammatory
response and neurodegeneration.
Collapse
Affiliation(s)
- Sang-Ho Choi
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
10
|
Abstract
A doença de Alzheimer é a patologia neurodegenerativa mais freqüente associada à idade, cujas manifestações cognitivas e neuropsiquiátricas resultam em deficiência progressiva e incapacitação. A doença afeta aproximadamente 10% dos indivíduos com idade superior a 65 anos e 40% acima de 80 anos. Estima-se que, em 2050, mais de 25% da população mundial será idosa, aumentando, assim, a prevalência da doença. O sintoma inicial da doença é caracterizado pela perda progressiva da memória recente. Com a evolução da patologia, outras alterações ocorrem na memória e na cognição, entre elas as deficiências de linguagem e nas funções vísuo-espaciais. Esses sintomas são freqüentemente acompanhados por distúrbios comportamentais, incluindo agressividade, depressão e alucinações. O objetivo deste trabalho foi revisar, na literatura médica, os principais aspectos que envolvem a doença de Alzheimer, como as características histopatológicas, a neuroinflamação e a farmacoterapia atual.
Collapse
|
11
|
Choi SH, Langenbach R, Bosetti F. Genetic deletion or pharmacological inhibition of cyclooxygenase-1 attenuate lipopolysaccharide-induced inflammatory response and brain injury. FASEB J 2007; 22:1491-501. [PMID: 18162486 DOI: 10.1096/fj.07-9411com] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclooxygenase (COX) -1 and -2 metabolize arachidonic acid to prostanoids and reactive oxygen species, major players in the neuroinflammatory process. While most reports have focused on the inducible isoform, COX-2, the contribution of COX-1 to the inflammatory response is unclear. In the present study, the contribution of COX-1 in the neuroinflammatory response to intracerebroventricular lipopolysaccharide (LPS) was investigated using COX-1 deficient (COX-1(-/-)) mice or wild-type (COX-1(+/+)) mice pretreated with SC-560, a selective COX-1 inhibitor. Twenty-four hours after lipopolysaccharide (LPS) injection, COX-1(-/-) mice showed decreased protein oxidation and LPS-induced neuronal damage in the hippocampus compared with COX-1(+/+) mice. COX-1(-/-) mice showed a significant reduction of microglial activation, proinflammatory mediators, and expression of COX-2, inducible NOS, and NADPH oxidase. The transcriptional down-regulation of cytokines and other inflammatory markers in COX-1(-/-) mice was mediated by a reduced activation of NF-kappaB and signal transducer and activator of transcription 3. Administration of SC-560 prior to LPS injection also attenuated the neuroinflammatory response by decreasing brain levels of prostaglandin (PG)E(2), PGD(2), PGF(2alpha), and thromboxane B(2), as well as the expression of proinflammatory cytokines and chemokine. These findings suggest that COX-1 plays a previously unrecognized role in neuroinflammatory damage.
Collapse
Affiliation(s)
- Sang-Ho Choi
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
12
|
Wilhelmus MMM, Boelens WC, Kox M, Maat-Schieman MLC, Veerhuis R, de Waal RMW, Verbeek MM. Small heat shock proteins associated with cerebral amyloid angiopathy of hereditary cerebral hemorrhage with amyloidosis (Dutch type) induce interleukin-6 secretion. Neurobiol Aging 2007; 30:229-40. [PMID: 17629591 DOI: 10.1016/j.neurobiolaging.2007.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/25/2007] [Accepted: 06/05/2007] [Indexed: 12/15/2022]
Abstract
In hereditary cerebral hemorrhage with amyloidosis of the Dutch type (HCHWA-D), severe cerebral amyloid angiopathy (CAA) is associated with an inflammatory reaction. Small heat shock proteins (sHsps) are molecular chaperones and association of HspB8 with CAA in HCHWA-D has been observed. The aims of this study were to investigate (1) if other sHsps are associated with the pathological lesions in HCHWA-D brains, (2) if the amyloid-beta protein (A beta) increases production of sHsps in cultured cerebral cells and (3) if sHsps are involved in the cerebral inflammatory processes in both Alzheimer's disease (AD) and HCHWA-D. We conclude that Hsp20, HspB8 and HspB2 are present in CAA in HCHWA-D, and that A beta did not affect cellular sHsps expression in cultured human brain pericytes and astrocytes. In addition, we demonstrated that Hsp20, HspB2 and HspB8 induced interleukin-6 production in cultured pericytes and astrocytes, which could be antagonized by dexamethasone, whereas other sHsps and A beta were inactive, suggesting that sHsps may be among the key mediators of the local inflammatory response associated with HCHWA-D and AD lesions.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Neurology and Alzheimer Centre, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
13
|
Bate C, Williams A. Squalestatin protects neurons and reduces the activation of cytoplasmic phospholipase A2 by Abeta(1-42). Neuropharmacology 2007; 53:222-31. [PMID: 17583757 DOI: 10.1016/j.neuropharm.2007.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Revised: 04/18/2007] [Accepted: 05/03/2007] [Indexed: 10/23/2022]
Abstract
Alzheimer's disease is characterised by the loss of neurons and the production of Abeta peptides. We report that the addition of Abeta(1-42) to neurons resulted in activation of cytoplasmic phospholipase A(2) (cPLA(2)), the production of prostaglandin E(2), synapse damage and reduced neuronal survival. Pre-treatment with simvastatin, a clinically relevant statin that penetrates the brain, protected against Abeta(1-42) induced synapse damage and neuronal death in vitro. The neuroprotective effects of simvastatin were shared by squalestatin, a squalene synthase inhibitor that reduces neuronal cholesterol production and crucially, does not affect isoprenoid formation. The protective effect of both these drugs was reversed by the addition of exogenous cholesterol. These drugs did not alter the amounts of extracellular Abeta(1-42) ingested by neurons; rather they reduced Abeta(1-42) induced activation of cPLA(2) and prostaglandin E(2) production. Treatment prevented the migration of Abeta(1-42) and cPLA(2) to caveolin-1 containing lipid rafts. We propose that critical concentrations of Abeta(1-42) trigger the amalgamation of individual micro-domains containing signalling molecules to form lipid raft platforms in which sustained activation of cPLA(2) leads to neuronal dysfunction and ultimately neuronal death. This process is dependent on the amounts of cholesterol in neuronal membranes and is susceptible to treatment with squalestatin or simvastatin.
Collapse
Affiliation(s)
- Clive Bate
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, UK.
| | | |
Collapse
|
14
|
Pérez C, Sánchez J, Mármol F, Puig-Parellada P, Pouplana R. Reactivity of Biologically Important NSAID Compounds with Superoxide (O2.−), nitric oxide (.NO) and Cyclooxygenase Inhibition. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/qsar.200630067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Abstract
The neuropathology of Alzheimer's disease (AD) is characterized by deposits of amyloid beta (Abeta) peptides and neurofibrillary tangles, but also, among other aspects, by signs of a chronic inflammatory process. Epidemiological studies have shown that long-term use of nonsteroidal antiinflammatory drugs (NSAIDs) reduces the risk of developing AD and delays its onset. The classic target of NSAIDs is the prevention of cyclooxygenase (COX) activation. The main mechanism of action of COXs is the synthesis of prostaglandins, some of which have potent inflammatory activity. The discovery of two isoforms of this enzyme, COX-1 and COX-2, and that the latter is inducible by inflammatory cytokines supported the hypothesis that its inhibition would result in a potent antiinflammatory effect and led to the rapid development of selective COX-2 inhibitors, collectively called coxibs. Based on this rationale, some coxibs have been used in clinical trials for AD patients, but all the results obtained so far have been negative. Here, we review our knowledge in terms of COX-2 in the central nervous system, COX-2 and Abeta formation, and finally COX-2 and AD pathogenesis to understand the reasons why these drugs have failed and whether there is any scientific support to keep them as therapeutic tools for this chronic disease.
Collapse
Affiliation(s)
- Omidreza Firuzi
- Department of Pharmacology, University of Pennsylvania, School of Medicine. Philadelphia, PA 19014, USA
| | | |
Collapse
|
16
|
Ferrera P, Arias C. Differential effects of COX inhibitors against β-amyloid-induced neurotoxicity in human neuroblastoma cells. Neurochem Int 2005; 47:589-96. [PMID: 16169124 DOI: 10.1016/j.neuint.2005.06.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2005] [Revised: 06/09/2005] [Accepted: 06/13/2005] [Indexed: 11/30/2022]
Abstract
Retrospective epidemiological studies have suggested that chronic treatment with nonsteroidal anti-inflammatory drugs (NSAIDs) provides some degree of protection from Alzheimer's disease (AD). Although most NSAIDs inhibit the activity of cyclooxygenase (COX), the rate-limiting enzyme in the production of prostanoids from arachidonic acid (AA), the precise mechanism through which NSAIDs act upon AD pathology remains to be elucidated. Classical NSAIDs like indomethacin inhibit both the constitutive COX-1 and the inducible COX-2 enzymes. In the present work, we characterize the protective effect of the indomethacin on the neurotoxicity elicited by amyloid-beta protein (A beta, fragments 25-35 and 1-42) alone or in combination with AA added exogenously as well as its effects on COX-2 expression. We also compared the neuroprotective effects of indomethacin with the selective COX-1, COX-2 and 5-LOX inhibitors, SC-560, NS-398 and NDGA, respectively. Our results show that indomethacin protected from A beta and AA toxicity in naive and differentiated human neuroblastoma cells with more potency than SC-560 while, NS-398 only protected neurons from AA-mediated toxicity. Present results suggest that A beta toxicity can be reversed more efficiently by the non-selective COX inhibitor indomethacin suggesting its role in modulating the signal transduction pathway involved in the mechanism of A beta neurotoxicity.
Collapse
Affiliation(s)
- P Ferrera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70-228, 04510 México, DF, México
| | | |
Collapse
|
17
|
Ménard C, Patenaude C, Massicotte G. Phosphorylation of AMPA receptor subunits is differentially regulated by phospholipase A2 inhibitors. Neurosci Lett 2005; 389:51-6. [PMID: 16099093 DOI: 10.1016/j.neulet.2005.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/03/2005] [Accepted: 07/08/2005] [Indexed: 11/29/2022]
Abstract
Our laboratory recently discovered that the phosphorylation of subunits forming the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype of glutamate receptors is regulated by constitutive phospholipase A2 (PLA2) activity in rat brain sections. In the present investigation, arachidonyl trifluoromethyl ketone (AACOCF3) and bromoenol lactone (BEL) were used to compare the influence of calcium-dependent (cPLA2) and calcium-independent (iPLA2) enzymes on phosphorylation of AMPA and N-methyl-D-aspartate (NMDA) subtypes of glutamate receptors. Incubation of rat brain sections with 3 microM BEL enhanced phosphorylation on the serine (Ser) 831 residue of the AMPA receptor GluR1 subunit in synaptosomal P2 fractions, whereas AACOCF3 at the same concentration resulted in increased phosphorylation on residues Ser880/891 of GluR2/3 subunits. These effects were restricted to the AMPA receptor subtype as no changes in phosphorylation were elicited on the NMDA receptor NR1 subunit. The effects of BEL and AACOCF3 were not occluded during blockade of protein phosphatases since AMPA receptor phosphorylation was still apparent in the presence of okadaic acid, indicating that the PLA2 inhibitor-induced increase in AMPA receptor phosphorylation does not rely on a decrease in dephosphorylation reactions. However, pretreatment of rat brain sections with a cell-permeable protein kinase C (PKC) inhibitor prevented BEL- and AACOCF3-induced phosphorylation on the Ser831 and Ser880/891 sites of GluR1 and GluR2/3 subunits, respectively. These results suggest that constitutive cPLA2 and iPLA2 systems may differentially influence AMPA receptor properties and function in the rat brain through mechanisms involving PKC activity.
Collapse
Affiliation(s)
- Caroline Ménard
- Département de chimie-biologie, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, Que., Canada G9A 5H7.
| | | | | |
Collapse
|
18
|
Tuppo EE, Arias HR. The role of inflammation in Alzheimer's disease. Int J Biochem Cell Biol 2005; 37:289-305. [PMID: 15474976 DOI: 10.1016/j.biocel.2004.07.009] [Citation(s) in RCA: 493] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2004] [Indexed: 11/17/2022]
Abstract
Considerable evidence gained over the past decade has supported the conclusion that neuroinflammation is associated with Alzheimer's disease (AD) pathology. Inflammatory components related to AD neuroinflammation include brain cells such as microglia and astrocytes, the classic and alternate pathways of the complement system, the pentraxin acute-phase proteins, neuronal-type nicotinic acetylcholine receptors (AChRs), peroxisomal proliferators-activated receptors (PPARs), as well as cytokines and chemokines. Both the microglia and astrocytes have been shown to generate beta-amyloid protein (Abeta), one of the main pathologic features of AD. Abeta itself has been shown to act as a pro-inflammatory agent causing the activation of many of the inflammatory components. Further substantiation for the role of neuroinflammation in AD has come from studies that demonstrate patients who took non-steroidal anti-inflammatory drugs had a lower risk of AD than those who did not. These same results have led to increased interest in pursuing anti-inflammatory therapy for AD but with poor results. On the other hand, increasing amount of data suggest that AChRs and PPARs are involved in AD-induced neuroinflammation and in this regard, future therapy may focus on their specific targeting in the AD brain.
Collapse
Affiliation(s)
- Ehab E Tuppo
- Center for Aging, University of Medicine and Dentistry of New Jersey-School of Osteopathic Medicine, Stratford, NJ 08084, USA.
| | | |
Collapse
|
19
|
Bate C, Salmona M, Williams A. Ginkgolide B inhibits the neurotoxicity of prions or amyloid-beta1-42. J Neuroinflammation 2004; 1:4. [PMID: 15285798 PMCID: PMC483057 DOI: 10.1186/1742-2094-1-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Accepted: 05/11/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND: Neuronal loss in Alzheimer's or prion diseases is preceded by the accumulation of fibrillar aggregates of toxic proteins (amyloid-beta1-42 or the prion protein). Since some epidemiological studies have demonstrated that the EGb 761 extract, from the leaves of the Ginkgo biloba tree, has a beneficial effect on Alzheimer's disease, the effect of some of the major components of the EGb 761 extract on neuronal responses to amyloid-beta1-42, or to a synthetic miniprion (sPrP106), were investigated. METHODS: Components of the EGb 761 extract were tested in 2 models of neurodegeneration. SH-SY5Y neuroblastoma cells were pre-treated with ginkgolides A or B, quercetin or myricetin, and incubated with amyloid-beta1-42, sPrP106, or other neurotoxins. After 24 hours neuronal survival and the production of prostaglandin E2 that is closely associated with neuronal death was measured. In primary cortical neurons apoptosis (caspase-3) in response to amyloid-beta1-42 or sPrP106 was measured, and in co-cultures the effects of the ginkgolides on the killing of amyloid-beta1-42 or sPrP106 damaged neurons by microglia was tested. RESULTS: Neurons treated with ginkgolides A or B were resistant to amyloid-beta1-42 or sPrP106. Ginkgolide-treated cells were also resistant to platelet activating factor or arachidonic acid, but remained susceptible to hydrogen peroxide or staurosporine. The ginkgolides reduced the production of prostaglandin E2 in response to amyloid-beta1-42 or sPrP106. In primary cortical neurons, the ginkgolides reduced caspase-3 responses to amyloid-beta1-42 or sPrP106, and in co-culture studies the ginkgolides reduced the killing of amyloid-beta1-42 or sPrP106 damaged neurons by microglia. CONCLUSION: Nanomolar concentrations of the ginkgolides protect neurons against the otherwise toxic effects of amyloid-beta1-42 or sPrP106. The ginkgolides also prevented the neurotoxicity of platelet activating factor and reduced the production of prostaglandin E2 in response to platelet activating factor, amyloid-beta1-42 or sPrP106. These results are compatible with prior reports that ginkgolides inhibit platelet-activating factor, and that platelet-activating factor antagonists block the toxicity of amyloid-beta1-42 or sPrP106. The results presented here suggest that platelet-activating factor antagonists such as the ginkgolides may be relevant treatments for prion or Alzheimer's diseases.
Collapse
Affiliation(s)
- Clive Bate
- Department of Veterinary Pathology, Glasgow University Veterinary School, Bearsden Road, Glasgow, UK. G61 1QH
| | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri", Via Eritrea 62, 20157 Milano, Italy
| | - Alun Williams
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Hawkshead Lane, North Mymms, Herts, UK. AL9 7TA
| |
Collapse
|
20
|
Bate C, Salmona M, Williams A. The role of platelet activating factor in prion and amyloid-β neurotoxicity. Neuroreport 2004; 15:509-13. [PMID: 15094513 DOI: 10.1097/00001756-200403010-00025] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the prion diseases, neurodegeneration is preceded by the accumulation of the disease-associated isoform of the prion protein (PrP). In the present study, neurones treated with three different phospholipase A2 inhibitors were resistant to the toxic effects of PrP peptides or a synthetic miniprion (sPrP106). Phospholipase A2 inhibitors also protected neurones against a toxic peptide found in Alzheimer's disease (amyloid-beta1-42). Further studies showed that neurones pre-treated with platelet activating factor (PAF) antagonists were equally resistant to PrP peptides or amyloid-beta1-42. Moreover, both phospholipase A2 inhibitors and PAF antagonists reduced the activation of caspase-3, a marker of apoptosis, and the production of prostaglandin E2 that is closely associated with neuronal death in prion or Alzheimer's diseases.
Collapse
Affiliation(s)
- Clive Bate
- Department of Veterinary Pathology, Glasgow University Veterinary School, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | |
Collapse
|