Zhang CH, Lifshitz LM, Uy KF, Ikebe M, Fogarty KE, ZhuGe R. The cellular and molecular basis of bitter tastant-induced bronchodilation.
PLoS Biol 2013;
11:e1001501. [PMID:
23472053 PMCID:
PMC3589262 DOI:
10.1371/journal.pbio.1001501]
[Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/24/2013] [Indexed: 01/13/2023] Open
Abstract
Bitter tastants can activate bitter taste receptors on constricted smooth muscle cells to inhibit L-type calcium channels and induce bronchodilation.
Bronchodilators are a standard medicine for treating airway obstructive diseases, and β2 adrenergic receptor agonists have been the most commonly used bronchodilators since their discovery. Strikingly, activation of G-protein-coupled bitter taste receptors (TAS2Rs) in airway smooth muscle (ASM) causes a stronger bronchodilation in vitro and in vivo than β2 agonists, implying that new and better bronchodilators could be developed. A critical step towards realizing this potential is to understand the mechanisms underlying this bronchodilation, which remain ill-defined. An influential hypothesis argues that bitter tastants generate localized Ca2+ signals, as revealed in cultured ASM cells, to activate large-conductance Ca2+-activated K+ channels, which in turn hyperpolarize the membrane, leading to relaxation. Here we report that in mouse primary ASM cells bitter tastants neither evoke localized Ca2+ events nor alter spontaneous local Ca2+ transients. Interestingly, they increase global intracellular [Ca2+]i, although to a much lower level than bronchoconstrictors. We show that these Ca2+ changes in cells at rest are mediated via activation of the canonical bitter taste signaling cascade (i.e., TAS2R-gustducin-phospholipase Cβ [PLCβ]- inositol 1,4,5-triphosphate receptor [IP3R]), and are not sufficient to impact airway contractility. But activation of TAS2Rs fully reverses the increase in [Ca2+]i induced by bronchoconstrictors, and this lowering of the [Ca2+]i is necessary for bitter tastant-induced ASM cell relaxation. We further show that bitter tastants inhibit L-type voltage-dependent Ca2+ channels (VDCCs), resulting in reversal in [Ca2+]i, and this inhibition can be prevented by pertussis toxin and G-protein βγ subunit inhibitors, but not by the blockers of PLCβ and IP3R. Together, we suggest that TAS2R stimulation activates two opposing Ca2+ signaling pathways via Gβγ to increase [Ca2+]i at rest while blocking activated L-type VDCCs to induce bronchodilation of contracted ASM. We propose that the large decrease in [Ca2+]i caused by effective tastant bronchodilators provides an efficient cell-based screening method for identifying potent dilators from among the many thousands of available bitter tastants.
Bitter taste receptors (TAS2Rs), a G-protein-coupled receptor family long thought to be solely expressed in taste buds on the tongue, have recently been detected in airways. Bitter substances can activate TAS2Rs in airway smooth muscle to cause greater bronchodilation than β2 adrenergic receptor agonists, the most commonly used bronchodilators. However, the mechanisms underlying this bronchodilation remain elusive. Here we show that, in resting primary airway smooth muscle cells, bitter tastants activate a TAS2R-dependent signaling pathway that results in an increase in intracellular calcium levels, albeit to a level much lower than that produced by bronchoconstrictors. In bronchoconstricted cells, however, bitter tastants reverse the bronchoconstrictor-induced increase in calcium levels, which leads to the relaxation of smooth muscle cells. We find that this reversal is due to inhibition of L-type calcium channels. Our results suggest that under normal conditions, bitter tastants can activate TAS2Rs to modestly increase calcium levels, but that when smooth muscle cells are constricted, they can block L-type calcium channels to induce bronchodilation. We postulate that this novel mechanism could operate in other extraoral cells expressing TAS2Rs.
Collapse