1
|
Zeidler PC, Castranova V. Role of nitric oxide in pathological responses of the lung to exposure to environmental/occupational agents. Redox Rep 2013; 9:7-18. [PMID: 15035823 DOI: 10.1179/135100004225003879] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Conflicting evidence exists as to whether nitric oxide expresses damaging/inflammatory or antioxidant/anti-inflammatory properties. Data presented in this review indicate that in vitro or in vivo exposure to selected environmental or occupational agents, such as asbestos, silica, ozone or lipopolysaccharide, can result in up-regulation of inducible nitric oxide synthase by alveolar macrophages and pulmonary epithelial cells. In the case of silica exposure, evidence consistently supports a damaging/inflammatory role of nitric oxide and/or peroxynitrite in the pathogenesis of lung disease. Although conflicting data have been reported, the majority of published studies suggest that nitric oxide plays a damaging role in pulmonary injury resulting from exposure to ozone or asbestos. In contrast, most information supports an anti-inflammatory role of nitric oxide following exposure to lipopolysaccharide. Further investigation is required to elucidate fully the mechanisms involved in determining the role of nitric oxide in the initiation and progression of various pulmonary diseases.
Collapse
Affiliation(s)
- Patti C Zeidler
- Department of Physiology and Pharmacology, West Virginia University and National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, USA
| | | |
Collapse
|
2
|
Chen H, Bai C, Wang X. The value of the lipopolysaccharide-induced acute lung injury model in respiratory medicine. Expert Rev Respir Med 2011; 4:773-83. [PMID: 21128752 DOI: 10.1586/ers.10.71] [Citation(s) in RCA: 319] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a syndrome characterized by pulmonary edema and acute inflammation. Lipopolysaccharide (LPS), a major component in Gram-negative bacteria, has been used to induce ALI/ARDS. LPS-induced animal models highlight ways to explore mechanisms of multiple diseases and provide useful information on the discovery of novel biomarkers and drug targets. However, each model has its own merits and drawbacks. The goal of this article is to summarize and evaluate the results of experimental findings in LPS-induced ALI/ARDS, and the possible mechanisms and treatments elucidated. Advantages and disadvantages of such models in pulmonary research and new directions for future investigations are also discussed.
Collapse
Affiliation(s)
- Hong Chen
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | |
Collapse
|
3
|
Lazzerini G, Turco SD, Basta G, O’Loghlen A, Zampolli A, Caterina RD. Prominent role of NF-κB in the induction of endothelial activation by endogenous nitric oxide inhibition. Nitric Oxide 2009; 21:184-91. [DOI: 10.1016/j.niox.2009.07.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 07/26/2009] [Accepted: 07/28/2009] [Indexed: 10/20/2022]
|
4
|
Holley A, Cartner M, Lipman J. Acute respiratory distress in a bleomycin primed patient: a new use for nitric oxide. Anaesth Intensive Care 2007; 35:86-90. [PMID: 17323672 DOI: 10.1177/0310057x0703500112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We describe the use of nitric oxide as an oxygen-sparing strategy in the context of prior bleomycin exposure. A 27-year-old male, previously treated with bleomycin for a testicular germ cell tumour presented with severe acute respiratory distress syndrome on the second postoperative day following an extensive retroperitoneal dissection. The mechanism of bleomycin toxicity and potential benefits of nitric oxide in this situation are considered.
Collapse
Affiliation(s)
- A Holley
- Department of Intensive Care Medicine, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | | | | |
Collapse
|
5
|
Cho JH, Yang DK, Kim L, Ryu JS, Lee HL, Lim CM, Koh YS. Inhaled nitric oxide improves the survival of the paraquat-injured rats. Vascul Pharmacol 2005; 42:171-8. [PMID: 15820443 DOI: 10.1016/j.vph.2005.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 01/04/2005] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to evaluate the effects of inhaled nitric oxide (NO) on the paraquat-induced lung injury in rats. The rats were assigned to four groups: control; inhaled NO (5 ppm); paraquat (PQ, 30 mg/kg); and PQ+NO group. For first 18 h the inhalation of NO mixed with room air was performed. Total white blood cell (WBC), neutrophil, total protein, lactate dehydrogenase (LDH), transforming growth factor-beta1 (TGF-beta1) in serum and/or bronchoalveolar lavage (BAL) fluid, serum malonaldehyde (MDA), and myeloperoxidase (MPO) of lung were measured and lung histopathology were also reviewed. The 72-h survival rate of PQ group was 58%, but the survival rate of PQ+NO group, NO group and control group were 100%, respectively. The serum MDA and TGF-beta1 in BAL fluid and blood of PQ+NO group were significantly lower than those of PQ group. However, inhaled NO did not decrease the elevated total WBC and neutrophil counts, and total protein, LDH and MPO activity in the lung injured by PQ. The alveolar septal thickening and inflammatory cell infiltration were not different between PQ and PQ+NO groups. NO inhalation may be beneficial for the survival of paraquat-induced injured rats by attenuating lipid peroxidation and production of TGF-beta1.
Collapse
Affiliation(s)
- Jae Hwa Cho
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Inha University, Incheon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
6
|
Lee HS, Kim HJ, Moon CS, Chong YH, Kang JL. Inhibition of c-Jun NH2-terminal kinase or extracellular signal-regulated kinase improves lung injury. Respir Res 2004; 5:23. [PMID: 15566575 PMCID: PMC538282 DOI: 10.1186/1465-9921-5-23] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Accepted: 11/27/2004] [Indexed: 11/24/2022] Open
Abstract
Background Although in vitro studies have determined that the activation of mitogen-activated protein (MAP) kinases is crucial to the activation of transcription factors and regulation of the production of proinflammatory mediators, the roles of c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) in acute lung injury have not been elucidated. Methods Saline or lipopolysaccharide (LPS, 6 mg/kg of body weight) was administered intratracheally with a 1-hour pretreatment with SP600125 (a JNK inhibitor; 30 mg/kg, IO), or PD98059 (an MEK/ERK inhibitor; 30 mg/kg, IO). Rats were sacrificed 4 hours after LPS treatment. Results SP600125 or PD98059 inhibited LPS-induced phosphorylation of JNK and ERK, total protein and LDH activity in BAL fluid, and neutrophil influx into the lungs. In addition, these MAP kinase inhibitors substantially reduced LPS-induced production of inflammatory mediators, such as CINC, MMP-9, and nitric oxide. Inhibition of JNK correlated with suppression of NF-κB activation through downregulation of phosphorylation and degradation of IκB-α, while ERK inhibition only slightly influenced the NF-κB pathway. Conclusion JNK and ERK play pivotal roles in LPS-induced acute lung injury. Therefore, inhibition of JNK or ERK activity has potential as an effective therapeutic strategy in interventions of inflammatory cascade-associated lung injury.
Collapse
Affiliation(s)
- Hui Su Lee
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Institute, Ewha Womans University College of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-056, Korea
| | - Hee Jae Kim
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Institute, Ewha Womans University College of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-056, Korea
| | - Chang Sook Moon
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Institute, Ewha Womans University College of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-056, Korea
| | - Young Hae Chong
- Department of Microbiology, Division of Cell Biology, Ewha Medical Research Institute, Ewha Womans University College of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-056, Korea
| | - Jihee Lee Kang
- Department of Physiology, Division of Cell Biology, Ewha Medical Research Institute, Ewha Womans University College of Medicine, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-056, Korea
| |
Collapse
|
7
|
Abstract
Low NO concentrations synthesized by constitutively expressed NO synthases act on several signaling pathways activating transcription factors (TF), such as NF-kappaB or AP-1, and thereby influence gene expression. In contrast, during inflammatory reactions the inducible NO synthase produces NO for prolonged periods of time. The resulting nitrosative stress directly affects redox-sensitive TF like NF-kappaB, AP-1, Oct-1, c-Myb, or zinc finger-containing TF, but also additional mechanisms have been identified. Nitrosative stress in some cases induces expression of TF (AP-1, p53), indirectly modulates activity or stability of TF (HIF-1, p53) or their inhibitors (NF-kappaB), or modulates accessibility of promoters via increased DNA methylation or histone deacetylation. Depending on the promoter the result is induced, increased, decreased or even totally inhibited expression of various target genes. In unstimulated cells nitrosative stress increases NF-kappaB- or AP-1-dependent transcription, while in activated cells nitrosative stress rather abolishes NF-kappaB- or AP-1-dependent transcription. Sometimes the oxygen concentration also is of prime importance, since under normoxic conditions nitrosative stress activates HIF-1-dependent transcription, while under hypoxic conditions nitrosative stress leads to inhibition of HIF-1-dependent transcription. This review summarizes what is known about effects of physiological NO levels as well as of nitrosative stress on transcription.
Collapse
Affiliation(s)
- Klaus-Dietrich Kröncke
- Institute of Molecular Medicine, Research Group Immunobiology, Medical Department, Heinrich-Heine-University Düsseldorf, D-20225 Düsseldorf, Germany
| |
Collapse
|
8
|
Lang JD, Figueroa M, Sanders KD, Aslan M, Liu Y, Chumley P, Freeman BA. Hypercapnia via reduced rate and tidal volume contributes to lipopolysaccharide-induced lung injury. Am J Respir Crit Care Med 2004; 171:147-57. [PMID: 15477499 DOI: 10.1164/rccm.200302-305oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Appreciating that CO2 modifies the chemical reactivity of nitric oxide (NO)-derived inflammatory oxidants, we investigated whether hypercapnia would modulate pulmonary inflammatory responses. Rabbits (n = 72) were ventilated with approximately 7-ml/kg tidal volume for 6 hours. Animals were randomized to one of the following conditions: eucapnia (Pa(CO2) at approximately 35-40 mm Hg), eucapnia + lipopolysaccharide (LPS), eucapnia + LPS + inhaled NO (iNO delivered at approximately 20 ppm), hypercapnia (Pa(CO2) at approximately 60 mm Hg), hypercapnia + LPS, and hypercapnia + LPS + iNO. The hypercapnia + LPS groups compared with groups exposed to eucapnia + LPS displayed significantly increased bronchoalveolar lavage fluid protein concentrations (p < 0.05), lung wet-to-dry ratios (p < 0.05), bronchoalveolar lavage fluid cell counts (p < 0.05), and lung histologic alterations consistent with greater injury. Furthermore, expression of inducible nitric oxide synthase (p < 0.05), tissue myeloperoxidase content (p < 0.05), and formation of lung protein 3-nitrotyrosine derivatives (p < 0.05) was greatest under conditions of hypercapnia + LPS. Groups exposed to hypercapnic conditions without LPS did not manifest these changes. The inhalation of iNO attenuated selected indices of lung injury. We conclude that hypercapnia induced by means of reduced rate and tidal volume amplifies pulmonary inflammatory responses.
Collapse
Affiliation(s)
- John D Lang
- Department of Anesthesiology, The University of Alabama at Birmingham, Birmingham, Alabama 35233-6810, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Koh Y, Hurford WE. Inhaled nitric oxide in acute respiratory distress syndrome: from bench to bedside. Int Anesthesiol Clin 2003; 41:91-102. [PMID: 12544421 DOI: 10.1097/00004311-200341010-00008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Younsuck Koh
- Division of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | |
Collapse
|
10
|
Kang JL, Lee HW, Lee HS, Pack IS, Castranova V, Koh Y. Time course for inhibition of lipopolysaccharide-induced lung injury by genistein: relationship to alteration in nuclear factor-kappaB activity and inflammatory agents. Crit Care Med 2003; 31:517-24. [PMID: 12576960 DOI: 10.1097/01.ccm.0000049941.84695.ba] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study determined the time course for inhibition of lipopolysaccharide-induced acute lung injury following a single dose of genistein. In addition, the study investigated whether a multiple dosing schedule with genistein retained the inhibitory effects on acute lung injury, nuclear factor-kappaB activation, and production of nuclear factor-kappaB-dependent inflammatory agents, such as matrix metalloproteinase-9 and nitric oxide. DESIGN Prospective, randomized, laboratory study. SETTING Experimental laboratory at a university. SUBJECTS Rats weighing 280-300 g. INTERVENTIONS Saline or lipopolysaccharide (6 mg/kg of body weight) administered intratracheally with a single dose of genistein (50 mg/kg) or a multiple dosing schedule with genistein (16 mg/kg every 6 hrs for 2 days with lipopolysaccharide treatment at 24 hrs after the first administration of genistein). MEASUREMENTS AND MAIN RESULTS A 2-hr pretreatment with genistein (a single dose) inhibited biochemical lung injury variables as well as neutrophil infiltration with a maximal inhibition at 4 hrs after lipopolysaccharide treatment. These inhibitory effects of genistein declined with time and were no longer significant by 14-24 hrs after lipopolysaccharide treatment. The multiple dosing schedule with genistein retained significant inhibitory effects on biochemical lung injury variables and the number of neutrophils in the bronchoalveolar lavage fluid at 24 hrs after lipopolysaccharide treatment compared with a single pretreatment with genistein. The multiple dosing schedule with genistein also enhanced the inhibition of induced nuclear factor-kappaB activity as well as matrix metalloproteinase-9 activity and nitric oxide production at 24 hrs after lipopolysaccharide treatment. CONCLUSIONS This study reports the time course of the inhibitory effects of a single genistein pretreatment on acute lung injury with the maximal effects at 4 hrs after lipopolysaccharide treatment. However, a multiple dosing schedule with genistein retained the inhibitory effect on acute lung injury at 24 hrs after lipopolysaccharide treatment. The mechanisms by which genistein exerts an inhibitory effect on acute lung injury may involve the suppression of nuclear factor-kappaB activation, matrix metalloproteinase-9 activity, and NO production.
Collapse
Affiliation(s)
- Jihee Lee Kang
- Department of Physiology, Ewha Medical Research Center, Ewha Woman's University College of Medicine, Seoul, Korea.
| | | | | | | | | | | |
Collapse
|
11
|
Shanley TP, Zhao B, Macariola DR, Denenberg A, Salzman AL, Ward PA. Role of nitric oxide in acute lung inflammation: lessons learned from the inducible nitric oxide synthase knockout mouse. Crit Care Med 2002; 30:1960-8. [PMID: 12352027 DOI: 10.1097/00003246-200209000-00003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Acute lung inflammation is characterized by complex interactions among cytokines, chemokines, adhesion molecules, leukocytes, and other mediators. Proinflammatory cytokines have been implicated in the up-regulation of the inducible form of nitric oxide synthase (iNOS), which produces large amounts of nitric oxide (NO). Conversely, in some systems, NO regulates the expression of cytokines to affect leukocyte recruitment. Thus, the role of NO both exogenously administered and endogenously produced by iNOS in acute lung inflammation has not been fully elucidated. The current studies suggest a proinflammatory role for inhaled NO in a compartmentalized model of lung injury, whereas blocking of iNOS afforded protection. These results and other previous investigations have been complicated by the use of nonselective blockers of the iNOS isoform. MEASUREMENTS AND MAIN RESULTS In an attempt to circumvent this, we examined the response of the lung to direct endotoxin challenge in mice in which iNOS had been genetically deleted (iNOS-/-). We observed a significant decrease in the inflammatory response in the iNOS-/- mice compared with wild-type mice as characterized by decreases in neutrophil accumulation and cytokine expression. Additionally, the lung cytokine response in the iNOS-/- mice was characterized by a significant increase in interleukin-12 and an inability to up-regulate interleukin-10. CONCLUSIONS Induction of NO may be a key mediator in driving the cytokine response to endotoxin toward an increased type-2 (interleukin-10) response and a diminished type-1 (interleukin-12) response.
Collapse
Affiliation(s)
- Thomas P Shanley
- Division of Critical Care Medicine, Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Morrissey BM, Albertson TE. To just say NO or I don't inhale? Crit Care Med 2001; 29:1284-5. [PMID: 11395623 DOI: 10.1097/00003246-200106000-00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|