1
|
Sharma HS, Lafuente JV, Feng L, Muresanu DF, Menon PK, Castellani RJ, Nozari A, Sahib S, Tian ZR, Buzoianu AD, Sjöquist PO, Patnaik R, Wiklund L, Sharma A. Methamphetamine exacerbates pathophysiology of traumatic brain injury at high altitude. Neuroprotective effects of nanodelivery of a potent antioxidant compound H-290/51. PROGRESS IN BRAIN RESEARCH 2021; 266:123-193. [PMID: 34689858 DOI: 10.1016/bs.pbr.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Military personnel are often exposed to high altitude (HA, ca. 4500-5000m) for combat operations associated with neurological dysfunctions. HA is a severe stressful situation and people frequently use methamphetamine (METH) or other psychostimulants to cope stress. Since military personnel are prone to different kinds of traumatic brain injury (TBI), in this review we discuss possible effects of METH on concussive head injury (CHI) at HA based on our own observations. METH exposure at HA exacerbates pathophysiology of CHI as compared to normobaric laboratory environment comparable to sea level. Increased blood-brain barrier (BBB) breakdown, edema formation and reductions in the cerebral blood flow (CBF) following CHI were exacerbated by METH intoxication at HA. Damage to cerebral microvasculature and expression of beta catenin was also exacerbated following CHI in METH treated group at HA. TiO2-nanowired delivery of H-290/51 (150mg/kg, i.p.), a potent chain-breaking antioxidant significantly enhanced CBF and reduced BBB breakdown, edema formation, beta catenin expression and brain pathology in METH exposed rats after CHI at HA. These observations are the first to point out that METH exposure in CHI exacerbated brain pathology at HA and this appears to be related with greater production of oxidative stress induced brain pathology, not reported earlier.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Lianyuan Feng
- Department of Neurology, Bethune International Peace Hospital, Shijiazhuang, Hebei Province, China
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Preeti K Menon
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Anca D Buzoianu
- Department of Clinical Pharmacology and Toxicology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Per-Ove Sjöquist
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ranjana Patnaik
- Department of Biomaterials, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Mrozek S, Delamarre L, Capilla F, Al-Saati T, Fourcade O, Constantin JM, Geeraerts T. Cerebral Expression of Glial Fibrillary Acidic Protein, Ubiquitin Carboxy-Terminal Hydrolase-L1, and Matrix Metalloproteinase 9 After Traumatic Brain Injury and Secondary Brain Insults in Rats. Biomark Insights 2019; 14:1177271919851515. [PMID: 31210728 PMCID: PMC6552356 DOI: 10.1177/1177271919851515] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
Glial fibrillary acidic protein (GFAP), ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), and matrix metalloproteinase 9 (MMP-9) are potential biomarkers of traumatic brain injury (TBI) but also of secondary insults to the brain. The aim of this study was to describe the cerebral distribution of GFAP, UCH-L1, and MMP-9 in a rat model of diffuse TBI associated with standardized hypoxia-hypotension (HH). Adult male Sprague-Dawley rats were allocated to Sham (n = 10), TBI (n = 10), HH (n = 10), and TBI+HH (n = 10) groups. After 4 hours, brains were rapidly removed and immunostaining of GFAP, UCH-L1, and MMP-9 was performed. Areas of interest that have been described as particularly sensitive to hypoxic insults were analyzed. For GFAP, in the neocortex, immunostaining revealed a significant decrease in strong staining for HH and TBI+HH groups compared with TBI group (P < .0001). For UCH-L1, the total immunostaining (6 regions of interest) reported a significant increase in strong staining (P < .0001) and decrease in weak staining (P < .0001) for the HH and TBI+HH groups compared with the Sham and TBI groups. For MMP-9, for the HH and TBI+HH groups, a significant increase in moderate (P < .0001) and weak staining (P < .0001) and a decrease in negative staining (P < .0001) compared with the Sham and TBI groups were observed. UCH-L1 and MMP-9 immunostainings increased after HH alone or HH combined with TBI compared with TBI alone. GFAP immunostaining decreased particularly in the neocortex after HH alone or HH combined with TBI compared with TBI alone. These three biomarkers could therefore be considered as potential biomarkers of HH insults independently of TBI.
Collapse
Affiliation(s)
- Ségolène Mrozek
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France
| | - Louis Delamarre
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France
| | - Florence Capilla
- Experimental Histopathology Department, INSERM US006-CREFRE, University Hospital of Toulouse, Toulouse, France
| | - Talal Al-Saati
- Experimental Histopathology Department, INSERM US006-CREFRE, University Hospital of Toulouse, Toulouse, France
| | - Olivier Fourcade
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France
| | - Jean-Michel Constantin
- Department of Anesthesiology and Critical Care, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Thomas Geeraerts
- Department of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.,ToNIC (Toulouse NeuroImaging Center), University Toulouse 3-Paul Sabatier, Inserm-UPS, Toulouse, France
| |
Collapse
|
3
|
Treatment of combined traumatic brain injury and hemorrhagic shock with fractionated blood products versus fresh whole blood in a rat model. Eur J Trauma Emerg Surg 2018; 45:263-271. [PMID: 29344708 DOI: 10.1007/s00068-018-0908-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/12/2018] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Treatment of combined traumatic brain injury and hemorrhagic shock, poses a particular challenge due to the possible conflicting consequences. While restoring diminished volume is the treatment goal for hypovolemia, maintaining adequate cerebral perfusion pressure and avoidance of secondary damage remains a treatment goal for the injured brain. Various treatment modalities have been proposed, but the optimal resuscitation fluid and goals have not yet been clearly defined. A growing body of evidence suggests that in hypovolemic shock, resuscitation with fresh whole blood (FWB) may be superior to component therapy without platelets (which are likely to be unavailable in the pre-hospital setting). Nevertheless, the effects of this approach have not been studied in the combined injury. Previously, in a rat model of combined injury we have found that mild resuscitation to MABP of 80 mmHg with FWB is superior to fluid resuscitation or aggressive resuscitation with FWB. In this study, we investigate the physiological and neurological outcomes in a rat model of combined traumatic brain injury (TBI) and hypovolemic shock, submitted to treatment with varying amounts of FWB, compared to similar resuscitation goals with fractionated blood products-red blood cells (RBCs) and plasma in a 1:1 ratio regimen. MATERIALS AND METHODS 40 male Lewis rats were divided into control and treatment groups. TBI was inflicted by a free-falling rod on the exposed cranium. Hypovolemia was induced by controlled hemorrhage of 30% blood volume. Treatment groups were treated either with fresh whole blood or with RBC + plasma in a 1:1 ratio, achieving a resuscitation goal of a mean arterial blood pressure (MAP) of 80 mmHg at 15 min. MAP was assessed at 60 min, and neurological outcomes and mortality in the subsequent 24 h. RESULTS At 60 min, hemodynamic parameters were improved compared to controls, but not significantly different between treatment groups. Survival rates at 48 h were 100% for both of the mildly resuscitated groups (MABP 80 mmHg) with FWB and RBC + plasma. The best neurological outcomes were found in the group mildly resuscitated with FWB and were better when compared to resuscitation with RBC + plasma to the same MABP goal (FWB: Neurological Severity Score (NSS) 6 ± 2, RBC + plasma: NSS 10 ± 2, p = 0.02). CONCLUSIONS In this study, we find that mild resuscitation with goals of restoring MAP to 80 mmHg (which is lower than baseline) with FWB, provided better hemodynamic stability and survival. However, the best neurological outcomes were found in the group resuscitated with FWB. Thus, we suggest that resuscitation with FWB is a feasible modality in the combined TBI + hypovolemic shock scenario, and may result in improved outcomes compared to platelet-free component blood products.
Collapse
|
4
|
Mrozek S, Luzi A, Gonzalez L, Kerhuel L, Fourcade O, Geeraerts T. Cerebral and extracerebral vulnerability to hypoxic insults after diffuse traumatic brain injury in rats. Brain Res 2016; 1646:334-341. [PMID: 27302136 DOI: 10.1016/j.brainres.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/03/2016] [Accepted: 06/04/2016] [Indexed: 11/30/2022]
Abstract
The post-traumatic brain vulnerability suggests that after traumatic brain injury (TBI), the brain may be more susceptible to posttraumatic hypoxic insults. This concept could be extended to 'peripheral' organs, as non-neurologic organ failure is common after TBI. This study aims to characterize and quantify cerebral and extracerebral tissue hypoxia with pimonidazole resulting from a standardized hypoxia-hypotension (HH) phase occurring after a diffuse experimental TBI in rats. Rats were allocated to Sham (n=5), TBI (n=7), HH (n=7) and TBI+HH (n=7) groups. Then, pimonidazole was injected and brain, liver, heart and kidneys were analysed. In the cerebral cortex, post-treatment hypoxia was higher in TBI+HH group than Sham group (p=0.003), HH group (p=0.003) and TBI group (p=0.002). Large trends in thalamus, hippocampus and striatum for the TBI+HH group compared to the other groups were observed. For the heart and liver, the 4 groups were comparable. For the kidneys, post-treatment hypoxia was higher in the TBI group compared to the Sham and HH groups, but not more than TBI+HH group. This study reveals that a posttraumatic hypoxic insult occurring after a severe TBI has major hypoxic consequences on brain structures. However, TBI by itself appears to induce renal hypoxia that is not enhanced by posttraumatic hypoxic insult.
Collapse
Affiliation(s)
- Ségolène Mrozek
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Aymeric Luzi
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Leslie Gonzalez
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Lionel Kerhuel
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Olivier Fourcade
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| | - Thomas Geeraerts
- Equipe d'accueil' Modélisation de l'aggression tissulaire et nociceptive', University Toulouse 3 Paul Sabatier, Toulouse, France; Departement of Anesthesiology and Critical Care, University Hospital of Toulouse, Toulouse, France.
| |
Collapse
|
5
|
Traumatic Brain Injury and Polytrauma in Theaters of Combat: The Case for Neurotrauma Resuscitation? Shock 2016; 44 Suppl 1:17-26. [PMID: 25895144 DOI: 10.1097/shk.0000000000000380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Polytrauma associated with traumatic brain injury (TBI) is defined as a concurrent injury to the brain and one or more body areas or organ systems that results in physical, cognitive, and psychosocial impairments. Consequently, polytrauma accompanied by TBI presents a unique challenge for emergency medicine, in particular, to those associated with the austere environments encountered in military theaters of operation and the logistics of en-route care. Here, we attempt to put needed focus on this medical emergency, specifically addressing the problem of an exsanguinating polytrauma requiring fluid resuscitation complicated by TBI. Critical questions to consider are the following: (1) What is the optimal resuscitation fluid for these patients? (2) In defining the resuscitation fluid, what considerations must be given with regard to the very specific logistics of military operations? and (3) Can treatment of the brain injury be initiated in parallel with resuscitation practices. Recognizing the immense clinical and experimental complexity of this problem, our goal was to encourage research that embraces with high-fidelity 'combined' animal models of polytrauma and TBI with an objective toward elucidating safe and effective neurotherapeutic resuscitation protocols.
Collapse
|
6
|
Combined hypoxemic and hypotensive insults altered physiological responses and neurofunction in a severity-dependent manner following penetrating ballistic-like brain injury in rats. J Trauma Acute Care Surg 2016; 79:S130-8. [PMID: 26406425 DOI: 10.1097/ta.0000000000000785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Traumatic brain injury often occurs with concomitant hypoxemia (HX) and hemorrhagic shock (HS), leading to poor outcomes. This study characterized the acute physiology and subacute behavioral consequences of these additional insults in a model of penetrating ballistic-like brain injury (PBBI). METHODS Rats were randomly assigned into sham control, HX + HS (HH), 5% PBBI alone, 5% PBBI + HH, 10% PBBI alone, and 10% PBBI + HH groups. Mean arterial pressure, heart rate, and breathing rate were monitored continuously. In the combined injury groups, animals were subjected to 30-minute HX (Pao2, 30-40 mm Hg) and then 30-min HS (mean arterial pressure, 40 mm Hg) followed by fluid resuscitation with lactated Ringer's solution after PBBI or sham PBBI. Motor function was assessed using the rotarod task at 7 days and 14 days after injury. Cognitive function was assessed in the Morris water maze task from 13 days to 17 days after injury. RESULTS Combined HH caused acute bradycardia that was reversed by fluid resuscitation. During HX phase, tachypnea was observed in all HH groups. Persistent bradypnea was detected in 10% PBBI + HH group during the resuscitation phase. PBBI produced significant decrements in motor performance (vs. sham and HH groups). Additional insults significantly worsened motor deficits following 5% PBBI but not 10% PBBI. Both 5% PBBI and 10% PBBI produced significant cognitive deficits in the Morris water maze task with worsened deficits evident following the more severe injury (i.e., 10% PBBI). Alternatively, rats subjected to 5% PBBI + HH exhibited cognitive impairment that was significantly worse compared with 5% PBBI alone, whereas this worsening effect was not detected in the 10% PBBI groups. CONCLUSION This study characterized the physiological responses and neurobehavioral profiles following combined PBBI and HH. Ten percent PBBI produces motor and cognitive deficits, which may exceed a sensitivity threshold capacity. In contrast, 5% PBBI produces a lower, albeit significant, magnitude of deficits and thus provides a more sensitive screen for evaluating the cumulative effects of additional insults, which were indeed demonstrated to significantly worsen outcome.
Collapse
|
7
|
Wang HC, Sun CF, Chen H, Chen MS, Shen G, Ma YB, Wang BD. Where are we in the modelling of traumatic brain injury? Models complicated by secondary brain insults. Brain Inj 2014; 28:1491-503. [PMID: 25111457 DOI: 10.3109/02699052.2014.943288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Hong-Cai Wang
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Cheng-Feng Sun
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Hai Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Mao-Song Chen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Gang Shen
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| | - Yan-Bin Ma
- Department of Neurosurgery, NO.3 People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine
ShanghaiPR China
| | - Bo-Ding Wang
- Department of Neurosurgery, Li Hui Li Hospital of Medical Centre of Ningbo
NingboPR China
| |
Collapse
|
8
|
Blanié A, Vigué B, Benhamou D, Duranteau J, Geeraerts T. The Frontal Lobe and Thalamus Have Different Sensitivities to Hypoxia-Hypotension after Traumatic Brain Injury: A Microdialysis Study in Rats. J Neurotrauma 2012; 29:2782-90. [DOI: 10.1089/neu.2012.2381] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Antonia Blanié
- Département d'Anesthésie-Réanimation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Bernard Vigué
- Département d'Anesthésie-Réanimation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Dan Benhamou
- Département d'Anesthésie-Réanimation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Jacques Duranteau
- Département d'Anesthésie-Réanimation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Thomas Geeraerts
- Département d'Anesthésie-Réanimation, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| |
Collapse
|
9
|
Moderate Ringer's lactate solution resuscitation yields best neurological outcome in controlled hemorrhagic shock combined with brain injury in rats. Shock 2010; 34:75-82. [PMID: 20551780 DOI: 10.1097/shk.0b013e3181ce2cbc] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Anesthetized rats were assigned to sham; brain injury (BI); controlled hemorrhagic shock (CHS); BI combined with CHS (combined injury [CI]); and CI groups resuscitated with 2.5 mL/kg Ringer's lactate solution (RL-2.5), 10 mL/kg RL (RL-10), or 40 mL/kg RL (RL-40). Brain injury was induced by applying 400 millibar negative pressure for 10 s through a hollow screw inserted into a 4.5-mm burr hole drilled into the left parietal region of the skull. Five minutes after BI, 30% of circulating blood volume was withdrawn for 10 min to induce CHS. One hour of fluid resuscitation commenced 20 min posthemorrhage. MAP, lactate, and base excess levels were significantly improved in the RL-40 group compared with all other hemorrhaged groups. The hematocrit level 1 h after resuscitation began was significantly lower in the RL-40 group (27.6% +/- 0.57%) than in all other groups. The RL-40 group had the worst neurological severity score 24 h postsurgery. MAP, lactate, and base excess levels were not significantly improved in the RL-2.5 group, however, the number of surviving neuronal cells in the perilesional brain region was significantly higher than in the CI or RL-40 groups. MAP, lactate, and base excess levels were significantly improved in the RL-10 group (P < 0.05). Mobility and the number of surviving neurons in the perilesional region of the brain were significantly better in the RL-10 group than in the CI or RL-40 groups (P < 0.05). Although massive fluid resuscitation yields preferable hemodynamic and metabolic outcomes, neurological outcomes are better after moderate fluid resuscitation for BI combined with controlled hemorrhagic shock.
Collapse
|
10
|
Vasopressin attenuates TNF-mediated inflammation in the rat cremaster microcirculation. ACTA ACUST UNITED AC 2009; 67:461-73; discussion 473-5. [PMID: 19741386 DOI: 10.1097/ta.0b013e3181aa01e4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Our previous study in a swine polytrauma model suggested that equieffective systemic pressor doses of arginine vasopressin (AVP) versus phenylephrine (PE) have differential effects on the systemic and cerebral microcirculation. The purpose of this study was to directly observe the effects of AVP versus PE on inflammatory changes evoked by tumor necrosis factor alpha (TNF) in the skeletal muscle microcirculation. METHODS Seventy-five male rats (180-250 g) were anesthetized with isoforane, intubated and mechanically ventilated with 100% oxygen. The cremaster muscle microcirculation was prepared for intravital video microscopy while being suffused with a heated hetastarch-electrolyte solution. Fluorescein isothiocyanate-labeled albumin (100 mg/kg) was administered intravenously (i.v.) before one of five protocols. In series 1 (n = 20), either AVP (0.2 U/mL) or its vehicle was added to the suffusate for 10 minutes, washed out for 30 minutes, then TNF was suffused (5 ng/mL) for 30 minutes. In series 2 (n = 16), the protocol was similar, except AVP (0.2 U/mL) or an equieffective dose of PE (0.04 mg/mL) was administered i.v. (4.5 mL/h) for 15 minutes before, during, and 45 minutes after TNF suffusion. In series 3 (n = 12), the protocol was similar to series 2, except venous hemorrhage preceded i.v. AVP or PE. In series 4 (n = 15), the protocol was similar to series 3, except an AVP antagonist (vaprisol, 1 mg/kg i.v.) or its vehicle was administered after hemorrhage. In the control series (n = 13), inflammation was evaluated either with a different suffusate (lactated Ringers instead of hetastarch solution), different antigen (histamine instead of TNF), or hemorrhage with no antigen. RESULTS In series 1, the TNF-evoked increase in leukocyte infiltration (i.e., rolling), leukocyte activation (i.e., sticking), and macromolecular permeability (i.e., albumin extravasation) were attenuated with topical AVP versus vehicle (both p < 0.05), with no effect on venular blood flow (which determines sheer stress). In series 2, the TNF-evoked increase in infiltration, activation, and permeability were all attenuated, and arteriolar blood flow (which determines perfused capillary surface area and hydrostatic pressure) was reduced with i.v. AVP versus i.v. PE (all p < 0.05). In series 3, after hemorrhage to mean arterial pressure <50 mm Hg for 30 minutes, the TNF-evoked increase in infiltration and activation was attenuated, and arteriolar and venular blood flow were both reduced with i.v. AVP versus PE (all p < 0.05). In series 4, after hemorrhage, the TNF-evoked increase in leukocyte activation was potentiated with the vaprisol versus vehicle (p < 0.05) with no effect on arteriolar or venular blood flow. In series 5 (controls), suffusion with lactated Ringers' versus hetastarch solution more than doubled the TNF-evoked increase in activation (p < 0.05). CONCLUSION (1) AVP can attenuate TNF-evoked leukocyte infiltration, activation or permeability changes in the skeletal muscle microcirculation. (2) The mechanism is probably receptor mediated and does not entirely depend on sheer stress in venules or Starling forces in capillaries. (3) The magnitude of this anti-inflammatory effect is influenced by several conditions, including volume status, the colloid or crystalloid suffusion fluid, and is possibly specific to the antigenic stimulus (TNF vs. histamine).
Collapse
|
11
|
Tissue oxygenation during management of cerebral perfusion pressure with phenylephrine or vasopressin*. Crit Care Med 2008; 36:2641-50. [DOI: 10.1097/ccm.0b013e3181847af3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Geeraerts T, Friggeri A, Mazoit JX, Benhamou D, Duranteau J, Vigué B. Posttraumatic brain vulnerability to hypoxia-hypotension: the importance of the delay between brain trauma and secondary insult. Intensive Care Med 2008; 34:551-60. [PMID: 17938889 DOI: 10.1007/s00134-007-0863-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Accepted: 08/19/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To examine whether the effect of hypoxia-hypotension (HH) after traumatic brain injury (TBI) is affected by the delay between insults. DESIGN Thirty Sprague-Dawley rats were randomized into five groups: sham, TBI alone (trauma alone, impact-acceleration, 450 g weight drop from 1.8 m), HH alone (blood depletion, mean arterial pressure 40 mmHg, FIO2=10%, 15 min), TBI+early HH (TBI followed by HH, 45-min delay), and TBI+late HH (225-min delay). Cerebral perfusion pressure was continuously recorded. Brain microdialysis and PtiO2 probes were inserted stereotaxically into the right thalamus. MEASUREMENTS AND RESULTS After the HH period and for 60 min a significant increase in cerebral lactate-pyruvate ratio was observed in groups subjected to HH vs. TBI alone and sham groups (33.0+/-5.1 for HH alone and 51.9+/-6.7 for TBI+early HH vs. 16.7+/-2.4 for TBI alone at the same time, 27.6+/-4.4 for TBI+late HH vs. 13.1+/-1 for TBI alone at the same time). There was no significant difference in lactate-pyruvate ratio peaks between HH alone and TBI+late HH while it was higher in TBI+early HH. Similar results were obtained for cerebral glycerol. PtiO2 during HH phase did not differ between HH alone, TBI+early HH and TBI+late HH (respectively, 4.2+/-3.1, 4.9+/-5.7, and 2.9+/-1.8 mmHg). CONCLUSIONS A 45-min delay between HH and TBI has important metabolic consequences while a 225-min delay has a similar effect as HH in a noninjured brain. The posttraumatic brain vulnerability to HH depends on the delay between cerebral aggressions.
Collapse
Affiliation(s)
- Thomas Geeraerts
- Département d'Anesthésie-Réanimation, Hôpital Bicêtre, AP-HP, 94276 Le Kremlin-Bicêtre, France.
| | | | | | | | | | | |
Collapse
|
13
|
Geeraerts T, Ract C, Tardieu M, Fourcade O, Mazoit JX, Benhamou D, Duranteau J, Vigué B. Changes in cerebral energy metabolites induced by impact-acceleration brain trauma and hypoxic-hypotensive injury in rats. J Neurotrauma 2006; 23:1059-71. [PMID: 16866619 DOI: 10.1089/neu.2006.23.1059] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to describe, in rats, brain energy metabolites changes after different levels of head trauma (T) complicated by hypoxia-hypotension (HH). Male Sprague Dawley rats (n = 7 per groups) were subjected to T by impact-acceleration with 450-g weight drop from 1.50 or 1.80 m (T 1.50 or T 1.80), or to a 15-min period of HH (controlled hemorrhage to mean arterial pressure [MAP] of 40 mm Hg, and mechanical ventilation with N(2) 90%/O(2) 10%), or to their association (T followed by HH). Invasive MAP, intraparenchymental intracranial pressure (ICP), and cerebral blood flow (CBF using Laser Doppler flowmetry) were recorded during the 5 post-traumatic hours. Cerebral microdialysis was used to measure each hour interstitial brain glucose, lactate, pyruvate, and glutamate. For the entire period, the levels of cerebral glucose, pyruvate, and glutamate were not statistically different between groups. In addition, there were no differences associated with the lactate-glucose ratio. Lactate was significantly higher overtime only in T 1.80 + HH group (p < 0.001 vs. every other groups). The lactate-pyruvate ratio increased with trauma level, and was significantly different vs. sham for the entire study period in T 1.50 + HH, in T 1.80, and in T 1.80 + HH. There was no correlation between CBF variations and the lactate-pyruvate ratio (r(2) = 0.00001). The cerebral perfusion pressure was greater than 70 mm Hg in all groups. The prolonged post-traumatic impairment in brain energy metabolism may be related to traumatic brain injury (TBI) severity. It became worse when T was complicated by HH, but was not related to changes in CBF.
Collapse
Affiliation(s)
- Thomas Geeraerts
- Laboratoire Immunologie Antivirale Systémique et Cérébrale, INSERM EMI 0109, Faculté de Médecine Paris-Sud, Le Kremlin Bicêtre, France.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sanui M, King DR, Feinstein AJ, Varon AJ, Cohn SM, Proctor KG. Effects of arginine vasopressin during resuscitation from hemorrhagic hypotension after traumatic brain injury. Crit Care Med 2006; 34:433-8. [PMID: 16424725 DOI: 10.1097/01.ccm.0000196206.83534.39] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Two series of experiments were designed to evaluate whether early arginine vasopressin improves acute outcome following resuscitation from traumatic brain injury and severe hemorrhagic hypotension. DESIGN Prospective randomized, blinded animal study. SETTING University laboratory. SUBJECTS Thirty-three swine. INTERVENTIONS In series 1 (n = 19), after traumatic brain injury with hemorrhage and 12 mins of shock (mean arterial pressure approximately 20 mm Hg), survivors (n = 16) were initially resuscitated with 10 mL/kg crystalloid. After 30 mins, crystalloid and blood with either 0.1 unit x kg(-1) x hr(-1) arginine vasopressin or placebo was titrated to a mean arterial pressure target >or=60 mm Hg. After 90 mins, all received mannitol and the target was cerebral perfusion pressure >or=60 mm Hg. To test cerebrovascular function, 7.5% inhaled CO2 was administered periodically. In series 2 (n = 14), the identical protocol was followed except the shock period was 20 mins and survivors (n = 10) received a bolus of either arginine vasopressin (0.2 units/kg) or placebo during the initial fluid resuscitation. MEASUREMENTS AND MAIN RESULTS In series 1, by 300 mins after traumatic brain injury with arginine vasopressin (n = 8) vs. placebo (n = 8), the fluid and transfusion requirements were reduced (both p < .01), intracranial pressure was improved (11 +/- 1 vs. 23 +/- 2 mmHg; p < .0001), and the CO2-evoked intracranial pressure elevation was reduced (7 +/- 2 vs. 26 +/- 3 mm Hg, p < .001), suggesting improved compliance. In series 2, with arginine vasopressin vs. placebo, cerebral perfusion pressure was more rapidly corrected (p < .05). With arginine vasopressin, five of five animals survived 300 mins, whereas three of five placebo animals died. The survival time with placebo was 54 +/- 4 mins (p < .05 vs. arginine vasopressin). CONCLUSIONS Early supplemental arginine vasopressin rapidly corrected cerebral perfusion pressure, improved cerebrovascular compliance, and prevented circulatory collapse during fluid resuscitation of hemorrhagic shock after traumatic brain injury.
Collapse
Affiliation(s)
- Masamitsu Sanui
- Department of Anesthesiology, Division of Trauma Anesthesia and Critical Care, University of Miami Miller School of Medicine, FL 33136, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Schütz C, Stover JF, Thompson HJ, Hoover RC, Morales DM, Schouten JW, McMillan A, Soltesz K, Motta M, Spangler Z, Neugebauer E, McIntosh TK. Acute, transient hemorrhagic hypotension does not aggravate structural damage or neurologic motor deficits but delays the long-term cognitive recovery following mild to moderate traumatic brain injury. Crit Care Med 2006; 34:492-501. [PMID: 16424733 PMCID: PMC2377280 DOI: 10.1097/01.ccm.0000198326.32049.7f] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Posttraumatic hypotension is believed to increase morbidity and mortality in traumatically brain-injured patients. Using a clinically relevant model of combined traumatic brain injury with superimposed hemorrhagic hypotension in rats, the present study evaluated whether a reduction in mean arterial blood pressure aggravates regional brain edema formation, regional cell death, and neurologic motor/cognitive deficits associated with traumatic brain injury. DESIGN Experimental prospective, randomized study in rodents. SETTING Experimental laboratory at a university hospital. SUBJECTS One hundred nineteen male Sprague-Dawley rats weighing 350-385 g. INTERVENTIONS Experimental traumatic brain injury of mild to moderate severity was induced using the lateral fluid percussion brain injury model in anesthetized rats (n = 89). Following traumatic brain injury, in surviving animals one group of animals was subjected to pressure-controlled hemorrhagic hypotension, maintaining the mean arterial blood pressure at 50-60 mm Hg for 30 mins (n = 47). The animals were subsequently either resuscitated with lactated Ringer's solution (three times shed blood volume, n = 18) or left uncompensated (n = 29). Other groups of animals included those with isolated traumatic brain injury (n = 34), those with isolated hemorrhagic hypotension (n = 8), and sham-injured control animals receiving anesthesia and surgery alone (n = 22). MEASUREMENTS AND MAIN RESULTS The withdrawal of 6-7 mL of arterial blood significantly reduced mean arterial blood pressure by 50% without decreasing arterial oxygen saturation or Pao2. Brain injury induced significant cerebral edema (p < .001) in vulnerable brain regions and cortical tissue loss (p < .01) compared with sham-injured animals. Neither regional brain edema formation at 24 hrs postinjury nor the extent of cortical tissue loss assessed at 7 days postinjury was significantly aggravated by superimposed hemorrhagic hypotension. Brain injury-induced neurologic deficits persisted up to 20 wks after injury and were also not aggravated by the hemorrhagic hypotension. Cognitive dysfunction persisted for up to 16 wks postinjury. The superimposition of hemorrhagic hypotension significantly delayed the time course of cognitive recovery. CONCLUSIONS A single, acute hypotensive event lasting 30 mins did not aggravate the short- and long-term structural and motor deficits but delayed the speed of recovery of cognitive function associated with experimental traumatic brain injury.
Collapse
Affiliation(s)
- Christian Schütz
- From the Traumatic Brain Injury Laboratory, Department of Neurosurgery, University of Pennsylvania, Philadelphia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Shafi S, Gentilello L. Hypotension Does Not Increase Mortality in Brain-Injured Patients More Than it Does in Non-Brain-Injured Patients. ACTA ACUST UNITED AC 2005; 59:830-4; discussion 834-5. [PMID: 16374269 DOI: 10.1097/01.ta.0000188147.36232.c0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Hypotension increases mortality after all types of injuries. Prior studies comparing mortality of hypotensive traumatic brain injury (TBI) patients to normotensive TBI patients have implied that hypotension is particularly detrimental after TBI. It is unknown whether hypotension affects TBI patients more severely than it affects other types of patients. We hypothesized that hypotension does not increase mortality in TBI patients more than it does in non-TBI patients. METHODS National Trauma Data Bank (1994-2002) patients aged 18 to 45 years with blunt mechanisms of injury treated at Level I and Level II centers were included. Deaths occurring before 24 hours were excluded. Logistic regression was used to measure the association between hypotension (< or =90 mm Hg) and death after adjusting for confounding variables of age, gender, comorbidities, complications, Glasgow Coma Scale score, and severity of associated injuries. Odds ratios (95% confidence interval) indicate the risk of death in hypotensive patients in each group compared with normotensive patients in the same group. RESULTS The study population consisted of 79,478 patients (TBI, 30,742; no TBI, 48,736). Hypotension independently quadrupled the risk of death after adjusting for confounding variables (odds ratio [OR], 4.8; 95% confidence interval [CI], 4.1-5.6). However, increase in this risk associated with hypotension was the same in TBI (OR, 4.1; 95% CI, 3.5-4.9) and non-TBI patients (OR, 4.6; 95% CI, 3.4-6.0). Furthermore, the relationship between hypotension and TBI did not change with increasing head Abbreviated Injury Scale score severity. CONCLUSION Hypotension is an independent risk factor for mortality. However, it does not increase mortality in TBI patients more than it does for non-TBI patients.
Collapse
Affiliation(s)
- Shahid Shafi
- Division of Burn, Trauma and Surgical Critical Care, Department of Surgery, University of Texas Southwestern Medical School, Dallas, 75390, USA.
| | | |
Collapse
|
17
|
Abstract
Hypothermia has been shown to be cerebroprotective in traumatized brains. Although a large number of traumatic brain injury (TBI) studies in animals have shown that hypothermia is effective in suppressing a variety of damaging mechanisms, clinical investigations have shown less consistent results. The complexity of damaging mechanisms in human TBI may contribute to these discrepancies. In particular, secondary injuries such as hypotension and hypoxemia may promote poor outcome. However, few experimental TBI studies have employed complex models that included such secondary injuries to clarify the efficacy of hypothermia. This review discusses the effects of hypothermia in various TBI models addressing primary and acute secondary injuries. Included are recently published clinical data using hypothermia as a therapeutic tool for preventing or reducing the detrimental posttraumatic secondary injuries and neurobehavioral deficits. Also discussed are recent successful applications of hypothermia from outside the TBI realm. Based on all available data, some general considerations for the application of hypothermia in TBI patients are given.
Collapse
Affiliation(s)
- Harald G Fritz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital, Jena, Germany.
| | | |
Collapse
|
18
|
Van Landeghem FKH, Schreiber S, Unterberg AW, Von Deimling A, Stover JF. Differential Concentration-Dependent Effects of Prolonged Norepinephrine Infusion on Intraparenchymal Hemorrhage and Cortical Contusion in Brain-Injured Rats. J Neurotrauma 2003; 20:1327-37. [PMID: 14748981 DOI: 10.1089/089771503322686120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Under clinical conditions catecholamines are infused to elevate cerebral perfusion pressure and improve impaired posttraumatic cerebral microcirculation. This, however, is associated with the risk of additional hemorrhage in the acute phase following traumatic brain injury. In the present study we investigated the dose-dependent effects of prolonged norepinephrine infusion on arterial blood pressure, blood glucose, and structural damage in brain-injured rats. At 4 h following induction of a focal cortical contusion (CCI), 40 rats were randomized to receive low (0.15), medium (0.3), or high dose (1 microg/kg/min) norepinephrine. Control rats were given equal volume of NaCl. Norepinephrine and NaCl were infused intravenously via Alzet osmotic pumps for 44 h. Mean arterial blood pressure (MABP), blood gases and blood glucose were determined before, at 4, 24, 48 h after CCI in repeatedly anesthetized rats (n = 28). Systolic arterial blood pressure (SABP) was measured using the tail cuff method in awake, restrained rats (n = 12). Cortical contusion and intraparenchymal hemorrhage volume were quantified at 48 h in all rats. MABP determined in anesthetized rats was only marginally increased. SABP was significantly elevated during infusion of medium and high dose norepinephrine in awake rats, exceeding 140 mm Hg. Medium and high dose norepinephrine significantly increased cortical hemorrhage by 157% and 142%, without increasing the cortical contusion volume. Low dose norepinephrine significantly reduced the cortical contusion by 44%. Norepinephrine aggravates the underlying brain damage during the acute posttraumatic phase. Future studies are needed to determine the least deleterious norepinephrine concentration.
Collapse
Affiliation(s)
- Frank K H Van Landeghem
- Institute of Neuropathology, Charité Campus Virchow Klinikum, Humboldt-University, 13353 Berlin, Germany.
| | | | | | | | | |
Collapse
|