1
|
Simon SL, Bouville A, Hoffman FO, Anspaugh LR. Why do we study science and collaborate? Thoughts on present-day cooperations with scientists of Russia. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2024; 44:034501. [PMID: 38958214 DOI: 10.1088/1361-6498/ad5b68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Affiliation(s)
- Steven L Simon
- National Cancer Institute, Bethesda, MD, United States of America
| | - André Bouville
- National Cancer Institute, Bethesda, MD, United States of America
| | - F Owen Hoffman
- Oak Ridge Center for Risk Analysis, Oak Ridge, TN, United States of America
| | - Lynn R Anspaugh
- University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
2
|
Shishkina EA, Sharagin PA, Tolstykh EI, Smith MA, Napier BA, Degteva MO. Uncertainty of stochastic parametric approach to bone marrow dosimetry of 89,90Sr. Heliyon 2024; 10:e26275. [PMID: 38420372 PMCID: PMC10900932 DOI: 10.1016/j.heliyon.2024.e26275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024] Open
Abstract
The objective of this study is to evaluate the uncertainties of the dosimetric modeling of active marrow (AM) exposure from bone-seeking 89,90Sr. The stochastic parametric skeletal dosimetry (SPSD) model was specifically developed to study the long-term effects resulting from chronic 89,90Sr exposure in populations of the radioactively contaminated territories of the Southern Urals region of the Russian Federation. The method permits the evaluation of the dose factors (DF(AM ← TBV) and DF(AM ← CBV)), which convert the radionuclide activity concentration in trabecular (TBV) and cortical (CBV) bone volumes into dose rate in the AM, and their uncertainties. The sources of uncertainty can be subdivided into inherent uncertainties related to the individual variability of the simulated objects and introduced uncertainties related to model simplifications. Inherent uncertainty components are the individual variability of bone chemical composition, bone density, bone micro- and macro-architecture as well as AM distribution within the skeleton. The introduced uncertainties may result from the stylization of bone segment geometry, assumption of uniform cortical thickness, restriction of bone geometry and the selection of the applied voxel resolution. The inherent uncertainty depends on a number of factors of influence. Foremost, it is the result of variability of AM distribution within the skeleton. Another important factor is the variability of bone micro- and macro-architecture. The inherent uncertainty of skeletal-average dose factors was found to be about 40-50%. The introduced uncertainty associated with the SPSD model approach does not exceed 16% and mainly depends on the error of bone-shape stylization. The overall inherent and introduced uncertainties of DF(AM ← TBV) and DF(AM ← CBV) are below 55% and 63%, respectively. The results obtained will be incorporated into the stochastic version of the Techa River Dosimetry System (TRDS-2016MC) that provides multiple realizations of the annual doses for each cohort member to obtain both a central estimate of the individual dose and information on the dose uncertainty.
Collapse
Affiliation(s)
- Elena A. Shishkina
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
- Chelyabinsk State University, Chelyabinsk, Russia
| | | | | | | | | | | |
Collapse
|
3
|
Brooks AL, Hoel D, Glines WM. Radiobiology of Select Radionuclides in Hanford Site Tank Waste. HEALTH PHYSICS 2022; 123:99-115. [PMID: 35506883 DOI: 10.1097/hp.0000000000001563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There are several important radionuclides involved in the "clean-up" or environmental isolation of nuclear waste contained in US Department of Energy Hanford Site underground waste tanks that drive many of the decisions associated with this activity. To make proper human health risk analyses and ensure that the most appropriate decisions are made, it is important to understand the radiation biology and the human health risk associated with these radionuclides. This manuscript provides some basic radiological science, in particular radiation biology, for some of these radionuclides, i.e., 3 H, 90 Sr, 137 Cs, 99 Tc, 129 I, and the alpha emitters 239, 240 Pu, 233,234,235,238 U, and 241 Am. These radionuclides were selected based on their designation as "constituents of potential concern," historical significance, or potential impact on human health risk. In addition to the radiobiology of these select radionuclides, this manuscript provides brief discussions of the estimated cost of planned management of Hanford tank waste and a comparison with releases into the Techa River from activities associated with the Mayak Production Association. A set of summary conclusions of the potential human health risks associated with these radionuclides is given.
Collapse
Affiliation(s)
- Antone L Brooks
- Research Professor Emeritus, Washington State University Tri-Cities, Richland, WA
| | - David Hoel
- Medical University of South Carolina, 36 South Battery, Charleston, SC 29401
| | | |
Collapse
|
4
|
Akleyev AV, Degteva MO, Krestinina LY. Overall results and prospects of the cancer risk assessment in the Urals population affected by chronic low dose-rate exposure. RADIATION MEDICINE AND PROTECTION 2022. [DOI: 10.1016/j.radmp.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
5
|
Ulanowski A, Hiller M, Woda C. Absorbed doses in bricks and TL-dosimeters due to anthropogenic and natural environmental radiation sources. RADIAT MEAS 2021. [DOI: 10.1016/j.radmeas.2020.106458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Daniels RD, Kendall GM, Thierry-Chef I, Linet MS, Cullings HM. Strengths and Weaknesses of Dosimetry Used in Studies of Low-Dose Radiation Exposure and Cancer. J Natl Cancer Inst Monogr 2020; 2020:114-132. [PMID: 32657346 PMCID: PMC7667397 DOI: 10.1093/jncimonographs/lgaa001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A monograph systematically evaluating recent evidence on the dose-response relationship between low-dose ionizing radiation exposure and cancer risk required a critical appraisal of dosimetry methods in 26 potentially informative studies. METHODS The relevant literature included studies published in 2006-2017. Studies comprised case-control and cohort designs examining populations predominantly exposed to sparsely ionizing radiation, mostly from external sources, resulting in average doses of no more than 100 mGy. At least two dosimetrists reviewed each study and appraised the strengths and weaknesses of the dosimetry systems used, including assessment of sources and effects of dose estimation error. An overarching concern was whether dose error might cause the spurious appearance of a dose-response where none was present. RESULTS The review included 8 environmental, 4 medical, and 14 occupational studies that varied in properties relative to evaluation criteria. Treatment of dose estimation error also varied among studies, although few conducted a comprehensive evaluation. Six studies appeared to have known or suspected biases in dose estimates. The potential for these biases to cause a spurious dose-response association was constrained to three case-control studies that relied extensively on information gathered in interviews conducted after case ascertainment. CONCLUSIONS The potential for spurious dose-response associations from dose information appeared limited to case-control studies vulnerable to recall errors that may be differential by case status. Otherwise, risk estimates appeared reasonably free of a substantial bias from dose estimation error. Future studies would benefit from a comprehensive evaluation of dose estimation errors, including methods accounting for their potential effects on dose-response associations.
Collapse
Affiliation(s)
- Robert D Daniels
- Division of Science Integration, National Institute for Occupational Safety and Health, Cincinnati, OH
| | - Gerald M Kendall
- Cancer Epidemiology Unit, NDPH, University of Oxford, Oxford, UK
| | - Isabelle Thierry-Chef
- Barcelona Institute for Global Health, Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Martha S Linet
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Harry M Cullings
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| |
Collapse
|
7
|
Degteva MO, Napier BA, Tolstykh EI, Shishkina EA, Shagina NB, Volchkova AY, Bougrov NG, Smith MA, Anspaugh LR. Enhancements in the Techa River Dosimetry System: TRDS-2016D Code for Reconstruction of Deterministic Estimates of Dose From Environmental Exposures. HEALTH PHYSICS 2019; 117:378-387. [PMID: 30958804 DOI: 10.1097/hp.0000000000001067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Waterborne releases to the Techa River from the Mayak plutonium facility in Russia during 1949-1956 resulted in significant doses to persons living downstream. The dosimetry system Techa River Dosimetry System-2016D has been developed, which provides individual doses of external and internal exposure for the members of the Techa River cohort and other persons who were exposed to releases of radioactive material to the Southern Urals. The results of computation of individual doses absorbed in red bone marrow and extraskeletal tissues for the Techa River cohort members (29,647 persons) are presented, which are based on residence histories on the contaminated Techa River and the East Urals Radioactive Trace, which was formed in 1957 as a result of the Kyshtym Accident. Available Sr body-burden measurements and available information on individual household locations have been used for refinement of individual dose estimates. Techa River Dosimetry System-2016D-based dose estimates will be used for verification of risk of low-dose-rate effects of ionizing radiation in the Techa River cohort.
Collapse
Affiliation(s)
- M O Degteva
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - B A Napier
- Battelle Pacific Northwest National Laboratory, Richland, WA
| | - E I Tolstykh
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - E A Shishkina
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - N B Shagina
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - A Yu Volchkova
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - N G Bougrov
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - M A Smith
- Battelle Pacific Northwest National Laboratory, Richland, WA
| | - L R Anspaugh
- Emeritus, Department of Radiology, University of Utah, Salt Lake City, UT
| |
Collapse
|
8
|
Till JE, Beck HL, Grogan HA, Caffrey EA. A review of dosimetry used in epidemiological studies considered to evaluate the linear no-threshold (LNT) dose-response model for radiation protection. Int J Radiat Biol 2017; 93:1128-1144. [DOI: 10.1080/09553002.2017.1337280] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Hiller MM, Woda C, Bougrov NG, Degteva MO, Ivanov O, Ulanovsky A, Romanov S. External dose reconstruction for the former village of Metlino (Techa River, Russia) based on environmental surveys, luminescence measurements, and radiation transport modelling. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2017; 56:139-159. [PMID: 28374124 DOI: 10.1007/s00411-017-0688-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/05/2017] [Indexed: 06/07/2023]
Abstract
In the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues. In particular, organ doses from external exposure are derived from estimates of dose rate in air on the Techa River banks which were estimated from measurements and Monte Carlo modelling. Individual doses are calculated in accordance with historical records of individuals' residence histories, observational data of typical lifestyles for different age groups, and age-dependent conversion factors from air kerma to organ dose. The work here describes an experimentally independent assessment of the key input parameter of the dosimetry system, the integral air kerma, for the former village of Metlino, upper Techa River region. The aim of this work was thus to validate the Techa River Dosimetry System for the location of Metlino in an independent approach. Dose reconstruction based on dose measurements in bricks from a church tower and Monte Carlo calculations was used to model the historic air kerma accumulated in the time from 1949 to 1956 at the shoreline of the Techa River in Metlino. Main issues are caused by a change in the landscape after the evacuation of the village in 1956. Based on measurements and published information and data, two separate models for the historic pre-evacuation geometry and for the current geometry of Metlino were created. Using both models, a value for the air kerma was reconstructed, which agrees with that obtained in the Techa River Dosimetry System within a factor of two.
Collapse
Affiliation(s)
- M M Hiller
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, 85764, Neuherberg, Germany.
| | - C Woda
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, 85764, Neuherberg, Germany
| | - N G Bougrov
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - M O Degteva
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | - O Ivanov
- Kurchatov Institute Moscow, Moscow, 123182, Russia
| | - A Ulanovsky
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Radiation Protection, 85764, Neuherberg, Germany
| | - S Romanov
- Southern Urals Biophysics Institute, Ozyorsk, Russia
| |
Collapse
|
10
|
Shishkina EA, Volchkova AY, Timofeev YS, Fattibene P, Wieser A, Ivanov DV, Krivoschapov VA, Zalyapin VI, Della Monaca S, De Coste V, Degteva MO, Anspaugh LR. External dose reconstruction in tooth enamel of Techa riverside residents. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2016; 55:477-499. [PMID: 27600653 DOI: 10.1007/s00411-016-0666-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/19/2016] [Indexed: 06/06/2023]
Abstract
This study summarizes the 20-year efforts for dose reconstruction in tooth enamel of the Techa riverside residents exposed to ionizing radiation as a result of radionuclide releases into the river in 1949-1956. It represents the first combined analysis of all the data available on EPR dosimetry with teeth of permanent residents of the Techa riverside territory. Results of electron paramagnetic resonance (EPR) measurements of 302 teeth donated by 173 individuals living permanently in Techa riverside settlements over the period of 1950-1952 were analyzed. These people were residents of villages located at the free-flowing river stream or at the banks of stagnant reservoirs such as ponds or blind river forks. Cumulative absorbed doses measured using EPR are from several sources of exposure, viz., background radiation, internal exposure due to bone-seeking radionuclides (89Sr, 90Sr/90Y), internal exposure due to 137Cs/137mBa incorporated in soft tissues, and anthropogenic external exposure. The purpose of the present study was to evaluate the contribution of different sources of enamel exposure and to deduce external doses to be used for validation of the Techa River Dosimetry System (TRDS). Since various EPR methods were used, harmonization of these methods was critical. Overall, the mean cumulative background dose was found to be 63 ± 47 mGy; cumulative internal doses due to 89Sr and 90Sr/90Y were within the range of 10-110 mGy; cumulative internal doses due to 137Cs/137mBa depend on the distance from the site of releases and varied from 1 mGy up to 90 mGy; mean external doses were maximum for settlements located at the banks of stagnant reservoirs (~500 mGy); in contrast, external doses for settlements located along the free-flowing river stream did not exceed 160 mGy and decreased downstream with increasing distance from the site of release. External enamel doses calculated using the TRDS code and derived from the EPR measurements were found to be in good agreement.
Collapse
Affiliation(s)
- E A Shishkina
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076.
| | - A Yu Volchkova
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076
| | - Y S Timofeev
- Southern Urals State University, 76, Lenin Av., Chelyabinsk, Russia, 454080
| | - P Fattibene
- Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161, Rome, Italy
| | - A Wieser
- German Research Centre for Environmental Health, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - D V Ivanov
- M.N. Mikheev Institute of Metal Physics, Ural Division of the Russian Academy of Sciences, 18 S. Kovalevskaya Street, Ekaterinburg, Russia, 620990
- Ural Federal University, 19 Mira Str, Yekaterinburg, Russia, 620002
| | - V A Krivoschapov
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076
| | - V I Zalyapin
- Southern Urals State University, 76, Lenin Av., Chelyabinsk, Russia, 454080
| | - S Della Monaca
- Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161, Rome, Italy
| | - V De Coste
- Istituto Superiore di Sanità and Istituto Nazionale di Fisica Nucleare, Viale Regina Elena 299, 00161, Rome, Italy
| | - M O Degteva
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., Chelyabinsk, Russia, 454076
| | - L R Anspaugh
- University of Utah, 201 Presidents Circle, Salt Lake City, UT, 84112, USA
| |
Collapse
|
11
|
Rühm W, Woloschak GE, Shore RE, Azizova TV, Grosche B, Niwa O, Akiba S, Ono T, Suzuki K, Iwasaki T, Ban N, Kai M, Clement CH, Bouffler S, Toma H, Hamada N. Dose and dose-rate effects of ionizing radiation: a discussion in the light of radiological protection. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:379-401. [PMID: 26343037 DOI: 10.1007/s00411-015-0613-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/18/2015] [Indexed: 05/21/2023]
Abstract
The biological effects on humans of low-dose and low-dose-rate exposures to ionizing radiation have always been of major interest. The most recent concept as suggested by the International Commission on Radiological Protection (ICRP) is to extrapolate existing epidemiological data at high doses and dose rates down to low doses and low dose rates relevant to radiological protection, using the so-called dose and dose-rate effectiveness factor (DDREF). The present paper summarizes what was presented and discussed by experts from ICRP and Japan at a dedicated workshop on this topic held in May 2015 in Kyoto, Japan. This paper describes the historical development of the DDREF concept in light of emerging scientific evidence on dose and dose-rate effects, summarizes the conclusions recently drawn by a number of international organizations (e.g., BEIR VII, ICRP, SSK, UNSCEAR, and WHO), mentions current scientific efforts to obtain more data on low-dose and low-dose-rate effects at molecular, cellular, animal and human levels, and discusses future options that could be useful to improve and optimize the DDREF concept for the purpose of radiological protection.
Collapse
Affiliation(s)
- Werner Rühm
- Institute of Radiation Protection, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Gayle E Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy E Shore
- Radiation Effects Research Foundation (RERF), 5-2 Hijiyama Park, Minami-ku, Hiroshima City, 732-0815, Japan
| | - Tamara V Azizova
- Southern Urals Biophysics Institute (SUBI), Ozyorskoe Shosse 19, Ozyorsk, Chelyabinsk Region, Russian Federation, 456780
| | - Bernd Grosche
- Federal Office for Radiation Protection, Ingolstaedter Landstr. 1, 85764, Oberschleissheim, Germany
| | - Ohtsura Niwa
- Fukushima Medical University, Hikarigaoka 1, Fukushima, 960-1295, Japan
| | - Suminori Akiba
- Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima City, Japan
| | - Tetsuya Ono
- Institute for Environmental Sciences, 1-7 Ienomae, Rokkasho, Aomori-ken, 039-3212, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Toshiyasu Iwasaki
- Radiation Safety Research Center, Nuclear Technology Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 2-11-1 Iwado-kita, Tokyo, 201-8511, Japan
| | - Nobuhiko Ban
- Faculty of Nursing, Tokyo Healthcare University, 2-5-1 Higashigaoka, Meguro, Tokyo, 152-8558, Japan
| | - Michiaki Kai
- Department of Environmental Health Science, Oita University of Nursing and Health Sciences, 2944-9 Megusuno, Oita, 840-1201, Japan
| | - Christopher H Clement
- International Commission on Radiological Protection (ICRP), PO Box 1046, Station B, 280 Slater Street, Ottawa, ON, K1P 5S9, Canada
| | - Simon Bouffler
- Centre for Radiation, Chemical and Environmental Hazards, Public Health England (PHE), Chilton, Didcot, OX11 ORQ, UK
| | - Hideki Toma
- JAPAN NUS Co., Ltd. (JANUS), 7-5-25 Nishi-Shinjuku, Shinjuku-Ku, Tokyo, 160-0023, Japan
| | - Nobuyuki Hamada
- International Commission on Radiological Protection (ICRP), PO Box 1046, Station B, 280 Slater Street, Ottawa, ON, K1P 5S9, Canada.
| |
Collapse
|
12
|
Shagina NB, Tolstykh EI, Fell TP, Smith TJ, Harrison JD, Degteva MO. Strontium biokinetic model for the lactating woman and transfer to breast milk: application to Techa River studies. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2015; 35:677-694. [PMID: 26295519 DOI: 10.1088/0952-4746/35/3/677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This paper presents a biokinetic model for strontium metabolism in the lactating woman and transfer to breast milk for members of Techa River communities exposed as a result of discharges of liquid radioactive wastes from the Mayak plutonium production facility (Russia) in the early 1950s. This model was based on that developed for the International Commission for Radiological Protection with modifications to account for population specific features of breastfeeding and maternal bone mineral metabolism. The model is based on a biokinetic model for the adult female with allowances made for changes in mineral metabolism during periods of exclusive and partial breast-feeding. The model for females of all ages was developed earlier from extensive data on (90)Sr-body measurements for Techa Riverside residents. Measurements of (90)Sr concentrations in the maternal skeleton and breast milk obtained in the1960s during monitoring of global fallout in the Southern Urals region were used for evaluation of strontium transfer to breast and breast milk. The model was validated with independent data from studies of global fallout in Canada and measurements of (90)Sr body-burden in women living in the Techa River villages who were breastfeeding during maximum (90)Sr-dietary intakes. The model will be used in evaluations of the intake of strontium radioisotopes in breast milk by children born in Techa River villages during the radioactive releases and quantification of (90)Sr retention in the maternal skeleton.
Collapse
Affiliation(s)
- N B Shagina
- Urals Research Center for Radiation Medicine, Chelyabinsk, 454076, Russia
| | | | | | | | | | | |
Collapse
|
13
|
Davis FG, Krestinina LY, Preston D, Epifanova S, Degteva M, Akleyev AV. Solid Cancer Incidence in the Techa River Incidence Cohort: 1956–2007. Radiat Res 2015; 184:56-65. [DOI: 10.1667/rr14023.1] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Shishkina EA, Tolstykh EI, Verdi E, Volchkova AY, Veronese I, El-Faramawy NA, Göksu HY, Degteva MO. Concentrations of 90Sr in the tooth tissues 60 years after intake: results of TL measurements and applications for Techa River dosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:159-173. [PMID: 24292426 DOI: 10.1007/s00411-013-0501-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/09/2013] [Indexed: 06/02/2023]
Abstract
This article focuses on the study of (90)Sr in the tooth tissues of Techa riverside residents 60 years after intake. The Techa River was contaminated by radioactive wastes in the 1950s. Contamination of the river system, including water, bottom sediment, floodplain soil, and grass, depended on the distance from the source of releases. Therefore, the average (90)Sr intake was different in different settlements located downstream the river. An additional factor influencing (90)Sr accumulation in the teeth is the rate of tissue mineralization at the time of intake which depended on the donor's age at the time of releases. Measurements of (90)Sr concentration in various dental tissues (enamel, crown, and root dentin) of 166 teeth were performed about 60 years after the main intake using the method of thermoluminescence passive beta detection. The paper presents the current levels of tooth tissue contamination, and the tooth-to-tooth variability of (90)Sr concentration in tooth tissues was assessed for the tissues which were matured at the time of massive liquid radioactive waste releases into the Techa River. A model describing the expected levels of (90)Sr in matured dental tissues depending on age and intake has been elaborated for the population under study. The results obtained will be used for calculation of internal dose in enamel and for interpretation of tooth doses measured by means of the electron paramagnetic resonance method, among the population of the Techa River region.
Collapse
Affiliation(s)
- E A Shishkina
- Urals Research Center for Radiation Medicine, 68A, Vorovsky Str., 454076, Chelyabinsk, Russia,
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Krestinina LY, Davis FG, Schonfeld S, Preston DL, Degteva M, Epifanova S, Akleyev AV. Leukaemia incidence in the Techa River Cohort: 1953-2007. Br J Cancer 2013; 109:2886-93. [PMID: 24129230 PMCID: PMC3844904 DOI: 10.1038/bjc.2013.614] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/31/2013] [Accepted: 09/16/2013] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Little is known about leukaemia risk following chronic radiation exposures at low dose rates. The Techa River Cohort of individuals residing in riverside villages between 1950 and 1961 when releases from the Mayak plutonium production complex contaminated the river allows quantification of leukaemia risks associated with chronic low-dose-rate internal and external exposures. METHODS Excess relative risk models described the dose-response relationship between radiation dose on the basis of updated dose estimates and the incidence of haematological malignancies ascertained between 1953 and 2007 among 28 223 cohort members, adjusted for attained age, sex, and other factors. RESULTS Almost half of the 72 leukaemia cases (excluding chronic lymphocytic leukaemia (CLL)) were estimated to be associated with radiation exposure. These data are consistent with a linear dose response with no evidence of modification. The excess relative risk estimate was 0.22 per 100 mGy. There was no evidence of significant dose effect for CLL or other haematopoietic malignancies. CONCLUSION These analyses demonstrate that radiation exposures, similar to those received by populations exposed as a consequence of nuclear accidents, are associated with long-term dose-related increases in leukaemia risks. Using updated dose estimates, the leukaemia risk per unit dose is about half of that based on previous dosimetry.
Collapse
Affiliation(s)
- L Y Krestinina
- Urals Research Center for Radiation Medicine, Epidemiology Laboratory, 68-a, Vorovsky Street, Chelyabinsk 454076, Russia
| | - F G Davis
- University of Illinois at Chicago, School of Public Health, Division of Epidemiology/Biostatistics, 1603 West Taylor Street, Chicago, IL 60612, USA
| | - S Schonfeld
- International Agency for Research on Cancer, Section of Environment and Radiation, 150 cours Albert Thomas, 69372, Lyon Cedex 08, France
- National Cancer Institute, Radiation Epidemiology Branch, Division of Cancer Epidemiology and Genetics, 6120 Executive Boulevard, Bethesda, MD 20892, USA
| | - D L Preston
- Hirosoft International Company, 1335 H Street, Eureka, CA 95501, USA
| | - M Degteva
- Urals Research Center for Radiation Medicine, Epidemiology Laboratory, 68-a, Vorovsky Street, Chelyabinsk 454076, Russia
| | - S Epifanova
- Urals Research Center for Radiation Medicine, Epidemiology Laboratory, 68-a, Vorovsky Street, Chelyabinsk 454076, Russia
| | - A V Akleyev
- Urals Research Center for Radiation Medicine, Epidemiology Laboratory, 68-a, Vorovsky Street, Chelyabinsk 454076, Russia
| |
Collapse
|
16
|
Tolstykh EI, Degteva MO, Peremyslova LM, Shagina NB, Vorobiova MI, Anspaugh LR, Napier BA. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: 137Cs. HEALTH PHYSICS 2013; 104:481-498. [PMID: 23532077 DOI: 10.1097/hp.0b013e318285bb7a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Radioactive contamination of the Techa River (Southern Urals, Russia) occurred from 1949-1956 due to routine and accidental releases of liquid radioactive wastes from the Mayak Production Association. The long-lived radionuclides in the releases were Sr and Cs. Contamination of the components of the Techa River system resulted in chronic external and internal exposure of about 30,000 residents of riverside villages. Data on radionuclide intake with diet are used to estimate internal dose in the Techa River Dosimetry System (TRDS), which was elaborated for the assessment of radiogenic risk for Techa Riverside residents. The Sr intake function was recently improved, taking into account the recently available archival data on radionuclide releases and in-depth analysis of the extensive data on Sr measurements in Techa Riverside residents. The main purpose of this paper is to evaluate the dietary intake of Cs by Techa Riverside residents. The Cs intake with river water used for drinking was reconstructed on the basis of the Sr intake-function and the concentration ratio Cs-to-Sr in river water. Intake via Cs transfer from floodplain soil to grass and cows' milk was evaluated for the first time. As a result, the maximal Cs intake level was indicated near the site of releases in upper-Techa River settlements (8,000-9,000 kBq). For villages located on the lower Techa River, the Cs intake was significantly less (down to 300 kBq). Cows' milk was the main source of Cs in diet in the upper-Techa River region.
Collapse
Affiliation(s)
- E I Tolstykh
- Urals Research Center for Radiation Medicine, Vorovskogo 68 a, 454076 Chelyabinsk, Russian Federation.
| | | | | | | | | | | | | |
Collapse
|
17
|
Krestinina LY, Epifanova S, Silkin S, Mikryukova L, Degteva M, Shagina N, Akleyev A. Chronic low-dose exposure in the Techa River Cohort: risk of mortality from circulatory diseases. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2013; 52:47-57. [PMID: 23124827 DOI: 10.1007/s00411-012-0438-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Accepted: 10/21/2012] [Indexed: 06/01/2023]
Abstract
The aim of the present study was to analyze the mortality from circulatory diseases for about 30,000 members of the Techa River cohort over the period 1950-2003, and to investigate how these rates depend on radiation doses. This population received both external and internal exposures from (90)Sr, (89)Sr, (137)Cs, and other uranium fission products as a result of waterborne releases from the Mayak nuclear facility in the Southern Urals region of the Russian Federation. The analysis included individualized estimates of the total (external plus internal) absorbed dose in muscle calculated based on the Techa River Dosimetry System 2009. The cohort-average dose to muscle tissue was 35 mGy, and the maximum dose was 510 mGy. Between 1950 and 2003, 7,595 deaths from circulatory diseases were registered among cohort members with 901,563 person years at risk. Mortality rates in the cohort were analyzed using a simple parametric excess relative risk (ERR) model. For all circulatory diseases, the estimated excess relative risk per 100 mGy with a 15-year lag period was 3.6 % with a 95 % confidence interval of 0.2-7.5 %, and for ischemic heart disease it was 5.6 % with a 95 % confidence interval of 0.1-11.9 %. A linear ERR model provided the best fit. Analyses with a lag period shorter than 15 years from the beginning of exposure did not reveal any significant risk of mortality from either all circulatory diseases or ischemic heart disease. There was no evidence of an increased mortality risk from cerebrovascular disease (p > 0.5). These results should be regarded as preliminary, since they will be updated after adjustment for smoking and alcohol consumption.
Collapse
|
18
|
Cortical bone resorption rate in elderly persons: Estimates from long-term in vivo measurements of 90Sr in the skeleton. Arch Gerontol Geriatr 2012; 54:e411-8. [DOI: 10.1016/j.archger.2011.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/07/2011] [Accepted: 06/29/2011] [Indexed: 01/02/2023]
|
19
|
Degteva MO, Shagina NB, Vorobiova MI, Anspaugh LR, Napier BA. Reevaluation of waterborne releases of radioactive materials from the Mayak Production Association into the Techa River in 1949-1951. HEALTH PHYSICS 2012; 102:25-38. [PMID: 22134076 DOI: 10.1097/hp.0b013e318228159a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Mayak Production Association was the first site for the production of weapons-grade plutonium in Russia. Early operations led to the waterborne release of radioactive materials into the small Techa River. Residents living downstream used river water for drinking and other purposes. The releases and subsequent flooding resulted in deposition of sediments along the shoreline and on floodplain soil. Primary routes of exposure were external dose from the deposited sediments and ingestion of 90Sr and other radionuclides. Study of the Techa River Cohort has revealed an increased incidence of leukemia and solid cancers. Epidemiologic studies are supported by extensive dose-reconstruction activities that have led to various versions of a Techa River Dosimetry System (TRDS). The correctness of the TRDS has been challenged by the allegation that releases of short-lived radionuclides were much larger than those used in the TRDS. Although the dosimetry system depends more upon measurements of 90Sr in humans and additional measurements of radionuclides and of exposure rates in the environment, a major activity has been undertaken to define more precisely the time-dependent rates of release and their radionuclide composition. The major releases occurred during 1950-1951 in the form of routine releases and major accidental releases. The reevaluated amount of total release is 114 PBq, about half of which was from accidents that occurred in late 1951. The time-dependent composition of the radionuclides released has also been reevaluated. The improved understanding presented in this paper is possible because of access to many documents not previously available.
Collapse
Affiliation(s)
- M O Degteva
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russian Federation.
| | | | | | | | | |
Collapse
|
20
|
Tolstykh EI, Shagina NB, Degteva MO, Anspaugh LR, Napier BA. Does the cortical bone resorption rate change due to 90Sr-radiation exposure? Analysis of data from Techa Riverside residents. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2011; 50:417-430. [PMID: 21523463 DOI: 10.1007/s00411-011-0363-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 04/09/2011] [Indexed: 05/30/2023]
Abstract
The Mayak Production Association released large amounts of (90)Sr into the Techa River (Southern Urals, Russia) with peak amounts in 1950-1951. Techa Riverside residents ingested an average of about 3,000 kBq of (90)Sr. The (90)Sr-body burden of approximately 15,000 individuals has been measured in the Urals Research Center for Radiation Medicine in 1974-1997 with use of a special whole-body counter (WBC). Strontium-90 had mainly deposited in the cortical part of the skeleton by 25 years following intake, and (90)Sr elimination occurs as a result of cortical bone resorption. The effect of (90)Sr-radiation exposure on the rate of cortical bone resorption was studied. Data on 2,022 WBC measurements were selected for 207 adult persons, who were measured three or more times before they were 50-55 years old. The individual-resorption rates were calculated with the rate of strontium recirculation evaluated as 0.0018 year(-1). Individual absorbed doses in red bone marrow (RBM) and bone surface (BS) were also calculated. Statistically significant negative relationships of cortical bone resorption rate were discovered related to (90)Sr-body burden and dose absorbed in the RBM or the BS. The response appears to have a threshold of about 1.5-Gy RBM dose. The radiation-induced decrease in bone resorption rate may not be significant in terms of health. However, a decrease in bone remodeling rate can be among several causes of an increased level of degenerative dystrophic bone pathology in exposed persons.
Collapse
Affiliation(s)
- Evgenia I Tolstykh
- Urals Research Center for Radiation Medicine, Vorovskogo 68a, 454076, Chelyabinsk, Russian Federation.
| | | | | | | | | |
Collapse
|
21
|
Tolstykh EI, Degteva MO, Peremyslova LM, Shagina NB, Shishkina EA, Krivoshchapov VA, Anspaugh LR, Napier BA. Reconstruction of long-lived radionuclide intakes for Techa riverside residents: strontium-90. HEALTH PHYSICS 2011; 101:28-47. [PMID: 21617390 DOI: 10.1097/hp.0b013e318206d0ff] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Releases of radioactive materials from the Mayak Production Association in 1949-1956 resulted in contamination of the Techa River; a nuclide of major interest was 90Sr, which downstream residents consumed with water from the river and with milk contaminated by cows' consumption of river water and contaminated pasture. Over the years, several reconstructions of dose have been performed for the approximately 30,000 persons who make up the Extended Techa River Cohort. The purpose of the study described here was to derive a revised reference-90Sr-intake function for the members of this cohort. The revision was necessary because recently discovered data have provided a more accurate description of the time course of the releases, and more is now known about the importance of the pasture grass-cow-milk pathway for the members of this cohort. The fundamental basis for the derivation of the reference-90Sr-intake function remains the same: thousands of measurements of 90Sr content in bone with a special whole-body counter, thousands of measurements of beta-activity of front teeth with a special tooth-beta counter, and a variety of other measurements, including post mortem measurements of 90Sr in bone, measurements of 90Sr in cow's milk, and measurements of beta activity in human excreta. Results of the new analyses are that the major intake started in September 1950 and peaked somewhat later than originally postulated. However, the total intake for adult residents has not changed significantly. For children of some birth years, the intake and incorporation of Sr in bone tissue have changed substantially.
Collapse
Affiliation(s)
- E I Tolstykh
- Urals Research Center for Radiation Medicine, Vorovskogo 68 a, 454076 Chelyabinsk, Russian Federation.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Eidemüller M, Ostroumova E, Krestinina L, Epiphanova S, Akleyev A, Jacob P. Comparison of mortality and incidence solid cancer risk after radiation exposure in the Techa River Cohort. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:477-490. [PMID: 20461395 DOI: 10.1007/s00411-010-0289-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 04/17/2010] [Indexed: 05/29/2023]
Abstract
In the present paper, analysis of solid cancer mortality and incidence risk after radiation exposure in the Techa River Cohort in the Southern Urals region of Russia is described. Residents along the Techa River received protracted exposure to ionizing radiation in the 1950s due to the releases of radioactive materials from the Mayak Production Association. The current follow-up through December 2003 includes individuals exposed on the Techa riverside within the Chelyabinsk and Kurgan oblasts using mortality data, and within the Chelyabinsk oblast using incidence data. The analysis was performed by means of the biologically based two-stage clonal expansion (TSCE) model and conventional excess relative risk models. For the mortality and incidence cohorts, central estimates of the excess relative risk per dose of 0.85 Gy(-1) (95% CI 0.36; 1.38) and 0.91 Gy(-1) (95% CI 0.35; 1.52) were found, respectively. For both the mortality and incidence cohorts, the best description of the radiation risk was achieved with the same TSCE model including a lifelong radiation effect on the promotion rate of initiated cells. An increase in the excess risk with attained age was observed, whereas no significant change of risk with age at exposure was seen. Direct comparison of the mortality and incidence cohorts showed that the excess relative risk estimates agreed very well in both cohorts, as did the excess absolute risk and the hazard after correction for the different background rates.
Collapse
Affiliation(s)
- M Eidemüller
- Helmholtz Zentrum München, Institute of Radiation Protection, 85764 Neuherberg, Germany.
| | | | | | | | | | | |
Collapse
|
23
|
Fattibene P, Callens F. EPR dosimetry with tooth enamel: A review. Appl Radiat Isot 2010; 68:2033-116. [PMID: 20599388 DOI: 10.1016/j.apradiso.2010.05.016] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Accepted: 05/09/2010] [Indexed: 11/30/2022]
Abstract
When tooth enamel is exposed to ionizing radiation, radicals are formed, which can be detected using electron paramagnetic resonance (EPR) techniques. EPR dosimetry using tooth enamel is based on the (presumed) correlation between the intensity or amplitude of some of the radiation-induced signals with the dose absorbed in the enamel. In the present paper a critical review is given of this widely applied dosimetric method. The first part of the paper is fairly fundamental and deals with the main properties of tooth enamel and some of its model systems (e.g., synthetic apatites). Considerable attention is also paid to the numerous radiation-induced and native EPR signals and the radicals responsible for them. The relevant methods for EPR detection, identification and spectrum analyzing are reviewed from a general point of view. Finally, the needs for solid-state modelling and studies of the linearity of the dose response are investigated. The second part is devoted to the practical implementation of EPR dosimetry using enamel. It concerns specific problems of preparation of samples, their irradiation and spectrum acquisition. It also describes how the dosimetric signal intensity and dose can be retrieved from the EPR spectra. Special attention is paid to the energy dependence of the EPR response and to sources of uncertainties. Results of and problems encountered in international intercomparisons and epidemiological studies are also dealt with. In the final section the future of EPR dosimetry with tooth enamel is analyzed.
Collapse
Affiliation(s)
- Paola Fattibene
- Istituto Superiore di Sanità, Department of Technology and Health, Viale Regina Elena, Rome, Italy.
| | | |
Collapse
|
24
|
Akleyev AV, Dimov GP, Varfolomeyeva TA. Late effects in hemopoiesis and bone tissue among people with incorporated osteotropic isotope 90Sr. HEALTH PHYSICS 2010; 98:819-824. [PMID: 20445388 DOI: 10.1097/hp.0b013e3181b285a0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
UNLABELLED The present paper focuses on the analysis of data resulting from 50-y studies involving assessment of the hemopoiesis state in Techa riverside residents chronically exposed to radiation and evaluation of the bone tissue status for people with Sr incorporation at late time after the intakes. CONCLUSIONS 1. In the late period after the start of chronic radiation exposure (50 y later) only a few individuals with red bone marrow doses reaching about 1.8 Gy (mean dose of 0.66 Gy) had a marked peripheral blood leucopenia, and the incidence of neutropenia, lymphopenia and thrombocypenia in the exposed group did not exceed that noted in the control group. The results of our observations indicate the spontaneous recovery of the hemopoietic system of residents of the Techa riverside villages. Thus, the adaptation mechanisms of hemopoiesis to the long-term chronic exposure in the range of low to intermediate doses are sufficiently effective; 2. About half of the people with Sr incorporation and the control group have changes in bone tissue expressed by different stages of osteoporosis. Age is a determinative factor of bone tissue involution in women while some tendency of Sr influence on the intensity of osteoporosis is revealed in the male group.
Collapse
Affiliation(s)
- Alexander V Akleyev
- Urals Research Center for Radiation Medicine, 68-a Vorovsky St, 454076 Chelyabinsk, Russia
| | | | | |
Collapse
|
25
|
Krestinina L, Preston DL, Davis FG, Epifanova S, Ostroumova E, Ron E, Akleyev A. Leukemia incidence among people exposed to chronic radiation from the contaminated Techa River, 1953-2005. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2010; 49:195-201. [PMID: 20012750 PMCID: PMC6276792 DOI: 10.1007/s00411-009-0257-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 11/26/2009] [Indexed: 05/05/2023]
Abstract
Beginning in 1950, people living on the banks of the Techa River received chronic low-dose-rate internal and external radiation exposures as a result of releases from the Mayak nuclear weapons plutonium production facility in the Southern Urals region of the Russian Federation. The Techa River cohort includes about 30,000 people who resided in riverside villages sometime between 1950 and 1960. Cumulative red bone marrow doses range up to 2 Gy with a mean of 0.3 Gy and a median of 0.2 Gy. Between 1953 and 2005, 93 first primary cases of leukemia, including 23 cases of chronic lymphatic leukemia (CLL), were ascertained among the cohort members. A significant linear dose-response relationship was seen for leukemias other than CLL (P < 0.001), but not for CLL. The estimated excess relative risk per Gy is 4.9 (95% confidence interval (CI): 1.6; 14.3) for leukemias other than CLL and less than 0 (95% upper bound 1.4) for CLL.
Collapse
Affiliation(s)
- Lyudmila Krestinina
- Urals Research Center for Radiation Medicine, 68-a, Vorovsky St., 454076, Chelyabinsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
26
|
Wilson DA, Mohr LC, Frey GD, Lackland D, Hoel DG. Lung, liver and bone cancer mortality after plutonium exposure in beagle dogs and nuclear workers. HEALTH PHYSICS 2010; 98:42-52. [PMID: 19959950 DOI: 10.1097/hp.0b013e3181b97318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The Mayak Production Association (MPA) worker registry has shown evidence of plutonium-induced health effects. Workers were potentially exposed to plutonium nitrate [(239)Pu(NO(3))(4)] and plutonium dioxide ((239)PuO(2)). Studies of plutonium-induced health effects in animal models can complement human studies by providing more specific data than is possible in human observational studies. Lung, liver, and bone cancer mortality rate ratios in the MPA worker cohort were compared to those seen in beagle dogs, and models of the excess relative risk of lung, liver, and bone cancer mortality from the MPA worker cohort were applied to data from life-span studies of beagle dogs. The lung cancer mortality rate ratios in beagle dogs are similar to those seen in the MPA worker cohort. At cumulative doses less than 3 Gy, the liver cancer mortality rate ratios in the MPA worker cohort are statistically similar to those in beagle dogs. Bone cancer mortality only occurred in MPA workers with doses over 10 Gy. In dogs given (239)Pu, the adjusted excess relative risk of lung cancer mortality per Gy was 1.32 (95% CI 0.56-3.22). The liver cancer mortality adjusted excess relative risk per Gy was 55.3 (95% CI 23.0-133.1). The adjusted excess relative risk of bone cancer mortality per Gy(2) was 1,482 (95% CI 566.0-5686). Models of lung cancer mortality based on MPA worker data with additional covariates adequately described the beagle dog data, while the liver and bone cancer models were less successful.
Collapse
Affiliation(s)
- Dulaney A Wilson
- Medical University of South Carolina, Department of Biostatistics, Bioinformatics and Epidemiology, 135 Cannon Street, Charleston, SC 29425, USA.
| | | | | | | | | |
Collapse
|
27
|
Standring WJ, Dowdall M, Strand P. Overview of dose assessment developments and the health of riverside residents close to the "Mayak" PA facilities, Russia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2009; 6:174-99. [PMID: 19440276 PMCID: PMC2672329 DOI: 10.3390/ijerph6010174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 01/07/2008] [Indexed: 11/16/2022]
Abstract
The Norwegian Radiation Protection Authority (NRPA) has been involved in studies related to the Mayak PA and the consequences of activities undertaken at the site for a number of years. This paper strives to present an overview of past and present activities at the Mayak PA and subsequent developments in the quantification of health effects on local populations caused by discharges of radioactive waste into the Techa River. Assessments of doses to affected populations have relied on the development of dose reconstruction techniques for both external and internal doses. Contamination levels are typically inhomogeneous and decrease with increasing distance from the discharge point. Citations made in this paper give a comprehensive, though not exhaustive, basis for further reading about this topic.
Collapse
Affiliation(s)
- William J.F. Standring
- Norwegian Radiation Protection Authority, PO Box 55, N-1332 Østerås, Norway E-Mails:
(M. D.);
(P. S.)
| | - Mark Dowdall
- Norwegian Radiation Protection Authority, PO Box 55, N-1332 Østerås, Norway E-Mails:
(M. D.);
(P. S.)
| | - Per Strand
- Norwegian Radiation Protection Authority, PO Box 55, N-1332 Østerås, Norway E-Mails:
(M. D.);
(P. S.)
| |
Collapse
|
28
|
Breast cancer incidence following low-dose rate environmental exposure: Techa River Cohort, 1956-2004. Br J Cancer 2008; 99:1940-5. [PMID: 19002173 PMCID: PMC2600704 DOI: 10.1038/sj.bjc.6604775] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In the 1950s, the Mayak nuclear weapons facility in Russia discharged liquid radioactive wastes into the Techa River causing exposure of riverside residents to protracted low-to-moderate doses of radiation. Almost 10,000 women received estimated doses to the stomach of up to 0.47 Gray (Gy) (mean dose=0.04 Gy) from external gamma-exposure and (137)Cs incorporation. We have been following this population for cancer incidence and mortality and as in the general Russian population, we found a significant temporal trend of breast cancer incidence. A significant linear radiation dose-response relationship was observed (P=0.01) with an estimated excess relative risk per Gray (ERR/Gy) of 5.00 (95% confidence interval (CI), 0.80, 12.76). We estimated that approximately 12% of the 109 observed cases could be attributed to radiation.
Collapse
|
29
|
Degteva MO, Bougrov NG, Vorobiova MI, Jacob P, Yeter Göksu H. Evaluation of anthropogenic dose distribution amongst building walls at the Metlino area of the upper Techa River region. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2008; 47:469-479. [PMID: 18648838 DOI: 10.1007/s00411-008-0183-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 07/06/2008] [Indexed: 05/26/2023]
Abstract
This paper presents the results of an effort to evaluate anthropogenic doses in bricks from old buildings located on the banks of the Techa River. The river area was contaminated in 1949-1956 as a result of radioactive waste releases by the Mayak plutonium facility (Southern Urals, Russia). Absorbed doses were determined by luminescence measurements of quartz extracted from the near-surface layers of bricks sampled in 1991-1997 from three remained buildings (a mill, a granary and a church). These buildings are located in the former residence area of Metlino, which was the settlement located closest to the release site (residents of Metlino were relocated from the contaminated river in 1956). The measured anthropogenic dose in the three buildings was found to be comparable: minimum values were equal to 0.5-0.9 Gy and maximum values amounted to about 3-4 Gy. Unfortunately, the geometry of gamma-exposure of the brick samples changed significantly in 1956 as a result of creation of an artificial reservoir downstream of the Metlinsky pond. Since luminescence data provide absorbed dose in the investigated samples accumulated over the whole period of irradiation, for interpretation of the data obtained it is important to know the exposure geometry for the period of maximal exposure, which was in the early 1950s. In 2005, archival data describing configuration of contaminated water streams and shorelines (which were the main sources of gamma-irradiation) were published. Comparison of these data with the results of the luminescence study presented here showed that the bricks with the highest thermoluminescence (TL)-based doses faced contaminated shores and were located close to them. In contrast, the bricks with lower values of measured dose were opposite to contaminated shores and/or being shielded. This demonstrates that the luminescence method allowed reconstruction of the anthropogenic dose distribution in the former settlement center. The obtained results suggest new options for further luminescence studies in Metlino aimed at the reconstruction of the external exposures of the affected population.
Collapse
Affiliation(s)
- Marina O Degteva
- Urals Research Center for Radiation Medicine, 68-a Vorovsky Street, 454076 Chelyabinsk, Russia.
| | | | | | | | | |
Collapse
|
30
|
Tolstykh EI, Shagina NB, Peremyslova LM, Degteva MO, Phipps AW, Harrison JD, Fell TP. Reconstruction of (90)Sr intake for breast-fed infants in the Techa riverside settlements. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2008; 47:349-357. [PMID: 18443812 DOI: 10.1007/s00411-008-0168-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 04/12/2008] [Indexed: 05/26/2023]
Abstract
The Techa River (Southern Urals, Russia) was contaminated as a result of radioactive releases by the Mayak plutonium production facility during 1949-1956. The persons born after the onset of the contamination have been identified as the "Techa River Offspring Cohort" (TROC). The TROC has the potential to provide direct data on health effects in progeny that resulted from exposure of a general parent population to chronic radiation. The purpose of the present investigation is the estimation of (90)Sr intake from breast milk and river water in the period from birth to 6 months of life, necessary for an infant dose calculation. The investigation is based on all available data concerning radioactive contamination due to global fallouts and Mayak releases in the Southern Urals where extensive radiometric and radiochemical investigations of human tissues and environmental samples were conducted during the second half of the twentieth century. The strontium transfer factor from mother's daily diet to breast milk was estimated as 0.05 (0.01-0.13) d L(-1). Based on this transfer factor and data on (90)Sr water contamination, the average total (90)Sr intake for an infant born in the middle Techa River region was found to be equal to 60-80 kBq in 1950-1951. For the same period, calculations of (90)Sr intake using ICRP models gave values of 70-100 kBq. From 1952 onwards, the differences in intakes calculated using the two approaches increased, reaching a factor of 2-3 in 1953. The Techa River data provide the basis for improving and adapting the ICRP models for application to Techa River-specific population.
Collapse
Affiliation(s)
- Evgenia I Tolstykh
- Urals Research Center for Radiation Medicine, 68-a Vorovsky Street, Chelyabinsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
31
|
Eidemüller M, Ostroumova E, Krestinina L, Akleyev A, Jacob P. Analysis of solid cancer mortality in the techa river cohort using the two-step clonal expansion model. Radiat Res 2008; 169:138-48. [PMID: 18220471 DOI: 10.1667/rr1157.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/02/2007] [Indexed: 11/03/2022]
Abstract
In this study the solid cancer mortality data in the Techa River Cohort in the Southern Urals region of Russia was analyzed. The cohort received protracted exposure in the 1950s due to the releases of radioactive materials from the Mayak plutonium complex. The Extended Techa River Cohort includes 29,849 people who resided along the Techa River between 1950 and 1960 and were followed from January 1, 1950 through December 31, 1999. The analysis was done within the framework of the biologically based two-stage clonal expansion (TSCE) model. It was found that about 2.6% of the 1854 solid cancer deaths (excluding 18 bone cancer cases) could be related to radiation exposure. At age 63, which is the mean age for solid cancer deaths, the excess relative risk (ERR) and excess absolute risk (EAR) were found to be 0.76 Gy(-1) (95% CI 0.23; 1.29) and 33.0 (10(4) PY Gy)(-1) (95% CI 9.8; 52.6), respectively. These risk estimates are consistent with earlier excess relative risk analyses for the same cohort. The change in the ERR with age was investigated in detail, and an increase in risk with attained age was observed. Furthermore, the data were tested for possible signs of genomic instability, and it was found that the data could be described equally well by a model incorporating effects of genomic instability. Results from the TSCE models indicated that radiation received at older ages might have stronger biological effects than exposure at younger ages.
Collapse
Affiliation(s)
- M Eidemüller
- GSF-National Research Center for Environment and Health, Institute of Radiation Protection, 85764 Neuherberg, Germany.
| | | | | | | | | |
Collapse
|
32
|
Krestinina LY, Davis F, Ostroumova E, Epifanova S, Degteva M, Preston D, Akleyev A. Solid cancer incidence and low-dose-rate radiation exposures in the Techa River cohort: 1956 2002. Int J Epidemiol 2007; 36:1038-46. [PMID: 17768163 DOI: 10.1093/ije/dym121] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND This is the first analysis of solid cancer incidence in the Techa River cohort, a general population of men and women of all ages who received chronic low-dose rate exposures from environmental radiation releases associated with the Soviet nuclear weapons programme. This cohort provides one of the few opportunities to evaluate long-term human health risks from low-dose radiation exposures. METHODS Cancer incidence rates in this cohort were analysed using excess relative risk (ERR) models. The analyses make use of individualized dose estimates that take into account residence history, age and other factors. Cases are identified on the basis of continuing, active follow-up of mortality and cancer incidence. RESULTS Based on 1836 solid cancer cases with 446 588 person years accrued over 47 years of follow-up, solid cancer incidence rates were found to increase with dose and about 3% of the cases were attributable to radiation exposure. The ERR was 1.0/Gy (P = 0.004 95% CI (0.3; 1.9) in a linear dose-response model. There was no significant non-linearity in the dose response and no indication of effect modification by gender, ethnicity, attained age or age at first exposure. CONCLUSIONS The Techa River cohort provides strong evidence that low-dose, low-dose rate exposures lead to significant increases in solid cancer risks that appear to be linear in dose. The results do not suggest that risks associated with low-dose rate exposures are less than those seen following acute exposures such as were received by atomic bomb survivors.
Collapse
Affiliation(s)
- L Yu Krestinina
- Epidemiology Laboratory, Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | | | | | | | | | | | | |
Collapse
|
33
|
Dubrova YE, Ploshchanskaya OG, Kozionova OS, Akleyev AV. Minisatellite germline mutation rate in the Techa River population. Mutat Res 2006; 602:74-82. [PMID: 16959276 DOI: 10.1016/j.mrfmmm.2006.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Accepted: 08/11/2006] [Indexed: 05/11/2023]
Abstract
Germline mutation at eight minisatellite loci has been studied among the irradiated families from the Techa River population and non-exposed families from the rural area of the Chelyabinsk and Kurgan Oblasts. The groups were matched by ethnicity, parental age, occupation and smoking habit. A statistically significant 1.7-fold increase in mutation rate was found in the germline of irradiated fathers, whereas maternal germline mutation rate in the exposed families was not elevated. Most of the minisatellite loci showed an elevated paternal mutation rate in the exposed group, indicating a generalised increase in minisatellite germline mutation rate in the Techa River population. These data suggest that the elevated minisatellite mutation rate can be attributed to radioactive exposure. The spectra of paternal mutation seen in the unexposed and exposed families were indistinguishable.
Collapse
Affiliation(s)
- Yuri E Dubrova
- Department of Genetics, University of Leicester, University Road, Leicester LE1 7RH, United Kingdom.
| | | | | | | |
Collapse
|
34
|
Degteva MO, Vorobiova MI, Tolstykh EI, Shagina NB, Shishkina EA, Anspaugh LR, Napier BA, Bougrov NG, Shved VA, Tokareva EE. Development of an Improved Dose Reconstruction System for the Techa River Population Affected by the Operation of the Mayak Production Association. Radiat Res 2006; 166:255-70. [PMID: 16808612 DOI: 10.1667/rr3438.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Techa River Dosimetry System (TRDS) has been developed to provide estimates of dose received by approximately 30,000 members of the Extended Techa River Cohort (ETRC). Members of the ETRC were exposed beginning in 1949 to significant levels of external and internal (mainly from (90)Sr) dose but at low to moderate dose rates. Members of this cohort are being studied in an effort to test the hypothesis that exposure at low to moderate dose rates has the same ability to produce stochastic health effects as exposure at high dose rates. The current version of the TRDS is known as TRDS-2000 and is the subject of this paper. The estimated doses from (90)Sr are supported strongly by approximately 30,000 measurements made with a tooth beta-particle counter, measurements of bones collected at autopsy, and approximately 38,000 measurements made with a special whole-body counter that detects the bremsstrahlung from (90)Y. The median doses to the red bone marrow and the bone surface are 0.21 and 0.37 Gy, respectively. The maximum doses to the red bone marrow and bone surface are 2.0 and 5.2 Gy, respectively. Distributions of dose to other organs are provided and are lower than the values given above. Directions for future work are discussed.
Collapse
Affiliation(s)
- M O Degteva
- Urals Research Center for Radiation Medicine, Medgorodok, 454076 Chelyabinsk, Russian Federation
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tikunov D, Ivannikov A, Shishkina E, Petin D, Borysheva N, Orlenko S, Nalapko M, Shved V, Skvortsov V, Stepanenko V. Complex experimental research on internal tooth dosimetry for the Techa River region: A model for 90Sr accumulation in human teeth formed by time of intakes. RADIAT MEAS 2006. [DOI: 10.1016/j.radmeas.2005.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Balonov M, Alexakhin R, Bouville A, Liljinzin JO. Report from the techa river dosimetry review workshop held on 8-10 December 2003 at The State Research Centre Institute of Biophysics, Moscow, Russia. HEALTH PHYSICS 2006; 90:97-113. [PMID: 16404168 DOI: 10.1097/01.hp.0000175628.64637.8c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Large releases of fission products into the Techa River, in the Southern Urals, occurred in 1950 and 1951, during the early years of operation of the Mayak Production Association (Mayak PA), which produced plutonium for nuclear weapons. Increases of leukemia and of solid cancers with radiation dose have been noted in the population of about 30,000 people who lived in the settlements downstream of the site of the radioactive releases; that population has been studied for several decades by Russian scientists, notably in the framework of cooperation with American and European scientists. The radiation doses are currently estimated by means of the Techa River Dosimetry System-2000 (TRDS-2000). Recently, a scientist from Mayak PA has suggested in several publications that the doses calculated using TRDS-2000 might be underestimated substantially. A special international Workshop, held in Moscow on 8-10 December 2003, aimed to resolve some of the pressing issues related to the determination of the external and internal doses received by the Techa River population and to give recommendations on the further development of methodologies used for dose reconstruction. The authors of this article were selected by the organizers of the Workshop to draw the conclusions of the meeting. They express the view that, while the dose reconstruction system TRDS-2000 is basically sound, additional work is needed and the results of any epidemiological studies making use of TRDS-2000 should be qualified as preliminary, pending resolution of several issues. The most important of these issues is the re-evaluation of the activities released, using additional information that could be obtained with the help of Mayak experts. Other specific suggestions aiming to improve the dose reconstruction methodology for the Techa River cohort, i.e., continued measurements of accumulated dose in environmental samples and human tissues, validation of external dose estimates with thermoluminescence measurements of bricks and with electron paramagnetic resonance measurements of teeth, estimation of individual doses instead of group doses, detailed account of the contributions to dose of medical examinations and of other releases from the Mayak complex, and careful assessment of the uncertainties, were made by the meeting participants.
Collapse
Affiliation(s)
- Mikhail Balonov
- International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400, Vienna, Austria
| | | | | | | |
Collapse
|
37
|
Krestinina LY, Preston DL, Ostroumova EV, Degteva MO, Ron E, Vyushkova OV, Startsev NV, Kossenko MM, Akleyev AV. Protracted radiation exposure and cancer mortality in the Techa River Cohort. Radiat Res 2005; 164:602-11. [PMID: 16238437 DOI: 10.1667/rr3452.1] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In the 1950s many thousands of people living in rural villages on the Techa River received protracted internal and external exposures to ionizing radiation from the release of radioactive material from the Mayak plutonium production complex. The Extended Techa River Cohort includes 29,873 people born before 1950 who lived near the river sometime between 1950 and 1960. Vital status and cause of death are known for most cohort members. Individualized dose estimates have been computed using the Techa River Dosimetry System 2000. The analyses provide strong evidence of long-term carcinogenic effects of protracted low-dose-rate exposures; however, the risk estimates must be interpreted with caution because of uncertainties in the dose estimates. We provide preliminary radiation risk estimates for cancer mortality based on 1,842 solid cancer deaths (excluding bone cancer) and 61 deaths from leukemia. The excess relative risk per gray for solid cancer is 0.92 (95% CI 0.2; 1.7), while those for leukemia, including and excluding chronic lymphocytic leukemia, are 4.2 (CI 95% 1.2; 13) and 6.5 (CI 95% 1.8; 24), respectively. It is estimated that about 2.5% of the solid cancer deaths and 63% of the leukemia deaths are associated with the radiation exposure.
Collapse
Affiliation(s)
- L Yu Krestinina
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kossenko MM, Thomas TL, Akleyev AV, Krestinina LY, Startsev NV, Vyushkova OV, Zhidkova CM, Hoffman DA, Preston DL, Davis F, Ron E. The Techa River Cohort: Study Design and Follow-up Methods. Radiat Res 2005; 164:591-601. [PMID: 16238436 DOI: 10.1667/rr3451.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Residents living on the banks of the Techa River in the Southern Urals region of Russia were exposed to radioactive contamination from the Mayak plutonium production and separation facility that discharged liquid radioactive waste into this river. This paper describes the methods used to establish and follow the Extended Techa River Cohort (ETRC), which includes almost 30,000 people living along the Techa River who were exposed to a complex mixture of radionuclides, largely 90Sr and 137Cs. The system of regular follow-up allows ascertainment of vital status, cause of death and cancer incidence. With over 50 years of follow-up and over 50% deceased, the ETRC now provides a valuable opportunity to study a wide range of health effects, both early and late, associated with protracted internal and external radiation exposures. The wide range of doses allows analysis of the nature of the dose-response relationship based on internal comparisons. Other features of the cohort are the high proportion (40%) exposed under age 20, and the inclusion of both sexes. The limitations of the study include loss to follow-up due to difficulties in tracing some cohort members and migration and incomplete ascertainment of cause of death.
Collapse
Affiliation(s)
- M M Kossenko
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Anspaugh LR, Shishkina EA, Shved VA, Degteva MO, Tolstykh EI, Napier BA. Comment on paper by Hayes, Haskell, and Kenner. HEALTH PHYSICS 2003; 85:622-625. [PMID: 14571997 DOI: 10.1097/00004032-200311000-00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
40
|
Tolstykh EI, Shishkina EA, Degteva MO, Ivanov DV, Shved VA, Bayankin SN, Anspaugh LR, Napier BA, Wieser A, Jacob P. Age dependencies of 90Sr incorporation in dental tissues: comparative analysis and interpretation of different kinds of measurements obtained for residents on the Techa River. HEALTH PHYSICS 2003; 85:409-419. [PMID: 13678281 DOI: 10.1097/00004032-200310000-00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Human teeth have been considered as dosimeters for decades. Methods include the in vivo measurement of 90Sr/90Y in teeth with a tooth-beta counter, the radiochemical determination of 90Sr in whole teeth, and the measurement of dose in teeth by use of electron paramagnetic resonance. Presented in this paper are results of 2,514 tooth-beta counter measurements, 334 radiochemical measurements, and 218 electron paramagnetic resonance measurements for residents living in settlements along the Techa River. All three kinds of measurements indicate a sharp peak that corresponds to the uptake of 90Sr by tooth tissue. The results can be interpreted in terms of an intake function for 90Sr only if the period of calcification of each individual tooth is considered--such detail on a tooth-by-tooth basis is presented in this paper. The conclusion is reached that the tooth-beta counter data are the most reliable in terms of reconstruction of 90Sr intake; this is due in part to the fact that the tooth-beta counter measures four teeth (all at position 1) with essentially the same time periods of mineralization and because there are a large number of tooth-beta counter measurements. The main utility of electron paramagnetic resonance measurements is considered to be the validation of estimates of external dose; but for this purpose teeth with 90Sr taken up into enamel must be avoided.
Collapse
Affiliation(s)
- Evgenia I Tolstykh
- Urals Research Center for Radiation Medicine, 454076 Chelyabinsk, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kozheurov VP, Zalyapin VI, Shagina NB, Tokarevaa EE, Degteva MO, Tolstykh EI, Anspaugh LR, Napier BA. Evaluation of uncertainties in 90Sr-body-burdens obtained by whole-body count: application of Bayes' rule to derive detection limits by analysis of a posteriori data. Appl Radiat Isot 2002; 57:525-35. [PMID: 12361332 DOI: 10.1016/s0969-8043(02)00129-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A whole body counter (WBC) designed to measure bremsstrahlung from 90Y, the short-lived daughter of 90Sr, has been used since 1974 to measure 90Sr-body burdens in residents along the Techa River, which was contaminated by releases from the Mayak Production Association. Bayes' rule has been applied to the a posteriori WBC data in order to derive the uncertainties associated with the data: The lower limit of reliable detection is 2.0 kBq and the uncertainty of routine measurements is 1.6 kBq.
Collapse
Affiliation(s)
- V P Kozheurov
- Urals Research Center for Radiation Medicine, Chelyabinsk, Russia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kossenko MM, Hoffman DA, Thomas TL. Stochastic effects of environmental radiation exposure in populations living near the Mayak Industrial Association: preliminary report on study of cancer morbidity. HEALTH PHYSICS 2000; 79:55-62. [PMID: 10855778 DOI: 10.1097/00004032-200007000-00010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Mayak Industrial Association, located in the South Ural Mountains, began operation in 1948 and was the first Russian site for the production and separation of plutonium. During the early days of operation, technological failures resulted in the release of large amounts of radioactive waste into the Techa River. Residents who lived in villages on the banks of the Techa and Iset Rivers were exposed to varying levels of radioactivity. The objective of this study is to assess stochastic (carcinogenic) effects in populations exposed to offsite releases of radioactive materials from the Mayak nuclear facility in Russia. Subjects of the present study are those individuals who lived during the period January 1950 through December 1960 in any of the exposed villages along the Techa River in Chelyabinsk Oblast. Death certificates and cancer incidence data have been routinely collected in the past from a five-rayon catchment area of Chelyabinsk Oblast. The registry of exposed residents along the Techa River assembled and maintained by the Urals Research Center for Radiation Medicine for the past 40 y is the basis for identifying study subjects for this project. Specific study objectives are to evaluate the incidence of cancer among current and former residents of Chelyabinsk Oblast who are in the exposed Techa River cohort; integrate results from the dose-reconstruction study to estimate doses for risk assessment; and develop a structure for maintaining continued follow-up of the cohort for cancer incidence. In the earlier part of our collaborative effort, the focus has been to enhance the cancer morbidity registry by updating it with cancer cases diagnosed through 1997, to conduct a series of validation procedures to ensure completeness and accuracy of the registry, and to reduce the numbers of subjects lost to follow-up. A feasibility study to determine cancer morbidity in migrants from the catchment area has been proposed. Our preliminary analyses of cancer morbidity underscore the importance of examining both cancer mortality and cancer morbidity in conducting a comprehensive analysis of the occurrence of cancer in this important cohort.
Collapse
Affiliation(s)
- M M Kossenko
- Urals Research Center for Radiation Medicine, Medgorodok, Chelyabinsk, Russia
| | | | | |
Collapse
|