1
|
Wang J, Levi NJ, Diaz-Solares M, Mim C, Dahl G, Barro-Soria R. A metastasis-associated pannexin-1 mutant (Panx1 1-89) forms a minimalist ATP release channel. FEBS J 2025. [PMID: 40087867 DOI: 10.1111/febs.70060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 03/17/2025]
Abstract
A truncated form of the ATP release channel pannexin 1 (Panx1), Panx11-89, is enriched in metastatic breast cancer cells and has been proposed to mediate metastatic cell survival by increasing ATP release through mechanosensitive Panx1 channels. However, whether Panx11-89 on its own [without the presence of wild-type Panx1 (wtPanx1)] mediates ATP release has not been tested. Here, we show that Panx11-89 by itself can form a constitutively active membrane channel, capable of releasing ATP even in the absence of wtPanx1. Our biophysical characterization reveals that most basic structure-function features of the channel pore are conserved in the truncated Panx11-89 polypeptide. Thus, augmenting extracellular potassium ion concentrations enhances Panx11-89-mediated conductance. Moreover, despite the severe truncation, Panx11-89 retains sensitivity to most wtPanx1 channel inhibitors. Therefore, Panx1 blockers may be of therapeutic value to combat metastatic cell survival. Our study both provides a mechanism for ATP release from cancer cells and suggests that Panx11-89 might aid in the structure-function analysis of Panx1 channels.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL, USA
| | - Noah J Levi
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| | | | - Carsten Mim
- Department of Biomedical Engineering and Health Systems, Royal Institute of Technology, Huddinge, Sweden
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL, USA
| | - Rene Barro-Soria
- Department of Medicine, University of Miami School of Medicine, Miami, FL, USA
| |
Collapse
|
2
|
Wang J, Mim C, Dahll G, Barro-Soria R. A metastasis-associated Pannexin1 mutant (Panx1 1-89 ) forms a minimalist ATP release channel. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584732. [PMID: 38559162 PMCID: PMC10980048 DOI: 10.1101/2024.03.12.584732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A truncated form of the ATP release channel pannexin 1 (Panx1), Panx1 1-89 , is enriched in metastatic breast cancer cells and has been proposed to mediate metastatic cell survival by increasing ATP release through mechanosensitive Panx1 channels. However, whether Panx1 1-89 on its own (without the presence of wtPanx1) mediates ATP release has not been tested. Here, we show that Panx1 1-89 by itself can form a constitutively active membrane channel, capable of releasing ATP even in the absence of wild type Panx1. Our biophysical characterization reveals that most basic structure-function features of the channel pore are conserved in the truncated Panx1 1-89 peptide. Thus, augmenting extracellular potassium ion concentrations enhances Panx1 1-89 -mediated conductance. Moreover, despite the severe truncation, Panx1 1-89 retains the sensitivity to most of wtPanx1 channel inhibitors and can thus be targeted. Therefore, Panx1 blockers have the potential to be of therapeutic value to combat metastatic cell survival. Our study not only elucidates a mechanism for ATP release from cancer cells, but it also supports that the Panx1 1-89 mutant should facilitate structure-function analysis of Panx1 channels.
Collapse
|
3
|
Mim C, Perkins G, Dahl G. Structure versus function: Are new conformations of pannexin 1 yet to be resolved? J Gen Physiol 2021; 153:e202012754. [PMID: 33835130 PMCID: PMC8042604 DOI: 10.1085/jgp.202012754] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pannexin 1 (Panx1) plays a decisive role in multiple physiological and pathological settings, including oxygen delivery to tissues, mucociliary clearance in airways, sepsis, neuropathic pain, and epilepsy. It is widely accepted that Panx1 exerts its role in the context of purinergic signaling by providing a transmembrane pathway for ATP. However, under certain conditions, Panx1 can also act as a highly selective membrane channel for chloride ions without ATP permeability. A recent flurry of publications has provided structural information about the Panx1 channel. However, while these structures are consistent with a chloride selective channel, none show a conformation with strong support for the ATP release function of Panx1. In this Viewpoint, we critically assess the existing evidence for the function and structure of the Panx1 channel and conclude that the structure corresponding to the ATP permeation pathway is yet to be determined. We also list a set of additional topics needing attention and propose ways to attain the large-pore, ATP-permeable conformation of the Panx1 channel.
Collapse
Affiliation(s)
- Carsten Mim
- Department of Biomedical Engineering and Health Systems Royal Institute of Technology, Huddinge, Sweden
| | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego School of Medicine, La Jolla, CA
| | - Gerhard Dahl
- Department of Physiology, University of Miami School of Medicine, Miami, FL
| |
Collapse
|
4
|
Dahl G. The Pannexin1 membrane channel: distinct conformations and functions. FEBS Lett 2018; 592:3201-3209. [PMID: 29802622 DOI: 10.1002/1873-3468.13115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 12/15/2022]
Abstract
The Pannexin1 (Panx1) membrane channel responds to different stimuli with distinct channel conformations. Most stimuli induce a large cation- and ATP-permeable conformation, hence Panx1 is involved in many physiological processes entailing purinergic signaling. For example, oxygen delivery in the peripheral circulatory system is regulated by ATP released from red blood cells and endothelial cells through Panx1 channels. The same membrane channel, however, when stimulated by positive membrane potential or by cleavage with caspase 3, is highly selective for the passage of chloride ions, excluding cations and ATP. Although biophysical data do not allow a distinction between the chloride-selective channels induced by voltage or by caspase cleavage, there must be other subtle differences in the structure, because overexpression of wtPanx1 is well tolerated by cells, while expression of the truncation mutant Panx1Δ378 results in slow cell death. Thus, in addition to the well-characterized two open conformations, there might be a third, more subtle conformational change involved in cell death.
Collapse
Affiliation(s)
- Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine, FL, USA
| |
Collapse
|
5
|
Martínez-Valverde T, Sánchez-Guerrero A, Vidal-Jorge M, Torné R, Castro L, Gandara D, Munar F, Poca MA, Sahuquillo J. Characterization of the Ionic Profile of the Extracellular Space of the Injured and Ischemic Brain: A Microdialysis Study. J Neurotrauma 2017; 34:74-85. [DOI: 10.1089/neu.2015.4334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Affiliation(s)
- Tamara Martínez-Valverde
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Angela Sánchez-Guerrero
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Marian Vidal-Jorge
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Ramon Torné
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Lidia Castro
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Dario Gandara
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Francisca Munar
- Department of Anesthesiology, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Maria-Antonia Poca
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| | - Juan Sahuquillo
- Neurotraumatology and Neurosurgery Research Unit (UNINN), Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
- Department of Neurosurgery, Vall d'Hebron University Hospital, Universidad Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Wellbourne-Wood J, Rimmele TS, Chatton JY. Imaging extracellular potassium dynamics in brain tissue using a potassium-sensitive nanosensor. NEUROPHOTONICS 2017; 4:015002. [PMID: 28217712 PMCID: PMC5299859 DOI: 10.1117/1.nph.4.1.015002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 01/19/2017] [Indexed: 05/25/2023]
Abstract
Neuronal activity results in the release of [Formula: see text] into the extracellular space (ECS). Classically, measurements of extracellular [Formula: see text] ([Formula: see text]) are carried out using [Formula: see text]-sensitive microelectrodes, which provide a single point measurement with undefined spatial resolution. An imaging approach would enable the spatiotemporal mapping of [Formula: see text]. Here, we report on the design and characterization of a fluorescence imaging-based [Formula: see text]-sensitive nanosensor for the ECS based on dendrimer nanotechnology. Spectral characterization, sensitivity, and selectivity of the nanosensor were assessed by spectrofluorimetry, as well as in both wide-field and two-photon microscopy settings, demonstrating the nanosensor efficacy over the physiologically relevant ion concentration range. Spatial and temporal kinetics of the nanosensor responses were assessed using a localized iontophoretic [Formula: see text] application on a two-photon imaging setup. Using acute mouse brain slices, we demonstrate that the nanosensor is retained in the ECS for extended periods of time. In addition, we present a ratiometric version of the nanosensor, validate its sensitivity in brain tissue in response to elicited neuronal activity and correlate the responses to the extracellular field potential. Together, this study demonstrates the efficacy of the [Formula: see text]-sensitive nanosensor approach and validates the possibility of creating multimodal nanosensors.
Collapse
Affiliation(s)
- Joel Wellbourne-Wood
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Theresa S. Rimmele
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
| | - Jean-Yves Chatton
- University of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland
- University of Lausanne, Cellular Imaging Facility, Lausanne, Switzerland
| |
Collapse
|
7
|
|
8
|
Wang J, Ambrosi C, Qiu F, Jackson DG, Sosinsky G, Dahl G. The membrane protein Pannexin1 forms two open-channel conformations depending on the mode of activation. Sci Signal 2014; 7:ra69. [PMID: 25056878 DOI: 10.1126/scisignal.2005431] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pannexin1 (Panx1) participates in several signaling events that involve adenosine triphosphate (ATP) release, including the innate immune response, ciliary beat in airway epithelia, and oxygen supply in the vasculature. The view that Panx1 forms a large ATP release channel has been challenged by the association of a low-conductance, small anion-selective channel with the presence of Panx1. We showed that Panx1 membrane channels can function in two distinct modes with different conductances and permeabilities when heterologously expressed in Xenopus oocytes. When stimulated by potassium ions (K(+)), Panx1 formed a high-conductance channel of ~500 pS that was permeable to ATP. Various physiological stimuli can induce this ATP-permeable conformation of the channel in several cell types. In contrast, the channel had a low conductance (~50 pS) with no detectable ATP permeability when activated by voltage in the absence of K(+). The two channel states were associated with different reactivities of the terminal cysteine of Panx1 to thiol reagents, suggesting different conformations. Single-particle electron microscopic analysis revealed that K(+) stimulated the formation of channels with a larger pore diameter than those formed in the absence of K(+). These data suggest that different stimuli lead to distinct channel structures with distinct biophysical properties.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Cinzia Ambrosi
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093-06083, USA
| | - Feng Qiu
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33136, USA
| | - David G Jackson
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Gina Sosinsky
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, University of California, San Diego, La Jolla, CA 92093-06083, USA. Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093-06083, USA
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
9
|
Jackson DG, Wang J, Keane RW, Scemes E, Dahl G. ATP and potassium ions: a deadly combination for astrocytes. Sci Rep 2014; 4:4576. [PMID: 24694658 PMCID: PMC3974143 DOI: 10.1038/srep04576] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/18/2014] [Indexed: 11/09/2022] Open
Abstract
The ATP release channel Pannexin1 (Panx1) is self-regulated, i.e. the permeant ATP inhibits the channel from the extracellular space. The affinity of the ATP binding site is lower than that of the purinergic P2X7 receptor allowing a transient activation of Panx1 by ATP through P2X7R. Here we show that the inhibition of Panx1 by ATP is abrogated by increased extracellular potassium ion concentration ([K(+)]o) in a dose-dependent manner. Since increased [K(+)]o is also a stimulus for Panx1 channels, it can be expected that a combination of ATP and increased [K(+)]o would be deadly for cells. Indeed, astrocytes did not survive exposure to these combined stimuli. The death mechanism, although involving P2X7R, does not appear to strictly follow a pyroptotic pathway. Instead, caspase-3 was activated, a process inhibited by Panx1 inhibitors. These data suggest that Panx1 plays an early role in the cell death signaling pathway involving ATP and K(+) ions. Additionally, Panx1 may play a second role once cells are committed to apoptosis, since Panx1 is also a substrate of caspase-3.
Collapse
Affiliation(s)
- David G Jackson
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136
| | - Junjie Wang
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136
| | - Robert W Keane
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136
| | - Eliana Scemes
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, 10461
| | - Gerhard Dahl
- Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, Florida 33136
| |
Collapse
|
10
|
Innexin and pannexin channels and their signaling. FEBS Lett 2014; 588:1396-402. [PMID: 24632288 DOI: 10.1016/j.febslet.2014.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 03/06/2014] [Indexed: 01/24/2023]
Abstract
Innexins are bifunctional membrane proteins in invertebrates, forming gap junctions as well as non-junctional membrane channels (innexons). Their vertebrate analogues, the pannexins, have not only lost the ability to form gap junctions but are also prevented from it by glycosylation. Pannexins appear to form only non-junctional membrane channels (pannexons). The membrane channels formed by pannexins and innexins are similar in their biophysical and pharmacological properties. Innexons and pannexons are permeable to ATP, are present in glial cells, and are involved in activation of microglia by calcium waves in glia. Directional movement and accumulation of microglia following nerve injury, which has been studied in the leech which has unusually large glial cells, involves at least 3 signals: ATP is the "go" signal, NO is the "where" signal and arachidonic acid is a "stop" signal.
Collapse
|
11
|
Yushmanov VE, Kharlamov A, Ibrahim TS, Zhao T, Boada FE, Jones SC. K⁺ dynamics in ischemic rat brain in vivo by ⁸⁷Rb MRI at 7 T. NMR IN BIOMEDICINE 2011; 24:778-783. [PMID: 21834001 PMCID: PMC3212415 DOI: 10.1002/nbm.1652] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 11/03/2010] [Accepted: 11/05/2010] [Indexed: 05/31/2023]
Abstract
The aims of the present study were as follows: (i) to perform the first (87)Rb MRI in live rats with focal ischemic stroke; and (ii) to test the hypothesis that K(+) egress from the brain in this model is quantifiable in individual animals by high-field (7-T) K/Rb substitution MRI. Rats preloaded with dietary Rb(+) (resulting in Rb/(K + Rb) replacement ratios of 0.1-0.2 in the brain) were subjected to permanent occlusion of the middle cerebral artery, and (87)Rb MRI was implemented with 13-min temporal resolution using a dedicated RF coil and a spiral ultrashort-TE sequence (TR/TE = 3/0.07 ms). The ischemic core was localized by apparent diffusion coefficient mapping, by microtubule-associated protein-2 immunohistochemistry and by changes in surface reflectivity. [K], [Na] and [Rb] were determined independently in the micropunched samples by post-mortem flame photometry. Both techniques were generally in agreement in the nonischemic cortex; however, the MRI-assessed [K(+) + Rb(+)] drop in ischemic brain was less pronounced (average efflux rate of 4.8 ± 0.2 nEq/mm(3) /h versus 10 ± 1 nEq/mm(3)/h by flame photometry; p < 0.0001). The use of higher field gradients for better spatial resolution, and hence more accurate quantification, is suggested.
Collapse
Affiliation(s)
- Victor E Yushmanov
- Department of Anesthesiology, Allegheny-Singer Research Institute, Pittsburgh, PA 15212-4772, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Park YK, Kim SJ. Impaired glial buffering hampers antidromic conduction of CA1 neurons during hypoxia. Brain Res 2009; 1280:90-7. [DOI: 10.1016/j.brainres.2009.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 04/29/2009] [Accepted: 05/02/2009] [Indexed: 11/29/2022]
|
13
|
Abstract
Using an in vitro model that simulates the microenvironment in the ischemic infarct rim, we have examined the temporal profile and possible mechanisms of cell death in the neuropil (an astrocyte-rich area or ARA) of organotypic hippocampal slice cultures. Two-photon confocal microscopy, propidium iodide, and GFAP-GFP transgenic mice were used to confirm cell death in astrocytes. An 'ischemic solution' (IS) induced major cell death throughout the hippocampus over 24 h, with the earliest injury starting in ARA. Our studies using IS or ion replacements in IS revealed that cell death in ARA was modest when K(+) was increased or pH lowered. High K(+) is most effective in reducing cell death when HCO(3)(-) is normal or high. When Cl(-) or HCO(3)(-) was reduced, cell injury was worsened. 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) protected cells from IS-induced death in a dose-dependent manner (1-4000 micromol/L). We conclude that (i) various areas of the hippocampal formation respond differently to ionic replacements; (ii) K(+) interacts with other ions to protect cells in ARA; and (iii) DIDS has a substantial protective effect in ARA by blocking DIDS-sensitive membrane exchangers or by interfering with intracellular signaling pathways.
Collapse
Affiliation(s)
- Hang Yao
- Department of Pediatrics (Section of Respiratory Medicine), University of California, San Diego, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
14
|
Shin HK, Dunn AK, Jones PB, Boas DA, Moskowitz MA, Ayata C. Vasoconstrictive neurovascular coupling during focal ischemic depolarizations. J Cereb Blood Flow Metab 2006; 26:1018-30. [PMID: 16340958 DOI: 10.1038/sj.jcbfm.9600252] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ischemic depolarizing events, such as repetitive spontaneous periinfarct spreading depolarizations (PIDs), expand the infarct size after experimental middle cerebral artery (MCA) occlusion. This worsening may result from increased metabolic demand, exacerbating the mismatch between cerebral blood flow (CBF) and metabolism. Here, we present data showing that anoxic depolarization (AD) and PIDs caused vasoconstriction and abruptly reduced CBF in the ischemic cortex in a distal MCA occlusion model in mice. This reduction in CBF during AD increased the area of cortex with 20% or less residual CBF by 140%. With each subsequent PID, this area expanded by an additional 19%. Drugs that are known to inhibit cortical spreading depression (CSD), such as N-methyl-D-aspartate receptor antagonists MK-801 and 7-chlorokynurenic acid, and sigma-1 receptor agonists dextromethorphan and carbetapentane, did not reduce the frequency of PIDs, but did diminish the severity of episodic hypoperfusions, and prevented the expansion of severely hypoperfused cortex, thus improving CBF during 90 mins of acute focal ischemia. In contrast, AMPA receptor antagonist NBQX, which does not inhibit CSD, did not impact the deterioration in CBF. When measured 24 h after distal MCA occlusion, infarct size was reduced by MK-801, but not by NBQX. Our results suggest that AD and PIDs expand the CBF deficit, and by so doing negatively impact lesion development in ischemic mouse brain. Mitigating the vasoconstrictive neurovascular coupling during intense ischemic depolarizations may provide a novel hemodynamic mechanism of neuroprotection by inhibitors of CSD.
Collapse
Affiliation(s)
- Hwa Kyoung Shin
- Stroke and Neurovascular Regulation Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
15
|
Ayata C, Shin HK, Salomone S, Ozdemir-Gursoy Y, Boas DA, Dunn AK, Moskowitz MA. Pronounced hypoperfusion during spreading depression in mouse cortex. J Cereb Blood Flow Metab 2004; 24:1172-82. [PMID: 15529018 DOI: 10.1097/01.wcb.0000137057.92786.f3] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We studied unique cerebral blood flow (CBF) responses to cortical spreading depression in mice using a novel two-dimensional CBF imaging technique, laser speckle flowmetry. Cortical spreading depression caused a triphasic CBF response in both rat and mouse cortex. In rats, mild initial hypoperfusion (approximately 75% of baseline) was followed by a transient hyperemia reaching approximately 220% of baseline. In mice, the initial hypoperfusion was pronounced (40-50% of baseline), and the anticipated hyperemic phase barely reached baseline. The duration of hypoperfusion significantly correlated with the duration of the DC shift. As a possible explanation for the pronounced hypoperfusion, mouse cerebral vessels showed enhanced resistance to relaxation by acetylcholine (3 microM) after K+ -induced preconstriction (20, 40, and 80 mM) but dilated normally in response to acetylcholine after preconstriction with U46619, a synthetic thromboxane A2 analog. By contrast, rat vessels dilated readily to acetylcholine after preconstriction by K+. The transient normalization of CBF after hypoperfusion in the mouse was abolished by L-NA but not 7-NI. In summary, the CBF response to cortical spreading depression in mice contrasts with the rat in that the initial hypoperfusion is pronounced, and the hyperemic phase is markedly diminished. The differences in CBF response between species may be in part caused by an increased sensitivity of mouse cerebral vessels to elevated extracellular K+.
Collapse
Affiliation(s)
- Cenk Ayata
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Harvard Medical School, Charlestown, Massachusetts, 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Prunell GF, Mathiesen T, Svendgaard NA. Experimental Subarachnoid Hemorrhage: Cerebral Blood Flow and Brain Metabolism during the Acute Phase in Three Different Models in the Rat. Neurosurgery 2004; 54:426-36; discussion 436-7. [PMID: 14744290 DOI: 10.1227/01.neu.0000103670.09687.7a] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2003] [Accepted: 05/21/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE To study the cerebral metabolism and its relationship to cerebral blood flow (CBF) acutely after subarachnoid hemorrhage (SAH). METHODS SAH was induced in rats by endovascular perforation of the internal carotid artery, blood injection into the prechiasmatic cistern or the cisterna magna. CBF (measured by laser Doppler flowmetry), cerebral perfusion pressure, O(2) tension, and extracellular levels of glucose, lactate, and pyruvate were monitored during 90 minutes after SAH. CBF (assessed by (125)I-antipyrine autoradiography), arteriovenous O(2) difference, and cerebral metabolic rate of O(2) were calculated at 15 or 90 minutes after SAH. RESULTS After a transient reduction, cerebral perfusion pressure normalized within 5 minutes after SAH in all groups. There was a transient global decrease in CBF after SAH: its duration depended on the severity of the hemorrhage. CBF of less than 20% of baseline was observed for at least 15 minutes in 25% and 14% of the animals after perforation and prechiasmatic SAH, respectively. In all SAH groups, O(2) tension was suddenly reduced to approximately 40% of baseline and gradually increased, reaching 70 to 90% of baseline 90 minutes after SAH. The cerebral metabolic rate of O(2) was reduced only at 15 minutes after perforation and prechiasmatic SAH, but arteriovenous O(2) difference was normal in all groups. During 30 minutes after perforation SAH, a 50% decrease in glucose and a threefold increase in lactate and pyruvate levels were observed. CONCLUSION The data suggest that SAH induced an acute global decrease in CBF together with a depression in the cerebral metabolism. The degree of the changes was related to the severity of the hemorrhage. The metabolic derangements were not always explained by ischemic episodes.
Collapse
Affiliation(s)
- Giselle Fabiana Prunell
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
17
|
Higuchi T, Takeda Y, Hashimoto M, Nagano O, Hirakawa M. Dynamic changes in cortical NADH fluorescence and direct current potential in rat focal ischemia: relationship between propagation of recurrent depolarization and growth of the ischemic core. J Cereb Blood Flow Metab 2002; 22:71-9. [PMID: 11807396 DOI: 10.1097/00004647-200201000-00009] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Forty rats were subjected to 3 hours of focal ischemia by occluding the left middle cerebral and left common carotid arteries. The propagation of recurrent depolarization around the ischemic core was analyzed using direct-current potential and NADH (reduced nicotinamide adenine dinucleotide) fluorescence images by irradiating the parietal-temporal cortex with ultraviolet light. Based on histological evaluation at direct-current recording sites, the total time of depolarization causing 50% neuronal injury was estimated to be 18.2 minutes. The sites showing recurrent depolarizations resulted in 23 +/- 29% neuronal injury due to the short depolarization time, whereas the sites showing recurrent depolarizations and eventually persistent depolarization resulted in infarction. The NADH fluorescence images showed that recurrent depolarizations propagated along the margin of the ischemic core. In 85.9% of the recurrent depolarizations, the fluorescence disappeared without leaving any traces and did not affect the area of the ischemic core. However, in 47.5% of the animals, 14.1% of recurrent depolarizations merged with the ischemic core and increased the area by 6 +/- 4 mm(2). These findings suggest that recurrent depolarization increases the severity of neuronal injury but does not cause infarction by itself if persistent depolarization does not follow, and that the area of persistent depolarization is enlarged with 14.1% of recurrent depolarizations.
Collapse
Affiliation(s)
- Tomoyasu Higuchi
- Department of Anesthesiology and Resuscitology, Okayama University Medical School, Okayama City, Okayama, Japan
| | | | | | | | | |
Collapse
|