1
|
Highton D, Caldwell M, Tachtsidis I, Elwell CE, Smith M, Cooper CE. The influence of carbon dioxide on cerebral metabolism and oxygen consumption: combining multimodal monitoring with dynamic systems modelling. Biol Open 2024; 13:bio060087. [PMID: 38180242 PMCID: PMC10810564 DOI: 10.1242/bio.060087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024] Open
Abstract
Hypercapnia increases cerebral blood flow. The effects on cerebral metabolism remain incompletely understood although studies show an oxidation of cytochrome c oxidase, Complex IV of the mitochondrial respiratory chain. Systems modelling was combined with previously published non-invasive measurements of cerebral tissue oxygenation, cerebral blood flow, and cytochrome c oxidase redox state to evaluate any metabolic effects of hypercapnia. Cerebral tissue oxygen saturation and cytochrome oxidase redox state were measured with broadband near infrared spectroscopy and cerebral blood flow velocity with transcranial Doppler ultrasound. Data collected during 5-min hypercapnia in awake human volunteers were analysed using a Fick model to determine changes in brain oxygen consumption and a mathematical model of cerebral hemodynamics and metabolism (BrainSignals) to inform on mechanisms. Either a decrease in metabolic substrate supply or an increase in metabolic demand modelled the cytochrome oxidation in hypercapnia. However, only the decrease in substrate supply explained both the enzyme redox state changes and the Fick-calculated drop in brain oxygen consumption. These modelled outputs are consistent with previous reports of CO2 inhibition of mitochondrial succinate dehydrogenase and isocitrate dehydrogenase. Hypercapnia may have physiologically significant effects suppressing oxidative metabolism in humans and perturbing mitochondrial signalling pathways in health and disease.
Collapse
Affiliation(s)
- David Highton
- Neurocritical Care Unit, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- Princess Alexandra Hospital Southside Clinical Unit, University of Queensland, Brisbane QLD 4102, Australia
| | - Matthew Caldwell
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Clare E. Elwell
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Martin Smith
- Neurocritical Care Unit, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London WC1N 3BG, UK
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Chris E. Cooper
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
| |
Collapse
|
2
|
Measurement of Adult Human Brain Responses to Breath-Holding by Multi-Distance Hyperspectral Near-Infrared Spectroscopy. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A major limitation of near-infrared spectroscopy (NIRS) is its high sensitivity to the scalp and low sensitivity to the brain of adult humans. In the present work we used multi-distance hyperspectral NIRS (hNIRS) to investigate the optimal source-detector distances, wavelength ranges, and analysis techniques to separate cerebral responses to 30 s breath-holds (BHs) from the responses in the superficial tissue layer in healthy adult humans. We observed significant responses to BHs in the scalp hemodynamics. Cerebral responses to BHs were detected in the cytochrome C oxidase redox (rCCO) at 4 cm without using data from the short-distance channel. Using the data from the 1 cm channel in the two-layer regression algorithm showed that cerebral hemodynamic and rCCO responses also occurred at 3 cm. We found that the waveband 700–900 nm was optimal for the detection of cerebral responses to BHs in adults.
Collapse
|
3
|
Pinti P, Siddiqui MF, Levy AD, Jones EJH, Tachtsidis I. An analysis framework for the integration of broadband NIRS and EEG to assess neurovascular and neurometabolic coupling. Sci Rep 2021; 11:3977. [PMID: 33597576 PMCID: PMC7889942 DOI: 10.1038/s41598-021-83420-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
With the rapid growth of optical-based neuroimaging to explore human brain functioning, our research group has been developing broadband Near Infrared Spectroscopy (bNIRS) instruments, a technological extension to functional Near Infrared Spectroscopy (fNIRS). bNIRS has the unique capacity of monitoring brain haemodynamics/oxygenation (measuring oxygenated and deoxygenated haemoglobin), and metabolism (measuring the changes in the redox state of cytochrome-c-oxidase). When combined with electroencephalography (EEG), bNIRS provides a unique neuromonitoring platform to explore neurovascular coupling mechanisms. In this paper, we present a novel pipeline for the integrated analysis of bNIRS and EEG signals, and demonstrate its use on multi-channel bNIRS data recorded with concurrent EEG on healthy adults during a visual stimulation task. We introduce the use of the Finite Impulse Response functions within the General Linear Model for bNIRS and show its feasibility to statistically localize the haemodynamic and metabolic activity in the occipital cortex. Moreover, our results suggest that the fusion of haemodynamic and metabolic measures unveils additional information on brain functioning over haemodynamic imaging alone. The cross-correlation-based analysis of interrelationships between electrical (EEG) and haemodynamic/metabolic (bNIRS) activity revealed that the bNIRS metabolic signal offers a unique marker of brain activity, being more closely coupled to the neuronal EEG response.
Collapse
Affiliation(s)
- P. Pinti
- grid.83440.3b0000000121901201Department of Medical Physics and Biomedical Engineering, University College London, London, UK ,grid.4464.20000 0001 2161 2573Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | - M. F. Siddiqui
- grid.4464.20000 0001 2161 2573Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | - A. D. Levy
- grid.83440.3b0000000121901201Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK ,grid.83440.3b0000000121901201Headache and Facial Pain, Brain Repair and Rehabilitation, Institute of Neurology, University College London, London, UK
| | - E. J. H. Jones
- grid.4464.20000 0001 2161 2573Centre for Brain and Cognitive Development, Birkbeck College, University of London, London, UK
| | - Ilias Tachtsidis
- grid.83440.3b0000000121901201Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
4
|
Almajidy RK, Mankodiya K, Abtahi M, Hofmann UG. A Newcomer's Guide to Functional Near Infrared Spectroscopy Experiments. IEEE Rev Biomed Eng 2019; 13:292-308. [PMID: 31634142 DOI: 10.1109/rbme.2019.2944351] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review presents a practical primer for functional near-infrared spectroscopy (fNIRS) with respect to technology, experimentation, and analysis software. Its purpose is to jump-start interested practitioners considering utilizing a non-invasive, versatile, nevertheless challenging window into the brain using optical methods. We briefly recapitulate relevant anatomical and optical foundations and give a short historical overview. We describe competing types of illumination (trans-illumination, reflectance, and differential reflectance) and data collection methods (continuous wave, time domain and frequency domain). Basic components (light sources, detection, and recording components) of fNIRS systems are presented. Advantages and limitations of fNIRS techniques are offered, followed by a list of very practical recommendations for its use. A variety of experimental and clinical studies with fNIRS are sampled, shedding light on many brain-related ailments. Finally, we describe and discuss a number of freely available analysis and presentation packages suited for data analysis. In conclusion, we recommend fNIRS due to its ever-growing body of clinical applications, state-of-the-art neuroimaging technique and manageable hardware requirements. It can be safely concluded that fNIRS adds a new arrow to the quiver of neuro-medical examinations due to both its great versatility and limited costs.
Collapse
|
5
|
Lange F, Dunne L, Hale L, Tachtsidis I. MAESTROS: A Multiwavelength Time-Domain NIRS System to Monitor Changes in Oxygenation and Oxidation State of Cytochrome-C-Oxidase. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2019; 25:7100312. [PMID: 30450021 PMCID: PMC6054019 DOI: 10.1109/jstqe.2018.2833205] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 05/17/2023]
Abstract
We present a multiwavelength, multichannel, time-domain near-infrared spectroscopy system named MAESTROS. This instrument can measure absorption and scattering coefficients and can quantify the concentrations of oxy- and deoxy-haemoglobin ([HbO2], [HHb]), and oxidation state of cytochrome-c-oxidase ([oxCCO]). This system is composed of a supercontinuum laser source coupled with two acousto-optic tuneable filters. The light is collected by four photomultipliers tubes, connected to a router to redirect the signal to a single time-correlated single-photon counting card. The interface between the system and the tissue is based on optical fibres. This arrangement allows us to resolve up to 16 wavelengths, within the range of 650-900 nm, at a sampling rate compatible with the physiology (from 0.5 to 2 Hz). In this paper, we describe the system and assess its performance based on two specifically designed protocols for photon migration instruments, the basic instrument protocol and nEUROPt protocols, and on a well characterized liquid phantom based on Intralipid and water. Then, the ability to resolve [HbO2 ], [HHb], and [oxCCO] is demonstrated on a homogeneous liquid phantom, based on blood for [HbO2], [HHb], and yeast for [oxCCO]. In the future, the system could be used to monitor brain tissue physiology.
Collapse
Affiliation(s)
- Frederic Lange
- 1Biomedical Optics Research Laboratory Department of Medical Physics and Biomedical Engineering University College London LondonWC1E 6BTU.K
| | - Luke Dunne
- 1Biomedical Optics Research Laboratory Department of Medical Physics and Biomedical Engineering University College London LondonWC1E 6BTU.K
| | - Lucy Hale
- 2Biomedical Optics Research Laboratory Department of Medical Physics and Biomedical Engineering University College London LondonWC1E 6BTU.K
- 3Electronic and Electrical Engineering University College London LondonWC1E 7JEU.K
| | - Ilias Tachtsidis
- 1Biomedical Optics Research Laboratory Department of Medical Physics and Biomedical Engineering University College London LondonWC1E 6BTU.K
| |
Collapse
|
6
|
Tsujii N, Otsuka I, Okazaki S, Yanagi M, Numata S, Yamaki N, Kawakubo Y, Shirakawa O, Hishimoto A. Mitochondrial DNA Copy Number Raises the Potential of Left Frontopolar Hemodynamic Response as a Diagnostic Marker for Distinguishing Bipolar Disorder From Major Depressive Disorder. Front Psychiatry 2019; 10:312. [PMID: 31139101 PMCID: PMC6518968 DOI: 10.3389/fpsyt.2019.00312] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 04/23/2019] [Indexed: 01/10/2023] Open
Abstract
Background: Given a lack of markers, diagnoses of bipolar disorder (BD) and major depressive disorder (MDD) rely on clinical assessment of symptoms. However, the depressive mood states of BD and depressive symptoms of MDD are often difficult to distinguish, which leads to misdiagnoses, which in turn leads to inadequate treatment. Previous studies have shown that the hemodynamic responses of the left frontopolar cortex measured by near-infrared spectroscopy (NIRS) differ between BD and MDD; these hemodynamic responses are associated with altered mitochondrial metabolism; and mitochondrial DNA copy number (mtDNAcn), an index of mitochondrial dysfunction, tends to decrease in BD and increase in MDD patients. In this study, we confirmed that mtDNAcn trends in opposite directions in BD and MDD. We then determined whether mtDNAcn could enhance the utility of NIRS as a diagnostic marker to distinguish between BD and MDD. Methods: We determined mtDNAcn in peripheral blood samples from 58 healthy controls, 79 patients with BD, and 44 patients with MDD. Regional hemodynamic responses during a verbal fluency task (VFT) in 24 BD patients and 44 MDD patients, matched by age and depression severity, were monitored using NIRS. Results: Measurements of mtDNAcn were lower in BD patients and higher in MDD patients than in controls. The left frontopolar region exhibited the most significant differences in mean VFT-related oxy-Hb changes between the BD and MDD groups. Multivariate logistic regression analysis with variables including age, sex, hemodynamic response of the left frontopolar region, and mtDNAcn showed high accuracy for distinguishing BD from MDD (area under the curve = 0.917; 95% confidence interval = 0.849-0.985). For the BD group, we observed a positive correlation between hemodynamic responses in the left frontopolar region and mtDNAcn, while for the MDD group, we observed a negative correlation. Conclusions: Our findings suggest that the association between hemodynamic response and mitochondrial dysfunction in BD or MDD plays an important role in differentiating the pathophysiological mechanisms of BD from those of MDD.
Collapse
Affiliation(s)
- Noa Tsujii
- Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Ikuo Otsuka
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Satoshi Okazaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Yanagi
- Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Shusuke Numata
- Department of Psychiatry, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, Japan
| | - Naruhisa Yamaki
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Kawakubo
- Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Osamu Shirakawa
- Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osaka-sayama, Japan
| | - Akitoyo Hishimoto
- Department of Psychiatry, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
7
|
Herold F, Wiegel P, Scholkmann F, Müller NG. Applications of Functional Near-Infrared Spectroscopy (fNIRS) Neuroimaging in Exercise⁻Cognition Science: A Systematic, Methodology-Focused Review. J Clin Med 2018; 7:E466. [PMID: 30469482 PMCID: PMC6306799 DOI: 10.3390/jcm7120466] [Citation(s) in RCA: 248] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/18/2022] Open
Abstract
For cognitive processes to function well, it is essential that the brain is optimally supplied with oxygen and blood. In recent years, evidence has emerged suggesting that cerebral oxygenation and hemodynamics can be modified with physical activity. To better understand the relationship between cerebral oxygenation/hemodynamics, physical activity, and cognition, the application of state-of-the art neuroimaging tools is essential. Functional near-infrared spectroscopy (fNIRS) is such a neuroimaging tool especially suitable to investigate the effects of physical activity/exercises on cerebral oxygenation and hemodynamics due to its capability to quantify changes in the concentration of oxygenated hemoglobin (oxyHb) and deoxygenated hemoglobin (deoxyHb) non-invasively in the human brain. However, currently there is no clear standardized procedure regarding the application, data processing, and data analysis of fNIRS, and there is a large heterogeneity regarding how fNIRS is applied in the field of exercise⁻cognition science. Therefore, this review aims to summarize the current methodological knowledge about fNIRS application in studies measuring the cortical hemodynamic responses during cognitive testing (i) prior and after different physical activities interventions, and (ii) in cross-sectional studies accounting for the physical fitness level of their participants. Based on the review of the methodology of 35 as relevant considered publications, we outline recommendations for future fNIRS studies in the field of exercise⁻cognition science.
Collapse
Affiliation(s)
- Fabian Herold
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
| | - Patrick Wiegel
- Department of Sport Science, University of Freiburg, Freiburg 79117, Germany.
- Bernstein Center Freiburg, University of Freiburg, Freiburg 79104, Germany.
| | - Felix Scholkmann
- Biomedical Optics Research Laboratory, Department of Neonatology, University Hospital Zurich, University of Zürich, Zürich 8091, Switzerland.
| | - Notger G Müller
- Research Group Neuroprotection, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg 39118, Germany.
- Department of Neurology, Medical Faculty, Otto von Guericke University, Magdeburg 39120, Germany.
| |
Collapse
|
8
|
Kamavuako EN, Sheikh UA, Gilani SO, Jamil M, Niazi IK. Classification of Overt and Covert Speech for Near-Infrared Spectroscopy-Based Brain Computer Interface. SENSORS 2018; 18:s18092989. [PMID: 30205476 PMCID: PMC6164385 DOI: 10.3390/s18092989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/17/2018] [Accepted: 09/05/2018] [Indexed: 11/29/2022]
Abstract
People suffering from neuromuscular disorders such as locked-in syndrome (LIS) are left in a paralyzed state with preserved awareness and cognition. In this study, it was hypothesized that changes in local hemodynamic activity, due to the activation of Broca’s area during overt/covert speech, can be harnessed to create an intuitive Brain Computer Interface based on Near-Infrared Spectroscopy (NIRS). A 12-channel square template was used to cover inferior frontal gyrus and changes in hemoglobin concentration corresponding to six aloud (overtly) and six silently (covertly) spoken words were collected from eight healthy participants. An unsupervised feature extraction algorithm was implemented with an optimized support vector machine for classification. For all participants, when considering overt and covert classes regardless of words, classification accuracy of 92.88 ± 18.49% was achieved with oxy-hemoglobin (O2Hb) and 95.14 ± 5.39% with deoxy-hemoglobin (HHb) as a chromophore. For a six-active-class problem of overtly spoken words, 88.19 ± 7.12% accuracy was achieved for O2Hb and 78.82 ± 15.76% for HHb. Similarly, for a six-active-class classification of covertly spoken words, 79.17 ± 14.30% accuracy was achieved with O2Hb and 86.81 ± 9.90% with HHb as an absorber. These results indicate that a control paradigm based on covert speech can be reliably implemented into future Brain–Computer Interfaces (BCIs) based on NIRS.
Collapse
Affiliation(s)
- Ernest Nlandu Kamavuako
- Centre for Robotics Research, Department of Informatics, King's College London, London WC2B 4BG, UK.
| | - Usman Ayub Sheikh
- Basque Center on Cognition, Brain and Language, 20009 Donostia, Spain.
- Department of Robotics and Artificial Intelligence, National University of Sciences and Technology, Islamabad 24090, Pakistan.
| | - Syed Omer Gilani
- Department of Robotics and Artificial Intelligence, National University of Sciences and Technology, Islamabad 24090, Pakistan.
| | - Mohsin Jamil
- Department of Robotics and Artificial Intelligence, National University of Sciences and Technology, Islamabad 24090, Pakistan.
- Department of Electrical Engineering, Faculty of Engineering, Islamic University Medina, Al Jamiah 42351, Saudi Arabia.
| | - Imran Khan Niazi
- Center for Chiropractic Research, New Zealand College of Chiropractic, Auckland 1010, New Zealand.
- SMI, Department of Health Science and Technology, Aalborg University, 9100 Aalborg, Denmark.
- Health and Rehabilitation Research Institute, AUT University, Auckland 1010, New Zealand.
| |
Collapse
|
9
|
Lange F, Peyrin F, Montcel B. Broadband time-resolved multi-channel functional near-infrared spectroscopy system to monitor in vivo physiological changes of human brain activity. APPLIED OPTICS 2018; 57:6417-6429. [PMID: 30117872 DOI: 10.1364/ao.57.006417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/21/2018] [Indexed: 05/18/2023]
Abstract
We have developed a broadband time-resolved multi-channel near-infrared spectroscopy system that can monitor the physiological responses of the adult human brain. This system is composed of a supercontinuum laser for the source part and of an intensified charge-coupled device camera coupled with an imaging spectrometer for the detection part. It allows the detection of the spectral, from 600 to 900 nm, and spatial dimensions as well as the arrival time of photon information simultaneously. We describe the setup and its characterization in terms of temporal instrument response function, wavelength sensitivity, and stability. The ability of the system to detect the hemodynamic response is then demonstrated. First, an in vivo experiment on an adult volunteer was performed to monitor the response in the arm during a cuff occlusion. Second, the response in the brain during a cognitive task was monitored on a group of five healthy volunteers. Moreover, looking at the response at different time windows, we could monitor the hemodynamic response in depth, enhancing the detection of the cortical activation. Those first results demonstrate the ability of our system to discriminate between the responses of superficial and deep tissues, addressing an important issue in functional near-infrared spectroscopy.
Collapse
|
10
|
Giannoni L, Lange F, Tachtsidis I. Hyperspectral imaging solutions for brain tissue metabolic and hemodynamic monitoring: past, current and future developments. JOURNAL OF OPTICS (2010) 2018; 20:044009. [PMID: 29854375 PMCID: PMC5964611 DOI: 10.1088/2040-8986/aab3a6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/29/2018] [Accepted: 03/02/2018] [Indexed: 05/21/2023]
Abstract
Hyperspectral imaging (HSI) technologies have been used extensively in medical research, targeting various biological phenomena and multiple tissue types. Their high spectral resolution over a wide range of wavelengths enables acquisition of spatial information corresponding to different light-interacting biological compounds. This review focuses on the application of HSI to monitor brain tissue metabolism and hemodynamics in life sciences. Different approaches involving HSI have been investigated to assess and quantify cerebral activity, mainly focusing on: (1) mapping tissue oxygen delivery through measurement of changes in oxygenated (HbO2) and deoxygenated (HHb) hemoglobin; and (2) the assessment of the cerebral metabolic rate of oxygen (CMRO2) to estimate oxygen consumption by brain tissue. Finally, we introduce future perspectives of HSI of brain metabolism, including its potential use for imaging optical signals from molecules directly involved in cellular energy production. HSI solutions can provide remarkable insight in understanding cerebral tissue metabolism and oxygenation, aiding investigation on brain tissue physiological processes.
Collapse
Affiliation(s)
- Luca Giannoni
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Frédéric Lange
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
11
|
Phan P, Highton D, Brigadoi S, Tachtsidis I, Smith M, Elwell CE. Spatial Distribution of Changes in Oxidised Cytochrome C Oxidase During Visual Stimulation Using Broadband Near Infrared Spectroscopy Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 923:195-201. [PMID: 27526143 PMCID: PMC6126435 DOI: 10.1007/978-3-319-38810-6_26] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Functional hyperaemia, characterised as an increase in concentration of oxyhaemoglobin [HbO2] and a decrease in concentration of deoxyhaemoglobin [HHb] in response to neuronal activity, can be precisely mapped using diffuse optical spectroscopy. However, such techniques do not directly measure changes in metabolic activity during neuronal activation. Changes in the redox state of cerebral oxidised cytochrome c oxidase Δ[oxCCO] measured by broadband spectroscopy may be a more specific marker of neuronal metabolic activity. This study aims to investigate the spatial distribution of Δ[oxCCO] responses during the activation of the visual cortex in the healthy adult human brain, and reconstruct images of these changes. Multi-channel broadband NIRS measurements were collected from the left visual cortex of four healthy volunteers using an in-house broadband spectrometer during an inverting checkerboard visual stimulation paradigm. Δ[HbO2], Δ[HHb] and Δ[oxCCO] were calculated by fitting the broadband spectra between 780 and 900 nm using the UCLn algorithm. Centre of gravity analysis was applied to the concentration data to determine the centres of activation for [HbO2], [HHb] and [oxCCO]. All four subjects showed similar changes in [oxCCO] in the presence of a typical visual-evoked haemodynamic response in channels overlying the visual cortex. Image reconstruction of the optical data showed a clear and spatially localized activation for all three chromophores. Centre of gravity analysis showed different localisation of the changes in each of the three chromophores across the visual cortex with the x-y coordinates of the mean centres of gravity (across 4 subjects) of HbO2, HHb and oxCCO at (63.1 mm; 24.8 mm), (56.2 mm; 21.0 mm) and (63.7 mm; 23.8 mm), respectively. The spatial distribution of Δ[oxCCO] response appears distinct from the haemodynamic response in the human visual cortex. Image reconstruction of Δ[oxCCO] shows considerable promise as a technique to visualise regional variation in [oxCCO] in a range of scenarios.
Collapse
Affiliation(s)
- P Phan
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - D Highton
- Neurocritical Care, National Hospital for Neurology and Neurosurgery, London, UK
| | - S Brigadoi
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - M Smith
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Neurocritical Care, National Hospital for Neurology and Neurosurgery, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
| | - C E Elwell
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| |
Collapse
|
12
|
Ghosh A, Highton D, Kolyva C, Tachtsidis I, Elwell CE, Smith M. Hyperoxia results in increased aerobic metabolism following acute brain injury. J Cereb Blood Flow Metab 2017; 37:2910-2920. [PMID: 27837190 PMCID: PMC5536254 DOI: 10.1177/0271678x16679171] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acute brain injury is associated with depressed aerobic metabolism. Below a critical mitochondrial pO2 cytochrome c oxidase, the terminal electron acceptor in the mitochondrial respiratory chain, fails to sustain oxidative phosphorylation. After acute brain injury, this ischaemic threshold might be shifted into apparently normal levels of tissue oxygenation. We investigated the oxygen dependency of aerobic metabolism in 16 acutely brain-injured patients using a 120-min normobaric hyperoxia challenge in the acute phase (24-72 h) post-injury and multimodal neuromonitoring, including transcranial Doppler ultrasound-measured cerebral blood flow velocity, cerebral microdialysis-derived lactate-pyruvate ratio (LPR), brain tissue pO2 (pbrO2), and tissue oxygenation index and cytochrome c oxidase oxidation state (oxCCO) measured using broadband spectroscopy. Increased inspired oxygen resulted in increased pbrO2 [ΔpbrO2 30.9 mmHg p < 0.001], reduced LPR [ΔLPR -3.07 p = 0.015], and increased cytochrome c oxidase (CCO) oxidation (Δ[oxCCO] + 0.32 µM p < 0.001) which persisted on return-to-baseline (Δ[oxCCO] + 0.22 µM, p < 0.01), accompanied by a 7.5% increase in estimated cerebral metabolic rate for oxygen ( p = 0.038). Our results are consistent with an improvement in cellular redox state, suggesting oxygen-limited metabolism above recognised ischaemic pbrO2 thresholds. Diffusion limitation or mitochondrial inhibition might explain these findings. Further investigation is warranted to establish optimal oxygenation to sustain aerobic metabolism after acute brain injury.
Collapse
Affiliation(s)
- Arnab Ghosh
- 1 Neurocritical Care, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London, UK
| | - David Highton
- 1 Neurocritical Care, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London, UK
| | - Christina Kolyva
- 2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Ilias Tachtsidis
- 2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Clare E Elwell
- 2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Martin Smith
- 1 Neurocritical Care, University College London Hospitals, National Hospital for Neurology & Neurosurgery, London, UK.,2 Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,3 University College London Hospitals National Institute for Health Research Biomedical Research Centre, London, UK
| |
Collapse
|
13
|
Brigadoi S, Phan P, Highton D, Powell S, Cooper RJ, Hebden J, Smith M, Tachtsidis I, Elwell CE, Gibson AP. Image reconstruction of oxidized cerebral cytochrome C oxidase changes from broadband near-infrared spectroscopy data. NEUROPHOTONICS 2017; 4:021105. [PMID: 28560239 PMCID: PMC5443419 DOI: 10.1117/1.nph.4.2.021105] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/01/2017] [Indexed: 05/23/2023]
Abstract
In diffuse optical tomography (DOT), overlapping and multidistance measurements are required to reconstruct depth-resolved images of oxy- ([Formula: see text]) and deoxy- (HHb) hemoglobin concentration changes occurring in the brain. These can be considered an indirect measure of brain activity, under the assumption of intact neurovascular coupling. Broadband systems also allow changes in the redox state of cytochrome c oxidase (oxCCO) to be measured, which can be an important biomarker when neurovascular coupling is impaired. We used DOT to reconstruct images of [Formula: see text], [Formula: see text], and [Formula: see text] from data acquired with a broadband system. Four healthy volunteers were measured while performing a visual stimulation task (4-Hz inverting checkerboard). The broadband system was configured to allow multidistance and overlapping measurements of the participants' visual cortex with 32 channels. A multispectral approach was employed to reconstruct changes in concentration of the three chromophores during the visual stimulation. A clear and focused activation was reconstructed in the left occipital cortex of all participants. The difference between the residuals of the three-chromophore model and of the two-chromophore model (recovering only [Formula: see text] and [Formula: see text]) exhibits a spectrum similar to that of oxCCO. These results form a basis for further studies aimed to further optimize image reconstruction of [Formula: see text].
Collapse
Affiliation(s)
- Sabrina Brigadoi
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
- University of Padova, Department of Developmental and Social Psychology, Padova, Italy
| | - Phong Phan
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | - David Highton
- National Hospital for Neurology and Neurosurgery, Neurocritical Care, London, United Kingdom
| | - Samuel Powell
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
- University College London, Department of Computer Science, London, United Kingdom
| | - Robert J. Cooper
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | - Jeremy Hebden
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | - Martin Smith
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
- National Hospital for Neurology and Neurosurgery, Neurocritical Care, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Ilias Tachtsidis
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | - Clare E. Elwell
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| | - Adam P. Gibson
- University College London, Department of Medical Physics and Biomedical Engineering, Biomedical Optics Research Laboratory, London, United Kingdom
| |
Collapse
|
14
|
Phan P, Highton D, Lai J, Smith M, Elwell C, Tachtsidis I. Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation. BIOMEDICAL OPTICS EXPRESS 2016; 7:4424-4440. [PMID: 27895985 PMCID: PMC5119585 DOI: 10.1364/boe.7.004424] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 05/22/2023]
Abstract
We present a multi-channel, multi-distance broadband near-infrared spectroscopy (NIRS) system with the capability of measuring changes in haemoglobin concentrations (Δ[HbO2], Δ[HHb]), oxidation state of cytochrome-c-oxidase (Δ[oxCCO]) and tissue oxygen saturation (TOI) in the adult human brain. The main components of the instrument are two customized spectrographs and two light sources. Each spectrograph is lens-based to improve light throughput, has a grating enhanced to optimise reflection in the near-infrared (NIR) spectral region and uses a front illuminated cooled CCD camera (-70° C) with a square chip dimension of 12.3 x 12.3 mm (512 x 512 pixels). Each light source uses a 50W halogen bulb with a gold plated mirror to increase the intensity of the NIR light. Each light source was connected to a custom-built bifurcated fibre bundle to create two source fibre bundles (3.2 mm diameter each). Each spectrograph received light input from another custom-built fibre bundle comprised of six individual bundles (one with 0.6 mm diameter and the other five with 1.5 mm diameter). All fibre bundles were fixed on a 3D printed optode holder (two light sources x two fibre bundles each = four probes; and two spectrographs x six fibre bundles each = 12 probes) that allowed 24 multi-distance channels across the forehead (six channels at 20 mm, three channels at 30 mm and 15 channels at 35 mm) and six TOI measurements. We demonstrated the use of the system in a cohort of nine healthy adult volunteers during prefrontal cortex functional activation using the Stroop task. We have observed functional responses identified as significant increase in Δ[HbO2], decrease in Δ[HHb] and increase in Δ[oxCCO] in five channels (out of 12), that overlay the left and right dorsolateral prefrontal cortices. There was no observable TOI functional response and we have shown small variations in TOI across different sites within the same subject and within the same site across subjects.
Collapse
Affiliation(s)
- Phong Phan
- Department of Medical Physics and Biomedical Engineering, UCL, London WC1E 6BT, UK
| | - David Highton
- Neurocritical Care Unit, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, UK
| | - Jonathan Lai
- Department of Medical Physics and Biomedical Engineering, UCL, London WC1E 6BT, UK
| | - Martin Smith
- Department of Medical Physics and Biomedical Engineering, UCL, London WC1E 6BT, UK
- Neurocritical Care Unit, The National Hospital for Neurology and Neurosurgery, University College London Hospitals, Queen Square, London WC1N 3BG, UK
| | - Clare Elwell
- Department of Medical Physics and Biomedical Engineering, UCL, London WC1E 6BT, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, UCL, London WC1E 6BT, UK
| |
Collapse
|
15
|
Chitnis D, Airantzis D, Highton D, Williams R, Phan P, Giagka V, Powell S, Cooper RJ, Tachtsidis I, Smith M, Elwell CE, Hebden JC, Everdell N. Towards a wearable near infrared spectroscopic probe for monitoring concentrations of multiple chromophores in biological tissue in vivo. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2016; 87:065112. [PMID: 27370501 PMCID: PMC4957669 DOI: 10.1063/1.4954722] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The first wearable multi-wavelength technology for functional near-infrared spectroscopy has been developed, based on a custom-built 8-wavelength light emitting diode (LED) source. A lightweight fibreless probe is designed to monitor changes in the concentrations of multiple absorbers (chromophores) in biological tissue, the most dominant of which at near-infrared wavelengths are oxyhemoglobin and deoxyhemoglobin. The use of multiple wavelengths enables signals due to the less dominant chromophores to be more easily distinguished from those due to hemoglobin and thus provides more complete and accurate information about tissue oxygenation, hemodynamics, and metabolism. The spectroscopic probe employs four photodiode detectors coupled to a four-channel charge-to-digital converter which includes a charge integration amplifier and an analogue-to-digital converter (ADC). Use of two parallel charge integrators per detector enables one to accumulate charge while the other is being read out by the ADC, thus facilitating continuous operation without dead time. The detector system has a dynamic range of about 80 dB. The customized source consists of eight LED dies attached to a 2 mm × 2 mm substrate and encapsulated in UV-cured epoxy resin. Switching between dies is performed every 20 ms, synchronized to the detector integration period to within 100 ns. The spectroscopic probe has been designed to be fully compatible with simultaneous electroencephalography measurements. Results are presented from measurements on a phantom and a functional brain activation study on an adult volunteer, and the performance of the spectroscopic probe is shown to be very similar to that of a benchtop broadband spectroscopy system. The multi-wavelength capabilities and portability of this spectroscopic probe will create significant opportunities for in vivo studies in a range of clinical and life science applications.
Collapse
Affiliation(s)
- Danial Chitnis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Dimitrios Airantzis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - David Highton
- Neurocritical Care Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London WC1N 3BG, United Kingdom
| | - Rhys Williams
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Phong Phan
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Vasiliki Giagka
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Samuel Powell
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Robert J Cooper
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Ilias Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Martin Smith
- Neurocritical Care Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London WC1N 3BG, United Kingdom
| | - Clare E Elwell
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Jeremy C Hebden
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| | - Nicholas Everdell
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
16
|
Nosrati R, Vesely K, Schweizer TA, Toronov V. Event-related changes of the prefrontal cortex oxygen delivery and metabolism during driving measured by hyperspectral fNIRS. BIOMEDICAL OPTICS EXPRESS 2016; 7:1323-35. [PMID: 27446658 PMCID: PMC4929644 DOI: 10.1364/boe.7.001323] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/13/2016] [Accepted: 03/14/2016] [Indexed: 05/02/2023]
Abstract
Recent technological advancements in optical spectroscopy allow for the construction of hyperspectral (broadband) portable tissue oximeters. In a series of our recent papers we have shown that hyperspectral NIRS (hNIRS) has similar or better capabilities in the absolute tissue oximetry as frequency-domain NIRS, and that hNIRS is also very efficient in measuring temporal changes in tissue hemoglobin concentration and oxygenation. In this paper, we extend the application of hNIRS to the measurement of event-related hemodynamic and metabolic functional cerebral responses during simulated driving. In order to check if hNIRS can detect event-related changes in the brain, we measured the concentration changes of oxygenated (HbO2) and deoxygenated (HHb) hemoglobin and of the oxidized state of cytochrome c oxidase, on the right and left prefrontal cortices (PFC) simultaneously during simulated driving on sixteen healthy right-handed participants (aged between 22-32). We used our in-house hNIRS system based on a portable spectrometer with cooled CCD detector and a driving simulator with a fully functional steering wheel and foot pedals. Each participant performed different driving tasks and participants were distracted during some driving conditions by asking general knowledge true/false questions. Our findings suggest that more complex driving tasks (non-distracted) deactivate PFC while distractions during driving significantly activate PFC, which is in agreement with previous fMRI results. Also, we found the changes in the redox state of the cytochrome C oxidase to be very consistent with those in the concentrations of HbO2 and HHb. Overall our findings suggest that in addition to the suitability of absolute tissue oximetry, hyperspectral NIRS may also offer advantages in functional brain imaging. In particular, it can be used to measure the metabolic functional brain activity during actual driving.
Collapse
Affiliation(s)
- Reyhaneh Nosrati
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
- Medical Physics, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, Ontario, M4N 3M5, Canada
| | - Kristin Vesely
- Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
| | - Tom A. Schweizer
- Keenan Research Centre of the Li Ka Shing Knowledge Institute of St. Michael's Hospital, 30 Bond Street, Toronto, ON, M5B 1W8, Canada
- Department of Surgery, Faculty of Medicine (Neurosurgery), University of Toronto, 27 King's College Cir, Toronto, ON, M5S, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto27 King's College Cir, Toronto, ON, M5S, Canada
| | - Vladislav Toronov
- Department of Physics, Ryerson University, 350 Victoria Street, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
17
|
Bale G, Mitra S, Meek J, Robertson N, Tachtsidis I. A new broadband near-infrared spectroscopy system for in-vivo measurements of cerebral cytochrome-c-oxidase changes in neonatal brain injury. BIOMEDICAL OPTICS EXPRESS 2014; 5:3450-66. [PMID: 25360364 PMCID: PMC4206316 DOI: 10.1364/boe.5.003450] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 05/02/2023]
Abstract
We present a novel lens-based broadband near-infrared spectroscopy system to simultaneously measure cerebral changes in tissue oxygenation and haemodynamics via estimation of the changes in haemoglobin concentration; in addition to oxygen utilization via the measurement of the oxidation state of cytochrome-c-oxidase (CCO). We demonstrate the use of the system in a cohort of 6 newborn infants with neonatal encephalopathy in the Neonatal Intensive Care Unit for continuous measurement periods of up to 5 days. NIRS data was collected from above the frontal lobe on the left and right hemispheres simultaneously with systemic data to allow multimodal data analysis. This allowed us to study the NIRS variables in response to global pathophysiological events and we focused our analysis to spontaneous oxygen desaturations. We identified changes from the NIRS variables during 236 oxygen desaturations from over 212 hours of data with a change from the baseline to nadir of -12 ± 3%. There was a consistent negative change in the Δ[HbD] (= oxygenated - deoxygenated haemoglobin) and Δ[oxCCO] measurements, mean decreases were 3.0 ± 1.7μM and 0.22 ± 0.11μM, and a positive change in the Δ[HbT] (= oxygenated + deoxygenated haemoglobin) measurements across all subjects, mean increase was 0.85 ± 0.58μM. We have shown with a feasibility study that the relationship between haemoglobin oxygenation changes and CCO oxidation changes during these desaturation events was significantly associated with a magnetic resonance spectroscopy (MRS)-measured biomarker of injury severity (r = 0.91, p<0.01).
Collapse
Affiliation(s)
- Gemma Bale
- Department of Medical Physics and Bioengineering, Malet Place Engineering Building, University College London, UK
| | - Subhabrata Mitra
- Institute for Women’s Health, University College London and Neonatal Unit, University College London Hospitals Trust, London, UK
| | - Judith Meek
- Institute for Women’s Health, University College London and Neonatal Unit, University College London Hospitals Trust, London, UK
| | - Nicola Robertson
- Institute for Women’s Health, University College London and Neonatal Unit, University College London Hospitals Trust, London, UK
| | - Ilias Tachtsidis
- Department of Medical Physics and Bioengineering, Malet Place Engineering Building, University College London, UK
| |
Collapse
|
18
|
Abstract
Resting-state functional near-infrared spectroscopy (R-fNIRS) is an active area of interest and is currently attracting considerable attention as a new imaging tool for the study of resting-state brain function. Using variations in hemodynamic concentration signals, R-fNIRS measures the brain’s low-frequency spontaneous neural activity, combining the advantages of portability, low-cost, high temporal sampling rate and less physical burden to participants. The temporal synchronization of spontaneous neuronal activity in anatomically separated regions is referred to as resting-state functional connectivity (RSFC). In the past several years, an increasing body of R-fNIRS RSFC studies has led to many important findings about functional integration among local or whole-brain regions by measuring inter-regional temporal synchronization. Here, we summarize recent advances made in the R-fNIRS RSFC methodologies, from the detection of RSFC (e.g., seed-based correlation analysis, independent component analysis, whole-brain correlation analysis, and graph-theoretical topological analysis), to the assessment of RSFC performance (e.g., reliability, repeatability, and validity), to the application of RSFC in studying normal development and brain disorders. The literature reviewed here suggests that RSFC analyses based on R-fNIRS data are valid and reliable for the study of brain function in healthy and diseased populations, thus providing a promising imaging tool for cognitive science and clinics.
Collapse
Affiliation(s)
- Haijing Niu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
19
|
Kolyva C, Ghosh A, Tachtsidis I, Highton D, Cooper CE, Smith M, Elwell CE. Cytochrome c oxidase response to changes in cerebral oxygen delivery in the adult brain shows higher brain-specificity than haemoglobin. Neuroimage 2013; 85 Pt 1:234-44. [PMID: 23707584 PMCID: PMC3898943 DOI: 10.1016/j.neuroimage.2013.05.070] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/05/2013] [Accepted: 05/13/2013] [Indexed: 11/19/2022] Open
Abstract
The redox state of cerebral mitochondrial cytochrome c oxidase monitored with near-infrared spectroscopy (Δ[oxCCO]) is a signal with strong potential as a non-invasive, bedside biomarker of cerebral metabolic status. We hypothesised that the higher mitochondrial density of brain compared to skin and skull would lead to evidence of brain-specificity of the Δ[oxCCO] signal when measured with a multi-distance near-infrared spectroscopy (NIRS) system. Measurements of Δ[oxCCO] as well as of concentration changes in oxygenated (Δ[HbO2]) and deoxygenated haemoglobin (Δ[HHb]) were taken at multiple source-detector distances during systemic hypoxia and hypocapnia (decrease in cerebral oxygen delivery), and hyperoxia and hypercapnia (increase in cerebral oxygen delivery) from 15 adult healthy volunteers. Increasing source-detector spacing is associated with increasing light penetration depth and thus higher sensitivity to cerebral changes. An increase in Δ[oxCCO] was observed during the challenges that increased cerebral oxygen delivery and the opposite was observed when cerebral oxygen delivery decreased. A consistent pattern of statistically significant increasing amplitude of the Δ[oxCCO] response with increasing light penetration depth was observed in all four challenges, a behaviour that was distinctly different from that of the haemoglobin chromophores, which did not show this statistically significant depth gradient. This depth-dependence of the Δ[oxCCO] signal corroborates the notion of higher concentrations of CCO being present in cerebral tissue compared to extracranial components and highlights the value of NIRS-derived Δ[oxCCO] as a brain-specific signal of cerebral metabolism, superior in this aspect to haemoglobin. NIRS was used to measure oxidised cytochrome c oxidase (Δ[oxCCO]) in healthy brain. Δ[oxCCO] changed in the same direction as changes in cerebral oxygen delivery. Magnitude of Δ[oxCCO] response increased with increasing light penetration depth. Corresponding haemoglobin changes showed no dependence on light penetration depth. NIRS-measured Δ[oxCCO] has higher brain specificity than haemoglobin.
Collapse
Affiliation(s)
- Christina Kolyva
- Dept. of Medical Physics and Bioengineering, University College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
20
|
Kolyva C, Tachtsidis I, Ghosh A, Moroz T, Cooper CE, Smith M, Elwell CE. Systematic investigation of changes in oxidized cerebral cytochrome c oxidase concentration during frontal lobe activation in healthy adults. BIOMEDICAL OPTICS EXPRESS 2012; 3:2550-66. [PMID: 23082295 PMCID: PMC3469997 DOI: 10.1364/boe.3.002550] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/10/2012] [Accepted: 06/30/2012] [Indexed: 05/02/2023]
Abstract
Using transcranial near-infrared spectroscopy (NIRS) to measure changes in the redox state of cerebral cytochrome c oxidase (Δ[oxCCO]) during functional activation in healthy adults is hampered by instrumentation and algorithm issues. This study reports the Δ[oxCCO] response measured in such a setting and investigates possible confounders of this measurement. Continuous frontal lobe NIRS measurements were collected from 11 healthy volunteers during a 6-minute anagram-solving task, using a hybrid optical spectrometer (pHOS) that combines multi-distance frequency and broadband components. Only data sets showing a hemodynamic response consistent with functional activation were interrogated for a Δ[oxCCO] response. Simultaneous systemic monitoring data were also available. Possible influences on the Δ[oxCCO] response were systematically investigated and there was no effect of: 1) wavelength range chosen for fitting the measured attenuation spectra; 2) constant or measured, with the pHOS in real-time, differential pathlength factor; 3) systemic hemodynamic changes during functional activation; 4) changes in optical scattering during functional activation. The Δ[oxCCO] response measured in the presence of functional activation was heterogeneous, with the majority of subjects showing significant increase in oxidation, but others having a decrease. We conclude that the heterogeneity in the Δ[oxCCO] response is physiological and not induced by confounding factors in the measurements.
Collapse
Affiliation(s)
- Christina Kolyva
- Medical Physics & Bioengineering, University College London,
London WC1E 6BT, UK
| | - Ilias Tachtsidis
- Medical Physics & Bioengineering, University College London,
London WC1E 6BT, UK
| | - Arnab Ghosh
- Neurocritical Care Unit, University College London Hospitals,
London WC1N 3BG, UK
| | - Tracy Moroz
- Medical Physics & Bioengineering, University College London,
London WC1E 6BT, UK
| | - Chris E. Cooper
- Biological Sciences, University of Essex, Colchester CO4 3SQ,
UK
| | - Martin Smith
- Medical Physics & Bioengineering, University College London,
London WC1E 6BT, UK
- Neurocritical Care Unit, University College London Hospitals,
London WC1N 3BG, UK
| | - Clare E. Elwell
- Medical Physics & Bioengineering, University College London,
London WC1E 6BT, UK
| |
Collapse
|
21
|
Ghosh A, Tachtsidis I, Kolyva C, Cooper CE, Smith M, Elwell CE. Use of a hybrid optical spectrometer for the measurement of changes in oxidized cytochrome c oxidase concentration and tissue scattering during functional activation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 737:119-24. [PMID: 22259091 PMCID: PMC4038013 DOI: 10.1007/978-1-4614-1566-4_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arnab Ghosh
- Neurosurgical Critical Care Unit, National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| | | | | | | | | | | |
Collapse
|
22
|
Jelfs B, Banaji M, Tachtsidis I, Cooper CE, Elwell CE. Modelling noninvasively measured cerebral signals during a hypoxemia challenge: steps towards individualised modelling. PLoS One 2012; 7:e38297. [PMID: 22679497 PMCID: PMC3367969 DOI: 10.1371/journal.pone.0038297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/02/2012] [Indexed: 11/21/2022] Open
Abstract
Noninvasive approaches to measuring cerebral circulation and metabolism are crucial to furthering our understanding of brain function. These approaches also have considerable potential for clinical use “at the bedside”. However, a highly nontrivial task and precondition if such methods are to be used routinely is the robust physiological interpretation of the data. In this paper, we explore the ability of a previously developed model of brain circulation and metabolism to explain and predict quantitatively the responses of physiological signals. The five signals all noninvasively-measured during hypoxemia in healthy volunteers include four signals measured using near-infrared spectroscopy along with middle cerebral artery blood flow measured using transcranial Doppler flowmetry. We show that optimising the model using partial data from an individual can increase its predictive power thus aiding the interpretation of NIRS signals in individuals. At the same time such optimisation can also help refine model parametrisation and provide confidence intervals on model parameters. Discrepancies between model and data which persist despite model optimisation are used to flag up important questions concerning the underlying physiology, and the reliability and physiological meaning of the signals.
Collapse
Affiliation(s)
- Beth Jelfs
- Department of Medical Physics and Bioengineering, University College London, London, United Kingdom.
| | | | | | | | | |
Collapse
|
23
|
Lloyd-Fox S, Blasi A, Elwell C. Illuminating the developing brain: The past, present and future of functional near infrared spectroscopy. Neurosci Biobehav Rev 2010; 34:269-84. [DOI: 10.1016/j.neubiorev.2009.07.008] [Citation(s) in RCA: 586] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 07/15/2009] [Accepted: 07/16/2009] [Indexed: 11/24/2022]
|
24
|
A model of brain circulation and metabolism: NIRS signal changes during physiological challenges. PLoS Comput Biol 2008; 4:e1000212. [PMID: 18989392 PMCID: PMC2573000 DOI: 10.1371/journal.pcbi.1000212] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 09/23/2008] [Indexed: 11/19/2022] Open
Abstract
We construct a model of brain circulation and energy metabolism. The model is designed to explain experimental data and predict the response of the circulation and metabolism to a variety of stimuli, in particular, changes in arterial blood pressure, CO(2) levels, O(2) levels, and functional activation. Significant model outputs are predictions about blood flow, metabolic rate, and quantities measurable noninvasively using near-infrared spectroscopy (NIRS), including cerebral blood volume and oxygenation and the redox state of the Cu(A) centre in cytochrome c oxidase. These quantities are now frequently measured in clinical settings; however the relationship between the measurements and the underlying physiological events is in general complex. We anticipate that the model will play an important role in helping to understand the NIRS signals, in particular, the cytochrome signal, which has been hard to interpret. A range of model simulations are presented, and model outputs are compared to published data obtained from both in vivo and in vitro settings. The comparisons are encouraging, showing that the model is able to reproduce observed behaviour in response to various stimuli.
Collapse
|
25
|
Perrey S. Non-invasive NIR spectroscopy of human brain function during exercise. Methods 2008; 45:289-99. [PMID: 18539160 DOI: 10.1016/j.ymeth.2008.04.005] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/27/2008] [Accepted: 04/30/2008] [Indexed: 10/22/2022] Open
|
26
|
Vanzetta I, Grinvald A. Coupling between neuronal activity and microcirculation: implications for functional brain imaging. HFSP JOURNAL 2008; 2:79-98. [PMID: 19404475 PMCID: PMC2645573 DOI: 10.2976/1.2889618] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Accepted: 02/11/2008] [Indexed: 01/12/2023]
Abstract
In the neocortex, neurons with similar response properties are often clustered together in column-like structures, giving rise to what has become known as functional architecture-the mapping of various stimulus feature dimensions onto the cortical sheet. At least partially, we owe this finding to the availability of several functional brain imaging techniques, both post-mortem and in-vivo, which have become available over the last two generations, revolutionizing neuroscience by yielding information about the spatial organization of active neurons in the brain. Here, we focus on how our understanding of such functional architecture is linked to the development of those functional imaging methodologies, especially to those that image neuronal activity indirectly, through metabolic or haemodynamic signals, rather than directly through measurement of electrical activity. Some of those approaches allow exploring functional architecture at higher spatial resolution than others. In particular, optical imaging of intrinsic signals reaches the striking detail of approximately 50 mum, and, together with other methodologies, it has allowed characterizing the metabolic and haemodynamic responses induced by sensory-evoked neuronal activity. Here, we review those findings about the spatio-temporal characteristics of neurovascular coupling and discuss their implications for functional brain imaging, including position emission tomography, and non-invasive neuroimaging techniques, such as funtional magnetic resonance imaging, applicable also to the human brain.
Collapse
Affiliation(s)
- Ivo Vanzetta
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
- Institut de Neurosciences Cognitives de la Méditerranée, CNRS UMR 6193, Aix-Marseille Université, 13402 Marseille Cedex 20, France
| | - Amiram Grinvald
- Department of Neurobiology, The Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
27
|
Minagawa-Kawai Y, Mori K, Hebden JC, Dupoux E. Optical imaging of infants' neurocognitive development: Recent advances and perspectives. Dev Neurobiol 2008; 68:712-28. [DOI: 10.1002/dneu.20618] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
Hashimoto K, Uruma G, Abo M. Activation of the prefrontal cortex during the wisconsin card sorting test (Keio Version) as measured by two-channel near-infrared spectroscopy in patients with traumatic brain injury. Eur Neurol 2007; 59:24-30. [PMID: 17917454 DOI: 10.1159/000109257] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 03/28/2007] [Indexed: 11/19/2022]
Abstract
To investigate brain activation in the prefrontal cortex (PFC) during the Wisconsin Card Sorting Test (Keio Version) (KWCST), we examined changes in total hemoglobin volume (THV) in 8 patients with traumatic brain injury (TBI) and 20 healthy control subjects using two-channel near-infrared spectroscopy. As a result, average THV in the right PFC during KWCST in TBI patients (-0.131 +/- 0.127) was significantly lower than in control subjects (0.016 +/- 0.135) (2 x 3 ANOVA; p < 0.05). These results demonstrated that the TBI patients had lower circulation of hemoglobin in the right PFC during the KWCST than the control subjects.
Collapse
Affiliation(s)
- Keiji Hashimoto
- Department of Rehabilitation Medicine, Jikei University School of Medicine, Tokyo, Japan.
| | | | | |
Collapse
|
29
|
Irani F, Platek SM, Bunce S, Ruocco AC, Chute D. Functional Near Infrared Spectroscopy (fNIRS): An Emerging Neuroimaging Technology with Important Applications for the Study of Brain Disorders. Clin Neuropsychol 2007; 21:9-37. [PMID: 17366276 DOI: 10.1080/13854040600910018] [Citation(s) in RCA: 244] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) is an emerging functional neuroimaging technology offering a relatively non-invasive, safe, portable, and low-cost method of indirect and direct monitoring of brain activity. Most exciting is its potential to allow more ecologically valid investigations that can translate laboratory work into more realistic everyday settings and clinical environments. Our aim is to acquaint clinicians and researchers with the unique and beneficial characteristics of fNIRS by reviewing its relative merits and limitations vis-à-vis other brain-imaging technologies such as functional magnetic resonance imaging (fMRI). We review cross-validation work between fMRI and fNIRS, and discuss possible reservations about its deployment in clinical research and practice. Finally, because there is no comprehensive review of applications of fNIRS to brain disorders, we also review findings from the few studies utilizing fNIRS to investigate neurocognitive processes associated with neurological (Alzheimer's disease, Parkinson's disease, epilepsy, traumatic brain injury) and psychiatric disorders (schizophrenia, mood disorders, anxiety disorders).
Collapse
Affiliation(s)
- Farzin Irani
- Department of Psychology, Drexel University, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
30
|
Vanzetta I. Hemodynamic responses in cortex investigated with optical imaging methods. Implications for functional brain mapping. ACTA ACUST UNITED AC 2007; 100:201-11. [PMID: 17329084 DOI: 10.1016/j.jphysparis.2007.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During the last 20 years, optical imaging methods - either alone or in combination with other recording techniques - has proven a fruitful approach to explore both the physiological and the functional aspects of activity-evoked hemodynamic responses in cortex. One of the main advantages of optical imaging consists in its high spatio-temporal resolution (in the order of few microns and milliseconds), allowing not only to unambiguously distinguish between activity patterns relating to the underlying functional architecture and those originating from the activation of medium/large blood vessels, but also to investigate the various activity-evoked hemodynamic processes at very fine detail. Here, we briefly review the principal findings obtained by optical imaging about the spatio-temporal properties of the various hemodynamic responses in cortex, i.e., changes in blood-oxygenation, blood-volume, and, to some extent, blood-flow. We also discuss the implications of those findings for non-invasive high-resolution functional brain imaging, in particular for fMRI. Finally, we underscore the importance of novel approaches for high-resolution blood-flow imaging, in the context of the need to gather information at fine spatial detail about the blood-flow response, necessary to constrain the multiple free parameters of hemodynamic response models.
Collapse
Affiliation(s)
- Ivo Vanzetta
- Institut de Neurosciences Cognitives de la Méditerranée, Centre National de la Recherche Scientifique Unité Mixte de Recherche 6193, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
31
|
Schroeter ML, Cutini S, Wahl MM, Scheid R, Yves von Cramon D. Neurovascular coupling is impaired in cerebral microangiopathy--An event-related Stroop study. Neuroimage 2006; 34:26-34. [PMID: 17070070 DOI: 10.1016/j.neuroimage.2006.09.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 08/31/2006] [Accepted: 09/01/2006] [Indexed: 11/26/2022] Open
Abstract
Small-vessel disease or cerebral microangiopathy is a common finding in elderly people leading finally to subcortical ischemic vascular dementia. Because cerebral microangiopathy impairs vascular reactivity and affects mainly the frontal lobes, we hypothesized that brain activation decreases during an event-related color-word matching Stroop task. 12 patients suffering from cerebral microangiopathy were compared with 12 age-matched controls. As an imaging method we applied functional near-infrared spectroscopy, because it is particularly sensitive to the microvasculature. The Stroop task led to activations in the lateral prefrontal cortex. Generally, the amplitude of the hemodynamic response was reduced in patients in tight correlation with behavioral slowing during the Stroop task and with neuropsychological deficits, namely attentional and executive dysfunction. Interestingly, patients showed an early deoxygenation of blood right after stimulation onset, and a delay of the hemodynamic response. Whereas the amplitude of the hemodynamic response is reduced in the frontal lobes also with normal aging, data suggest that impairments of neurovascular coupling are specific for cerebral microangiopathy. In summary, our findings indicate frontal dysfunction and impairments of neurovascular coupling in cerebral microangiopathy.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, 04103 Leipzig, Germany.
| | | | | | | | | |
Collapse
|
32
|
Bunce SC, Izzetoglu M, Izzetoglu K, Onaral B, Pourrezaei K. Functional near-infrared spectroscopy. ACTA ACUST UNITED AC 2006; 25:54-62. [PMID: 16898659 DOI: 10.1109/memb.2006.1657788] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Scott C Bunce
- Clinical Neuroscience Research Unit, Drexel University College of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
33
|
Schroeter ML, Bücheler MM, Preul C, Scheid R, Schmiedel O, Guthke T, von Cramon DY. Spontaneous slow hemodynamic oscillations are impaired in cerebral microangiopathy. J Cereb Blood Flow Metab 2005; 25:1675-84. [PMID: 15931161 DOI: 10.1038/sj.jcbfm.9600159] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Small-vessel disease or cerebral microangiopathy (CMA) is a common finding in elderly people. It is related to a variety of vascular risk factors and may finally lead to subcortical ischemic vascular dementia. Because vessel stiffness is increased, we hypothesized that slow spontaneous oscillations are reduced in cerebral hemodynamics. Accordingly, we examined spontaneous oscillations in the visual cortex of 13 patients suffering from CMA, and compared them with 14 age-matched controls. As an imaging method we applied functional near-infrared spectroscopy, because it is particularly sensitive to the microvasculature. Spontaneous low-frequency oscillations (LFOs) (0.07 to 0.12 Hz) were specifically impaired in CMA in contrast to spontaneous very-low-frequency oscillations (0.01 to 0.05 Hz), which remained unaltered. Vascular reagibility was reduced during visual stimulation. Interestingly, changes were tightly related to neuropsychological deficits, namely executive dysfunction. Vascular alterations had to be attributed mainly to the vascular risk factor arterial hypertension. Further, results suggest that the impairments might be, at least partly, reversed by medical treatment such as angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers. Results indicate that functional near-infrared spectroscopy may detect changes in the microvasculature due to CMA, namely an impairment of spontaneous LFOs, and of vascular reagibility. Hence, CMA accelerates microvascular changes due to aging, leading to impairments of autoregulation.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max-Planck-Institute for Human Cognitive and Brain Sciences, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
34
|
Schroeter ML, Kupka T, Mildner T, Uludağ K, von Cramon DY. Investigating the post-stimulus undershoot of the BOLD signal--a simultaneous fMRI and fNIRS study. Neuroimage 2005; 30:349-58. [PMID: 16257236 DOI: 10.1016/j.neuroimage.2005.09.048] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 08/26/2005] [Accepted: 09/19/2005] [Indexed: 10/25/2022] Open
Abstract
Measuring the hemodynamic response with functional magnetic resonance imaging (fMRI) together with functional near-infrared spectroscopy (fNIRS) may overcome limitations of single-method approaches. Accordingly, we measured the event-related hemodynamic response with both imaging methods simultaneously in young subjects during visual stimulation. An intertrial interval of 60 s was chosen to include the prolonged post-stimulus undershoot of the blood oxygenation level dependent (BOLD) signal. During visual stimulation, the BOLD signal, oxy-, and total hemoglobin (Hb) increased, whereas deoxy-Hb decreased. The post-stimulus period was characterized by an undershoot of the BOLD signal, oxy-Hb, and an overshoot of deoxy-Hb. Total Hb as measured by fNIRS returned to baseline immediately after the end of stimulation. Results suggest that the post-stimulus events as measured by fNIRS are dominated by a prolonged high-level oxygen consumption in the microvasculature. The contribution of a delayed return of blood volume to the BOLD post-stimulus undershoot in post-capillary veins as suggested by the Balloon and Windkessel models remains ambiguous. Temporal changes in the BOLD signal were highly correlated with deoxy-Hb, with lower correlation values for oxy- and total Hb. Furthermore, data show that fNIRS covers the outer 1 cm of the brain cortex. These results were confirmed by simultaneous fMRI/fNIRS measurements during rest. In conclusion, multimodal imaging approaches may contribute to the understanding of neurovascular coupling.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max-Planck-Institute for Human Cognitive and Brain Sciences, Stephanstr. 1A, Germany.
| | | | | | | | | |
Collapse
|
35
|
Uribe-Querol E, Martínez-Martínez E, Tapia-Rodríguez M, Hernández LR, Toscano-Márquez B, Padilla P, Gutiérrez-Ospina G. Metabolic indices shift in the hypothalamic-neurohypophysial system during lactation: implications for interpreting their relationship with neuronal activity. Neuroscience 2005; 134:1217-22. [PMID: 16054766 DOI: 10.1016/j.neuroscience.2005.05.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 04/11/2005] [Accepted: 05/12/2005] [Indexed: 11/28/2022]
Abstract
Metabolic indices of neuronal activity are thought to predict changes in the frequency of action potentials. There are stimuli that do not shift action potential frequency but change the temporal organization of neuronal firing following modifications of excitatory inputs by inhibitory synaptic activation. To our knowledge it is unknown whether this kind of stimulus associates with adjustments of metabolic markers of neuronal activity. Here, we used the hypothalamic-neurohypophysial system of lactating rats to address whether shifts in the temporal organization of neuronal firing relate with modifications of metabolic markers of neuronal activity. Cytochrome oxidase activity, (3)H-2-deoxyglucose uptake, and the area occupied by blood vessels increased in the paraventricular nucleus and neurohypophysis of lactating rats, as compared with their virgin counterparts. Taken together, these results suggest that metabolic demands denote shifts in the temporal organization of action potentials related with the adjustment of excitatory synaptic activation, and support that changes in metabolic markers do not necessarily reflect shifts in the frequency of action potentials.
Collapse
Affiliation(s)
- E Uribe-Querol
- Laboratory of Evolutionary and Developmental Neurobiology, Department of Cell Biology and Physiology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México
| | | | | | | | | | | | | |
Collapse
|
36
|
Gagnon RE, Macnab AJ, Gagnon FA, Leblanc JG. Brain, spine, and muscle cytochrome Cu-A redox patterns of change during hypothermic circulatory arrest in swine. Comp Biochem Physiol A Mol Integr Physiol 2005; 141:264-70. [PMID: 16023395 DOI: 10.1016/j.cbpb.2005.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 03/29/2005] [Accepted: 04/02/2005] [Indexed: 11/23/2022]
Abstract
Past near infrared spectroscopy (NIRS) studies have reported different changes in cytochrome C oxidase (Cyt) redox status during similar interventions that cause tissue ischaemia. We investigated whether there were distinctive differences when NIRS signals were obtained simultaneously from different tissues during total circulatory arrest. Forty-two healthy 10 kg commercial swine (Sus scrofa) on cardiopulmonary bypass, each underwent 2 to 8 sequential periods of hypothermic circulatory arrest for 7.5 min. Prior to each arrest, key physiologic variables were adjusted to 1 of 81 combinations of high, normal, or low levels of core temperature, hematocrit, pH, and serum glucose. Each combination was repeated at least twice. Simultaneous NIRS monitoring yielded 202 brain, 191 spine, and 199 muscle Cyt data sets, which were then classified into 13 distinctive patterns of change. The data sets always differed between tissues in the same arrest trial and subject. Typically, brain Cyt rapidly became more reduced at the start of arrest and changed little thereafter, muscle Cyt behaved comparably to brain Cyt but continued to become reduced throughout the arrest, and spine Cyt either did not change status or gradually became more reduced over the course of arrest. The spine pattern's mean rate of change was 12 times slower than those of the brain or muscle. The Cyt patterns of change were classified into 13 groups which were significantly related to core temperature in the brain and spine, and hematocrit in muscle. The respiratory response in mitochondria during systemic circulatory arrest differs between brain, spine and muscle tissues in the same subject.
Collapse
Affiliation(s)
- Roy E Gagnon
- Dept Pediatrics, Dept Surgery, Children's and Women's Health Centre, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
37
|
Gagnon RE, Gagnon FA, Macnab AJ, LeBlanc JG. Temperature, hematocrit, pH, and glucose 4-way ANOVA of cytochrome C oxidase redox status during systemic cold circulatory arrest in swine. Metab Brain Dis 2005; 20:105-13. [PMID: 15938129 DOI: 10.1007/s11011-005-4148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
UNLABELLED Various investigators using near infrared spectroscopy (NIRS) have reported differing patterns of cytochrome C oxidase (cytochrome a,a3) redox status in similar brain oxygenation studies. We investigated whether distinctive differences could be due to combinations of variations in temperature, hematocrit, pH, and glucose. METHODS Thirty-six healthy 10 kg commercial juvenile swine on cardiopulmonary bypass underwent 2-8 sequential periods of circulatory arrest. Prior to each arrest, key physiological variables were adjusted to match a random selection of one of 81 combinations of high, normal, or low levels of hypothermia, hematocrit, pH, and serum glucose. In the course of the study, the combinations were repeated twice to yield 162 NIRS data sets. RESULTS The mean rate of change in net oxidized minus reduced cytochrome a,a3 redox status in the brain following 7.5 min of ischemia was 0.49 +/- 0.26 micromol L(-1) min(-1), and, the corresponding mean magnitude of change was -1.23 +/- 0.57 micromol L(-1). The rate of change was influenced by temperature but not by hematocrit, pH, or glucose, either singly or in combination. CONCLUSION The respiratory response in mitochondria during systemic circulatory arrest is significantly influenced by temperature.
Collapse
Affiliation(s)
- Roy E Gagnon
- Department of Pediatrics, Children's & Women's Health Centre, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
38
|
Yao XC, Foust A, Rector DM, Barrowes B, George JS. Cross-polarized reflected light measurement of fast optical responses associated with neural activation. Biophys J 2005; 88:4170-7. [PMID: 15805175 PMCID: PMC1305647 DOI: 10.1529/biophysj.104.052506] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We developed an optical probe for cross-polarized reflected light measurements and investigated optical signals associated with electrophysiological activation in isolated lobster nerves. The cross-polarized baseline light intensity (structural signal) and the amplitude of the transient response to stimulation (functional signal) measured in reflected mode were dependent on the orientation of the nerve axis relative to the polarization plane of incident light. The maximum structural signal and functional response amplitude were observed at 45 degrees , and the ratio of functional to structural signals was approximately constant across orientations. Functional responses were measured in single trials in both transmitted and reflected geometries and responses had similar waveforms. Both structural and functional signals were an order of magnitude smaller in reflected than in transmitted light measurements, but functional responses had similar signal/noise ratios. We propose a theoretical model based on geometrical optics that is consistent with experimental results. In the model, the cross-polarized structural signal results from light reflection from axonal fibers and the transient functional response arises from axonal swelling associated with neural activation. Polarization-sensitive reflected light measurements could greatly enhance in vivo imaging of neural activation since cross-polarized responses are much larger than scattering signals now employed for dynamic functional neuroimaging.
Collapse
Affiliation(s)
- Xin-Cheng Yao
- Biological and Quantum Physics, MS-D454, Los Alamos National Laboratory, New Mexico 87545, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
The strong and steady development of diffuse optical spectroscopy and tomography as new biomedical optics technologies promises to bring these optical techniques into clinical practice. This article provides a brief review of the light-tissue interaction, the instrumentation, and the theory relevant to this field. This is followed by a survey of the three main applications: brain imaging, muscle imaging, and breast imaging. Lastly, the future outlook of the technology is presented, highlighting the new promises based on recent breakthroughs.
Collapse
Affiliation(s)
- Xavier Intes
- Biomedical Optical Imaging, Advanced Research Technologies (ART), 2300 Alfred-Nobel Boulevard, Saint-Laurent, Quebec H4S 2A4, Canada.
| | | |
Collapse
|
40
|
Abstract
It is well known that aging leads to a degeneration of the vascular system. Hence, one may hypothesize that spontaneous oscillations decrease in the cerebral microvasculature with aging. Accordingly, the authors investigated the age dependency of spontaneous oscillations in the visual cortex during rest and functional activation. Functional near-infrared spectroscopy was used because it is particularly sensitive to the microvasculature. Visual stimulation led to an increase of oxyhemoglobin, total hemoglobin, and a decrease of deoxyhemoglobin, without any influence of age. Peaks of normalized power spectral density were detected for spontaneous low-frequency (0.07 to 0.11 Hz) and very-low-frequency (0.01 to 0.05 Hz) oscillations, with a higher amplitude for oxyhemoglobin than for deoxyhemoglobin. Spontaneous low-frequency oscillations of oxyhemoglobin and deoxyhemoglobin declined strongly with aging during both rest and visual stimulation. Reduction of spontaneous low-frequency oscillations might indicate a declining spontaneous activity in microvascular smooth muscle cells, in conjunction with an increased vessel stiffness with aging.
Collapse
|
41
|
Kusaka T, Kawada K, Okubo K, Nagano K, Namba M, Okada H, Imai T, Isobe K, Itoh S. Noninvasive optical imaging in the visual cortex in young infants. Hum Brain Mapp 2004; 22:122-32. [PMID: 15108300 PMCID: PMC6871980 DOI: 10.1002/hbm.20020] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During the developmental stage, the brain undergoes anatomic, functional, and metabolic changes necessary to support the complex adaptive behavior of a mature individual. Estimation of developmental changes occurring in different regions of the brain would provide a means of relating various behavioral phenomena to maturation-specific brain structures, thereby providing useful information on structure-function relationships in both normal and disease states. We used multichannel near-infrared spectroscopy (MNIRS), a new noninvasive imaging technique for revealing the course of neural activity in selected brain regions, to monitor the activities of the visual cortex as mirrored by hemodynamic responses in infants subjected to photostimulation during natural sleep. In the infants, oxyhemoglobin and total hemoglobin decreased and deoxyhemoglobin increased in the visual cortex with photostimulation. This pattern of responses was different from the response pattern in adults reported previously. The different patterns of responses to photostimulation in the visual cortices of infants and adults might reflect developmental and behavioral differences. It may reflect a different functional organization of the visual cortex in infants or ongoing retinal development. Our results demonstrated that regional hemodynamic change could be detected in a small area around the visual cortex. MNIRS offers considerable potential for research and noninvasive clinical applications.
Collapse
Affiliation(s)
- Takashi Kusaka
- Maternal Perinatal Center, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Carter KM, George JS, Rector DM. Simultaneous birefringence and scattered light measurements reveal anatomical features in isolated crustacean nerve. J Neurosci Methods 2004; 135:9-16. [PMID: 15020084 DOI: 10.1016/j.jneumeth.2003.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2003] [Revised: 10/16/2003] [Accepted: 11/21/2003] [Indexed: 10/26/2022]
Abstract
Simultaneous fast birefringence and scattered light changes associated with crustacean nerve activation have different time courses and are produced by separate biophysical mechanisms. Technological advances in illumination, photodiodes and amplification circuitry achieved better signal-to-noise than earlier studies revealing optical signals in axonal nerve bundles as small as crayfish ventral cord and claw. The birefringence measurements yielded signals that could be observed in single trials, with temporally separated peaks associated with axonal populations of different diameters. A slit aperture placed perpendicular to the nerve reduced the spatial-temporal integration and enhanced the temporal structure of the separate peaks in the birefringence signal. Moving the slit aperture farther from the stimulation point delayed the signal in time, and also enhanced the separation between peaks. Different propagation velocities of the separate peaks provided evidence for at least three neuronal populations in the bundle. These studies underscore the advantages of birefringence over scattering measurements. Application of birefringence methods can optimize non-invasive imaging techniques being developed to detect fast optical responses associated with electrical neural activity in humans.
Collapse
Affiliation(s)
- Kathleen M Carter
- VCAPP Department, Washington State University, P.O. Box 646520, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
43
|
Fladby T, Bryhn G, Halvorsen O, Rosé I, Wahlund M, Wiig P, Wetterberg L. Olfactory response in the temporal cortex of the elderly measured with near-infrared spectroscopy: a preliminary feasibility study. J Cereb Blood Flow Metab 2004; 24:677-80. [PMID: 15181375 DOI: 10.1097/01.wcb.0000119966.74298.5c] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The pathway for the olfactory response may be affected at an early stage of Alzheimer's disease. Measurement of the olfactory response in the elderly is therefore of particular interest. In this feasibility study, near-infrared spectroscopy was used to measure the olfactory response in 21 patients aged 56 to 79 years. Eight subjects had no memory complaints whereas 13 had subjective memory complaints, mild cognitive impairment, or very mild Alzheimer's disease. The optodes were placed over the temporal lobe, with the emitting optode over the pole and the receiving optode over the superior gyrus. The response to vanilla (1% in sterile H2O) in a test tube held immediately beneath the nostrils was compared to the response to sterile H2O only. Four control subjects had a clearly definable response with increased oxyhemoglobin and decreased deoxyhemoglobin bilaterally. The response was measured as the sum of the deviation of oxygenated and deoxygenated hemoglobin from baseline mean. With a cut-off determined after examination of responses to vanilla and sham stimulus, group difference was significant for response to vanilla (chi2 test, P = 0.03). Response amplitudes to vanilla in the patient group were within the range of those to sham stimuli.
Collapse
Affiliation(s)
- Tormod Fladby
- University of Oslo, Departments of Neurology and Neuropsychiatry at Akershus University Hospital, Norway
| | | | | | | | | | | | | |
Collapse
|
44
|
Uludağ K, Steinbrink J, Villringer A, Obrig H. Separability and cross talk: optimizing dual wavelength combinations for near-infrared spectroscopy of the adult head. Neuroimage 2004; 22:583-9. [PMID: 15193586 DOI: 10.1016/j.neuroimage.2004.02.023] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 02/12/2004] [Accepted: 02/13/2004] [Indexed: 11/28/2022] Open
Abstract
By means of noninvasive near-infrared spectroscopy (NIRS), cerebral concentration changes in oxygenated and deoxygenated hemoglobin ([oxy-Hb] and [deoxy-Hb]) can be determined. The quality of the concentration changes' assessment critically depends on the wavelength combination used. Trying to optimize this combination, two spectroscopic effects must be taken into account: cross talk and separability. Cross talk between [oxy-Hb] and [deoxy-Hb] occurs because the assumption made in the analysis-that there is a homogeneous concentration change-does not hold true for the adult human head. Separability-to be introduced in this paper-is a measure for the degree of physical noise of the measurement that will influence the noise of the concentration changes' assessment. In other words, high separability corresponds to a low noise with respect to the concentration changes assessed. Here, we present analytical expressions for both measures and provide model-based estimates of cross talk and separability for any combination of two wavelengths between 610 and 920 nm. These theoretical considerations allow for two predictions: (a) if both wavelengths used are greater than approximately 780 nm, cross talk is high and separability is low resulting in erroneous and noisy concentration data. (b) If one wavelength is chosen below 720 nm while the other is greater than 730 nm, cross talk is low and separability is high resulting in accurate concentration changes. We show the relevance of these theoretical results for noninvasive NIRS by testing the predictions on experimental data obtained in adults undergoing visual stimulation.
Collapse
Affiliation(s)
- Kâmil Uludağ
- Department of Neurology, Charité, Humboldt University, Berlin 10117, Germany.
| | | | | | | |
Collapse
|
45
|
Schroeter ML, Zysset S, von Cramon DY. Shortening intertrial intervals in event-related cognitive studies with near-infrared spectroscopy. Neuroimage 2004; 22:341-6. [PMID: 15110024 DOI: 10.1016/j.neuroimage.2003.12.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2003] [Revised: 12/12/2003] [Accepted: 12/12/2003] [Indexed: 11/30/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) enables imaging of brain activation by measuring changes in the concentration of oxy- and deoxy-hemoglobin (Hb). Shortening the length of the intertrial interval (ITI) seems to be a precondition for further cognitive event-related fNIRS experiments because it leads to higher statistical power. Therefore, this study investigated whether the ITI may be reduced from 12, 6, 4 s to at least 2 s. Brain activation was examined with a NIRO-300 spectrometer at the lateral prefrontal cortex in 17 healthy subjects during a randomized event-related color-word matching Stroop task. In the left lateral prefrontal cortex, the concentration of deoxy-Hb decreased significantly stronger during incongruent than neutral trials for an ITI of 12, 6, and 2 s due to coping with interference. For 4 s of ITI, no hemodynamic interference effect was detected, which was paralleled by low behavioral interference. Further, we examined whether the length of the ITI influenced the mean hemodynamic response. Shortening the ITI reduced the amplitude of oxy-Hb in contrast to deoxy-Hb, which remained almost unaltered. Summarizing results, randomized event-related cognitive fNIRS studies enable short ITIs particularly if changes in deoxy-Hb are considered.
Collapse
|
46
|
Uludağ K, Steinbrink J, Kohl-Bareis M, Wenzel R, Villringer A, Obrig H. Cytochrome-c-oxidase redox changes during visual stimulation measured by near-infrared spectroscopy cannot be explained by a mere cross talk artefact. Neuroimage 2004; 22:109-19. [PMID: 15110001 DOI: 10.1016/j.neuroimage.2003.09.053] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 09/22/2003] [Accepted: 09/26/2003] [Indexed: 10/26/2022] Open
Abstract
The detection of redox changes in cytochrome-c-oxidase ([Cyt-ox]) in response to cerebral activation by non-invasive NIRS is hampered by methodological spectroscopic issues related to the modification of the Beer-Lambert law. Also, the question whether a change in the enzyme's redox-state is elicited by functional stimulation is unresolved. In a previous study, we found physiological evidence in favour of an activation-induced increase in oxidation of the enzyme [J. Cereb. Blood Flow Metab. 19 (1999) 592], while in a second study on spectroscopic cross talk, we found that the [Cyt-ox] changes to potentially be an artefact of the spectroscopic approach [J. Biomed. Opt. 7 (2002) 51]. Here, we use two different stimuli which differentially activate areas either rich or poor in [Cyt-ox] content (blob/interblob in visual cortex V1 and pale/thin stripes in V2) to further clarify this apparent discrepancy. In a first experiment, two stimuli were presented in an alternating fashion for 20 s and all stimulation periods were separated by resting periods of 40 s. We observed similar changes in [Cyt-ox] for both stimuli. To become more sensitive to the potentially very small optical changes related to changes in [Cyt-ox], we tried to minimise global haemodynamic and metabolic effects in a second experiment by omitting the resting periods. Our hypothesis was that [Cyt-ox] changes could be fully explained by cross talk as it is predicted from our last study [J. Biomed. Opt. 7 (2002) 51]. However, in more than half of the experiments, we were not able to model the changes in Cyt-ox calculated from measured attenuation spectra as a cross talk artefact. We interpret this finding as an argument in favour of the existence of [Cyt-ox] changes in response to functional stimulation. This finding, however, does not lessen the liability of the [Cyt-ox] changes to cross talk and calls for great caution when [Cyt-ox] changes are derived from NIRS measurements based on the modified Beer-Lambert approach. Further (invasive) validation studies are required.
Collapse
Affiliation(s)
- Kâmil Uludağ
- Department of Neurology, Charité, Humboldt University, Berlin 10117, Germany.
| | | | | | | | | | | |
Collapse
|
47
|
Boas DA, Dale AM, Franceschini MA. Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy. Neuroimage 2004; 23 Suppl 1:S275-88. [PMID: 15501097 DOI: 10.1016/j.neuroimage.2004.07.011] [Citation(s) in RCA: 454] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Accepted: 07/01/2004] [Indexed: 11/18/2022] Open
Abstract
Near-infrared spectroscopy (NIRS) and diffuse optical imaging (DOI) are finding widespread application in the study of human brain activation, motivating further application-specific development of the technology. NIRS and DOI offer the potential to quantify changes in deoxyhemoglobin (HbR) and total hemoglobin (HbT) concentration, thus enabling distinction of oxygen consumption and blood flow changes during brain activation. While the techniques implemented presently provide important results for cognition and the neurosciences through their relative measures of HbR and HbT concentrations, there is much to be done to improve sensitivity, accuracy, and resolution. In this paper, we review the advances currently being made and issues to consider for improving optical image quality. These include the optimal selection of wavelengths to minimize random and systematic error propagation in the calculation of the hemoglobin concentrations, the filtering of systemic physiological signal clutter to improve sensitivity to the hemodynamic response to brain activation, the implementation of overlapping measurements to improve image spatial resolution and uniformity, and the utilization of spatial prior information from structural and functional MRI to reduce DOI partial volume error and improve image quantitative accuracy.
Collapse
Affiliation(s)
- David A Boas
- Anthinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
48
|
Cannestra AF, Wartenburger I, Obrig H, Villringer A, Toga AW. Functional assessment of Broca’s area using near infrared spectroscopy in humans. Neuroreport 2003; 14:1961-5. [PMID: 14561929 DOI: 10.1097/00001756-200310270-00016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We used near-infrared spectroscopy (NIRS) to compare functional hemoglobin concentration changes (delta[oxy-Hb] and delta[deoxy-Hb]) over human language and motor cortices. Eight subjects performed finger opposition, tongue movement, and covert visual object naming in an interleaved block paradigm design. NIRS revealed paradigm specific patterns of delta[oxy-Hb] and delta[deoxy-Hb] providing cortical localization of each function. During each task, significant response overlap was observed when comparing the [oxy-Hb] signals, whereas delta[deoxy-Hb] seemed more localized. Furthermore, by applying magnitude and time to significance measures to the delta[deoxy-Hb] response profile, Broca's area was easily distinguished from neighboring tongue (and hand) motor representation. Delta[oxy-Hb] did not provide this level of specificity. These findings suggest delta[deoxy-Hb] as the preferential NIRS parameter to map language cortices.
Collapse
Affiliation(s)
- Andrew F Cannestra
- Department of Neurology, UCLA School of Medicine, 710 Westwood Plaza, Los Angeles, CA 90095-1769, USA
| | | | | | | | | |
Collapse
|
49
|
Schroeter ML, Zysset S, Kruggel F, von Cramon DY. Age dependency of the hemodynamic response as measured by functional near-infrared spectroscopy. Neuroimage 2003; 19:555-64. [PMID: 12880787 DOI: 10.1016/s1053-8119(03)00155-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Aging reduces cerebral blood flow in association cortices during rest. However, the influence of age on functional brain activation is still controversial. The aim of our study was to examine age dependency of brain activation in primary and association cortices. Therefore, changes in the concentration of oxy- and deoxyhemoglobin as well as changes in the redox state of cytochrome-c-oxidase (Cyt-Ox) were measured by functional near-infrared spectroscopy (fNIRS) in the lateral prefrontal and motor cortices during an event-related Stroop interference task. Fourteen young (23.9 +/- 3.1 years old) and 14 elderly subjects (65.1 +/- 3.1) participated in the study. Data revealed two effects of aging on brain activation: (1) Elderly and young subjects used the lateral prefrontal cortex to cope with interference during the Stroop task. In young subjects, the vascular response was higher during incongruent than neutral trials in the entire examined lateral prefrontal cortex. However, in the elderly, all lateral prefrontal regions showed a hemodynamic response but not necessarily a specific interference effect. (2) The hemodynamic response was reduced in elderly subjects in the lateral prefrontal association cortex, but obviously not in the motor cortex. We propose that calculating effect sizes is the only reliable approach to analyze age-related effects in fNIRS studies, because they are independent from the assumed differential pathlength factor. In summary, our findings suggest that aging decreases the hemodynamic response in the frontal association cortex during functional activation, omitting the primary motor cortex.
Collapse
Affiliation(s)
- Matthias L Schroeter
- Max-Planck-Institute of Cognitive Neuroscience, Stephanstrasse 1A, 04103 Leipzig, Germany.
| | | | | | | |
Collapse
|
50
|
LaManna JC. The Redox State of Cytochrome Oxidase in Brain in Vivo: An Historical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 530:535-46. [PMID: 14562749 DOI: 10.1007/978-1-4615-0075-9_51] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Recent evidence suggests that cytochrome oxidase is partially reduced under resting conditions in the brain. Previous data, recorded over the past 30 years from intact brain using optical methods in the visible wavelength range, are consistent with this observation. These older data, while not conclusive in themselves, support the overall conclusions. The historical perspective on the experiments and controversies illustrates a number of useful principles. The first is that new methods tend to produce new observations that may be difficult to reproduce due to the uniqueness of the instrumentation. The second is that any new and different observations cannot be assimilated without an acceptable theoretical framework and, without assimilation can have little impact. Finally, the mechanisms which might explain why cytochrome oxidase may be more reduced than previously thought are still not fully developed and, therefore, the physiological significance of such reduction is not known.
Collapse
Affiliation(s)
- Joseph C LaManna
- Department of Neurology, Case Western Reserve University School of Medicine, 10900 Euclid Avenue (BRB 525), Cleveland, OH 44106-4938, USA
| |
Collapse
|