1
|
Franx B, Dijkhuizen RM, Dippel DWJ. Acute Ischemic Stroke in the Clinic and the Laboratory: Targets for Translational Research. Neuroscience 2024; 550:114-124. [PMID: 38670254 DOI: 10.1016/j.neuroscience.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
Ischemic stroke research has enabled significant advancements in diagnosis, treatment, and management of this debilitating disease, yet challenges remain standing in the way of better patient prognoses. In this narrative review, a fictional case illustrates challenges and uncertainties that medical professionals still face - penumbra identification, lack of neuroprotective agents, side-effects of tissue plasminogen activator, dearth of molecular biomarkers, incomplete microvascular reperfusion or no-reflow, post-recanalization hyperperfusion, blood pressure management and procedural anesthetic effects. The current state of the field is broadly reviewed per topic, with the aim to introduce a broad audience (scientist and clinician alike) to recent successes in translational stroke research and pending scientific queries that are tractable for preclinical assessment. Opportunities for co-operation between clinical and experimental stroke experts are highlighted to increase the size and frequency of strides the field makes to improve our understanding of this disease and ways of treating it.
Collapse
Affiliation(s)
- Bart Franx
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Rick M Dijkhuizen
- Translational Neuroimaging Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Diederik W J Dippel
- Stroke Center, Dept of Neurology, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
2
|
van der Knaap N, Franx BAA, Majoie CBLM, van der Lugt A, Dijkhuizen RM. Implications of Post-recanalization Perfusion Deficit After Acute Ischemic Stroke: a Scoping Review of Clinical and Preclinical Imaging Studies. Transl Stroke Res 2024; 15:179-194. [PMID: 36653525 PMCID: PMC10796479 DOI: 10.1007/s12975-022-01120-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
The goal of reperfusion therapy for acute ischemic stroke (AIS) is to restore cerebral blood flow through recanalization of the occluded vessel. Unfortunately, successful recanalization does not always result in favorable clinical outcome. Post-recanalization perfusion deficits (PRPDs), constituted by cerebral hypo- or hyperperfusion, may contribute to lagging patient recovery rates, but its clinical significance remains unclear. This scoping review provides an overview of clinical and preclinical findings on post-ischemic reperfusion, aiming to elucidate the pattern and consequences of PRPD from a translational perspective. The MEDLINE database was searched for quantitative clinical and preclinical studies of AIS reporting PRPD based on cerebral circulation parameters acquired by translational tomographic imaging methods. PRPD and stroke outcome were mapped on a charting table, creating an overview of PRPD after AIS. Twenty-two clinical and twenty-two preclinical studies were included. Post-recanalization hypoperfusion is rarely reported in clinical studies (4/22) but unequivocally associated with detrimental outcome. Post-recanalization hyperperfusion is more commonly reported (18/22 clinical studies) and may be associated with positive or negative outcome. PRPD has been replicated in animal studies, offering mechanistic insights into causes and consequences of PRPD and allowing delineation of possible courses of PRPD. Complex relationships exist between PRPD and stroke outcome. Diversity in methods and lack of standardized definitions in reperfusion studies complicate the characterization of reperfusion patterns. Recommendations are made to advance the understanding of PRPD mechanisms and to further disentangle the relation between PRPD and disease outcome.
Collapse
Affiliation(s)
- Noa van der Knaap
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
| | - Bart A A Franx
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| | - Charles B L M Majoie
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rick M Dijkhuizen
- Biomedical MR Imaging and Spectroscopy Group, Center for Image Sciences, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Estimation of microvascular capillary physical parameters using MRI assuming a pseudo liquid drop as model of fluid exchange on the cellular level. Rep Pract Oncol Radiother 2018; 24:3-11. [PMID: 30337842 DOI: 10.1016/j.rpor.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 04/30/2018] [Accepted: 09/06/2018] [Indexed: 11/20/2022] Open
Abstract
Aim One of the most important microvasculatures' geometrical variables is number of pores per capillary length that can be evaluated using MRI. The transportation of blood from inner to outer parts of the capillary is studied by the pores and the relationship among capillary wall thickness, size and the number of pores is examined. Background Characterization of capillary space may obtain much valuable information on the performance of tissues as well as the angiogenesis. Methods To estimate the number of pores, a new pseudo-liquid drop model along with appropriate quantitative physiological purposes has been investigated toward indicating a package of data on the capillary space. This model has utilized the MRI perfusion, diffusion and relaxivity parameters such as cerebral blood volume (CBV), apparent diffusion coefficient (ADC), ΔR 2 and Δ R 2 * values. To verify the model, a special protocol was designed and tested on various regions of eight male Wistar rats. Results The maximum number of pores per capillary length in the various conditions such as recovery, core, normal-recovery, and normal-core were found to be 183 ± 146, 176 ± 160, 275 ± 166, and 283 ± 143, respectively. This ratio in the normal regions was more than that of the damaged ones. The number of pores increased with increasing mean radius of the capillary and decreasing the thickness of the wall in the capillary space. Conclusion Determination of the number of capillary pore may most likely help to evaluate angiogenesis in the tissues and treatment planning of abnormal ones.
Collapse
Key Words
- 2DFT, two-dimensional Fourier transform
- ADC, apparent diffusion coefficient
- CBF, cerebral blood flow
- CBV, cerebral blood volume
- DWI, diffusion weighted imaging
- Diameter
- Diffusion MRI
- FLASH, fast low angle shot
- FOV, field of view
- MCA, middle cerebral artery
- MTT, mean transit time
- Microvasculature
- PWI, perfusion weighted imaging
- Pores
- Pseudo-liquid drop model
- RF, radio frequency
- ROI, region of interest
- TCL, total capillary length
- VSI, vessel size index
- Wistar rats
Collapse
|
4
|
Liachenko S, Ramu J, Paule MG, Hanig J. Comparison of quantitative T 2 and ADC mapping in the assessment of 3-nitropropionic acid-induced neurotoxicity in rats. Neurotoxicology 2018; 65:52-59. [PMID: 29427612 DOI: 10.1016/j.neuro.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/05/2018] [Indexed: 10/18/2022]
Abstract
To assess the relative performance of MRI T2 relaxation and ADC mapping as potential biomarkers of neurotoxicity, a model of 3-nitropropionic acid (NP)-induced neurodegeneration in rats was employed. Male Sprague-Dawley rats received NP (N = 20, 16-20 mg/kg, ip or sc) or saline (N = 6, 2 ml/kg, ip) daily for 3 days. MRI was performed using a 7 T system employing quantitative T2 and ADC mapping based on spin echo pulse sequence. All maps were skull stripped and co-registered and the changes were quantified using baseline subtraction and anatomical segmentation. Following the in vivo portion of the study, rat brains were histologically examined. Four NP-treated rats were considered responders based on their MRI and histology data. T2 values always increased in the presence of toxicity, while ADC changes were bidirectional, decreasing in some lesion areas and increasing in others. In contrast to T2 in some cases, ADC did not change. The effect sizes of T2 and ADC signals suggestive of neurotoxicity were 2.64 and 1.66, respectively, and the variability of averaged T2 values among anatomical regions was consistently lower than that for ADC. The histopathology data confirmed the presence of neurotoxicity, however, a more detailed assessment of the correlation of MRI with histology is needed. T2 mapping provides more sensitive and specific information than ADC about changes in the rat brain thought to be associated with neurotoxicity due to a higher signal-to-noise ratio, better resolution, and unidirectional changes, and presents a better opportunity for biomarker development.
Collapse
Affiliation(s)
- Serguei Liachenko
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States.
| | - Jaivijay Ramu
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Merle G Paule
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, United States
| | - Joseph Hanig
- Center for Drug Evaluation and Research, US Food and Drug Administration, White Oak, MD, United States
| |
Collapse
|
5
|
Neurovascular unit remodelling in the subacute stage of stroke recovery. Neuroimage 2017; 146:869-882. [DOI: 10.1016/j.neuroimage.2016.09.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/31/2016] [Accepted: 09/08/2016] [Indexed: 01/19/2023] Open
|
6
|
Lake EM, Mester J, Thomason LAM, Adams C, Bazzigaluppi P, Koletar M, Janik R, Carlen P, McLaurin J, Stanisz GJ, Stefanovic B. Modulation of the peri-infarct neurogliovascular function by delayed COX-1 inhibition. J Magn Reson Imaging 2016; 46:505-517. [DOI: 10.1002/jmri.25541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 10/20/2016] [Indexed: 11/06/2022] Open
Affiliation(s)
- Evelyn M.R. Lake
- Department of Radiology and Biomedical Imaging; Yale University; New Haven Connecticut USA
- Department of Medical Biophysics; University of Toronto; Ontario Canada
| | - James Mester
- Department of Medical Biophysics; University of Toronto; Ontario Canada
| | - Lynsie AM Thomason
- Physical Sciences, Sunnybrook Research Institute; Toronto Ontario Canada
| | - Conner Adams
- Department of Medical Biophysics; University of Toronto; Ontario Canada
| | - Paolo Bazzigaluppi
- Physical Sciences, Sunnybrook Research Institute; Toronto Ontario Canada
- Fundamental Neurobiology, Toronto Western Research Institute; Toronto Ontario Canada
| | - Margaret Koletar
- Physical Sciences, Sunnybrook Research Institute; Toronto Ontario Canada
| | - Rafal Janik
- Department of Medical Biophysics; University of Toronto; Ontario Canada
- Physical Sciences, Sunnybrook Research Institute; Toronto Ontario Canada
| | - Peter Carlen
- Fundamental Neurobiology, Toronto Western Research Institute; Toronto Ontario Canada
| | - JoAnne McLaurin
- Biological Science, Sunnybrook Research Institute; Toronto Ontario Canada
- Department of Laboratory Medicine and Pathobiology; University of Toronto; Ontario Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery; Ottawa Ontario Canada
| | - Greg J Stanisz
- Department of Medical Biophysics; University of Toronto; Ontario Canada
- Physical Sciences, Sunnybrook Research Institute; Toronto Ontario Canada
- Department of Neurosurgery and Pediatric Neurosurgery; Medical University; Lublin Poland
| | - Bojana Stefanovic
- Department of Medical Biophysics; University of Toronto; Ontario Canada
- Physical Sciences, Sunnybrook Research Institute; Toronto Ontario Canada
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery; Ottawa Ontario Canada
| |
Collapse
|
7
|
Gupta S, Sharma U, Jagannathan NR, Gupta YK. Neuroprotective effect of lercanidipine in middle cerebral artery occlusion model of stroke in rats. Exp Neurol 2016; 288:25-37. [PMID: 27794423 DOI: 10.1016/j.expneurol.2016.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 09/24/2016] [Accepted: 10/24/2016] [Indexed: 12/11/2022]
Abstract
Oxidative stress, inflammation and apoptotic neuronal cell death are cardinal mechanisms involved in the cascade of acute ischemic stroke. Lercanidipine apart from calcium channel blocking activity possesses anti-oxidant, anti-inflammatory and anti-apoptotic properties. In the present study, we investigated neuroprotective efficacy and therapeutic time window of lercanidipine in a 2h middle cerebral artery occlusion (MCAo) model in male Wistar rats. The study design included: acute (pre-treatment and post-treatment) and sub-acute studies. In acute studies (pre-treatment) lercanidipine (0.25, 0.5 and 1mg/kg, i.p.) was administered 60min prior MCAo. The rats were assessed 24h post-MCAo for neurological deficit score (NDS), motor deficit paradigms (grip test and rota rod) and cerebral infarction via 2,3,5-triphenyltetrazolium chloride (TTC) staining. The most effective dose was found to be at 0.5mg/kg, i.p., which was considered for further studies. Regional cerebral blood flow (rCBF) was monitored till 120min post-reperfusion to assess vasodilatory property of lercanidipine (0.5mg/kg, i.p.) administered at two different time points: 60min post-MCAo and 15min post-reperfusion. In acute studies (post-treatment) lercanidipine (0.5mg/kg, i.p.) was administered 15min, 120min and 240min post-reperfusion. Based on NDS and cerebral infarction via TTC staining assessed 24h post-MCAo, effectiveness was evident upto 120min. For sub-acute studies same dose/vehicle was repeated for next 3days and magnetic resonance imaging (MRI) was performed 96h after the last dose. Biochemical markers estimated in rat brain cortex 24h post-MCAo were oxidative stress (malondialdehyde, reduced glutathione, nitric oxide, superoxide dismutase), blood brain barrier damage (matrix metalloproteinases-2 and -9) and apoptotic (caspase-3 and -9). Lercanidipine significantly reduced NDS, motor deficits and cerebral infarction volume as compared to the control group. Lercanidipine (60min post-MCAo) significantly increased rCBF (86%) as compared to vehicle treated MCAo group (64%) 120min post-reperfusion, but failed to show vasodilatation with 15min post-reperfusion group. Lercanidipine (13.78±2.78%) significantly attenuated percentage infarct volume as evident from diffusion-weighted (DWI) and T2-weighted images as compared to vehicle treated MCAo group (25.90±2.44%) investigated 96h post-MCAo. The apparent diffusion coefficient (ADC) was also significantly improved in lercanidipine group as compared to control group. Biochemical alterations were significantly ameliorated by lercanidipine till 120min post-reperfusion group and MMP-9 inhibition observed even with 240min group. Thus, lercanidipine revealed significant neuroprotective effect mediated through attenuation of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Sangeetha Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Uma Sharma
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, New Delhi, 110029, India
| | | | - Yogendra Kumar Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
8
|
Wegener S, Artmann J, Luft AR, Buxton RB, Weller M, Wong EC. The time of maximum post-ischemic hyperperfusion indicates infarct growth following transient experimental ischemia. PLoS One 2013; 8:e65322. [PMID: 23741488 PMCID: PMC3669346 DOI: 10.1371/journal.pone.0065322] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 04/25/2013] [Indexed: 11/30/2022] Open
Abstract
After recanalization, cerebral blood flow (CBF) can increase above baseline in cerebral ischemia. However, the significance of post-ischemic hyperperfusion for tissue recovery remains unclear. To analyze the course of post-ischemic hyperperfusion and its impact on vascular function, we used magnetic resonance imaging (MRI) with pulsed arterial spin labeling (pASL) and measured CBF quantitatively during and after a 60 minute transient middle cerebral artery occlusion (MCAO) in adult rats. We added a 5% CO2 - challenge to analyze vasoreactivity in the same animals. Results from MRI were compared to histological correlates of angiogenesis. We found that CBF in the ischemic area recovered within one day and reached values significantly above contralateral thereafter. The extent of hyperperfusion changed over time, which was related to final infarct size: early (day 1) maximal hyperperfusion was associated with smaller lesions, whereas a later (day 4) maximum indicated large lesions. Furthermore, after initial vasoparalysis within the ischemic area, vasoreactivity on day 14 was above baseline in a fraction of animals, along with a higher density of blood vessels in the ischemic border zone. These data provide further evidence that late post-ischemic hyperperfusion is a sequel of ischemic damage in regions that are likely to undergo infarction. However, it is transient and its resolution coincides with re-gaining of vascular structure and function.
Collapse
Affiliation(s)
- Susanne Wegener
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
9
|
Martín A, Macé E, Boisgard R, Montaldo G, Thézé B, Tanter M, Tavitian B. Imaging of perfusion, angiogenesis, and tissue elasticity after stroke. J Cereb Blood Flow Metab 2012; 32:1496-507. [PMID: 22491156 PMCID: PMC3421095 DOI: 10.1038/jcbfm.2012.49] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Blood flow interruption in a cerebral artery causes brain ischemia and induces dramatic changes of perfusion and metabolism in the corresponding territory. We performed in parallel positron emission tomography (PET) with [(15)O]H(2)O, single photon emission computed tomography (SPECT) with [(99m)Tc]hexamethylpropylene-amino-oxime ([(99m)Tc]HMPAO) and ultrasonic ultrafast shear wave imaging (SWI) during, immediately after, and 1, 2, 4, and 7 days after middle cerebral artery occlusion (MCAO) in rats. Positron emission tomography and SPECT showed initial hypoperfusion followed by recovery at immediate reperfusion, hypoperfusion at day 1, and hyperperfusion at days 4 to 7. Hyperperfusion interested the whole brain, including nonischemic areas. Immunohistochemical analysis indicated active angiogenesis at days 2 to 7, strongly suggestive that hyperperfusion was supported by an increase in microvessel density in both brain hemispheres after ischemia. The SWI detected elastic changes of cerebral tissue in the ischemic area as early as day 1 after MCAO appearing as a softening of cerebral tissue whose local internal elasticity decreased continuously from day 1 to 7. Taken together, these results suggest that hyperperfusion after cerebral ischemia is due to formation of neovessels, and indicate that brain softening is an early and continuous process. The SWI is a promising novel imaging method for monitoring the evolution of cerebral ischemia over time in animals.
Collapse
Affiliation(s)
- Abraham Martín
- Inserm U1023, Université Paris Sud, CEA, DSV, I2BM, Orsay, France
| | | | | | | | | | | | | |
Collapse
|
10
|
Martín A, San Sebastián E, Gómez-Vallejo V, Llop J. Positron emission tomograghy with [¹³N]ammonia evidences long-term cerebral hyperperfusion after 2h-transient focal ischemia. Neuroscience 2012; 213:47-53. [PMID: 22521831 DOI: 10.1016/j.neuroscience.2012.03.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 03/20/2012] [Accepted: 03/20/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND AND PURPOSE It is well known that after cerebral ischemia, brain suffers blood flow changes over time that have been correlated with inflammation, angiogenesis and functional recovery processes. Nevertheless, post-ischemic spatiotemporal changes of brain perfusion have not been fully investigated to date. Here we tested whether PET with [¹³N]ammonia would evidence the perfusion changes presented by different brain regions in an experimental model of brain ischemia. EXPERIMENTAL PROCEDURES Seven rats were subjected to a 2-h transient middle cerebral artery occlusion with reperfusion. PET studies were performed longitudinally using [¹³N]ammonia at 1, 3, 7, 14, 21 and 28 days after cerebral ischemia. RESULTS In vivo PET imaging showed a significant increase in [¹³N]ammonia uptake at 7 days after cerebral ischemia with respect to one day after the occlusion in the cerebral territory irrigated by the MCA in both the ischemic and contralateral hemispheres. This increase was followed by a return to control values at day 28 after ischemia onset. Brain regions located both inside and outside the primary infarct areas showed similar perfusion changes after cerebral ischemia. CONCLUSIONS [¹³N]ammonia shows hemodynamic changes after stroke involving hyperperfusion that might be related to angiogenesis and functional recovery. Long-term blood hyperperfusion is found both in ischemic and remote areas to infarction. These results may contribute to a better understanding of the evolution of cerebral ischemic lesion in animal models.
Collapse
Affiliation(s)
- A Martín
- Molecular Imaging Unit, CIC biomaGUNE, Spain.
| | | | | | | |
Collapse
|
11
|
Marumo T, Eto K, Wake H, Omura T, Nabekura J. The inhibitor of 20-HETE synthesis, TS-011, improves cerebral microcirculatory autoregulation impaired by middle cerebral artery occlusion in mice. Br J Pharmacol 2011; 161:1391-402. [PMID: 20735406 DOI: 10.1111/j.1476-5381.2010.00973.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE 20-Hydroxyeicosatetraenoic acid is a potent vasoconstrictor that contributes to cerebral ischaemia. An inhibitor of 20-Hydroxyeicosatetraenoic acid synthesis, TS-011, reduces infarct volume and improves neurological deficits in animal stroke models. However, little is known about how TS-011 affects the microvessels in ischaemic brain. Here, we investigated the effect of TS-011 on microvessels after cerebral ischaemia. EXPERIMENTAL APPROACH TS-011 (0.3 mg·kg(-1) ) or a vehicle was infused intravenously for 1 h every 6 h in a mouse model of stroke, induced by transient occlusion of the middle cerebral artery occlusion following photothrombosis. The cerebral blood flow velocity and the vascular perfusion area of the peri-infarct microvessels were measured using in vivo two-photon imaging. KEY RESULTS The cerebral blood flow velocities in the peri-infarct microvessels decreased at 1 and 7 h after reperfusion, followed by an increase at 24 h after reperfusion in the vehicle-treated mice. We found that TS-011 significantly inhibited both the decrease and the increase in the blood flow velocities in the peri-infarct microvessels seen in the vehicle-treated mice after reperfusion. In addition, TS-011 significantly inhibited the reduction in the microvascular perfusion area after reperfusion, compared with the vehicle-treated group. Moreover, TS-011 significantly reduced the infarct volume by 40% at 72 h after middle cerebral artery occlusion. CONCLUSIONS AND IMPLICATIONS These findings demonstrated that infusion of TS-011 improved defects in the autoregulation of peri-infarct microcirculation and reduced the infarct volume. Our results could be relevant to the treatment of cerebral ischaemia.
Collapse
Affiliation(s)
- Toshiyuki Marumo
- Pharmacology Laboratory, Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co., Ltd, Saitama, Japan.
| | | | | | | | | |
Collapse
|
12
|
Sobrado M, Delgado M, Fernández-Valle E, García-García L, Torres M, Sánchez-Prieto J, Vivancos J, Manzanares R, Moro MA, Pozo MA, Lizasoain I. Longitudinal studies of ischemic penumbra by using 18F-FDG PET and MRI techniques in permanent and transient focal cerebral ischemia in rats. Neuroimage 2011; 57:45-54. [PMID: 21549205 DOI: 10.1016/j.neuroimage.2011.04.045] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2010] [Revised: 03/26/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022] Open
Abstract
At present, the goal of stroke research is the identification of a potential recoverable tissue surrounding the ischemic core, suggested as ischemic penumbra, with the aim of applying a treatment that attenuates the growth of this area. Our purpose was to determine whether a combination of imaging techniques, including (18)F-FDG PET and MRI could identify the penumbra area. Longitudinal studies of (18)F-FDG PET and MRI were performed in rats 3 h, 24 h and 48 h after the onset of ischemia. A transient and a permanent model of focal cerebral ischemia were performed. Regions of interest were located, covering the ischemic core, the border that progresses to infarction (recruited tissue), and the border that recovers (recoverable tissue) with early reperfusion. Analyses show that permanent ischemia produces severe damage, whereas the transient ischemia model does not produce clear damage in ADC maps at the earliest time studied. The only significant differences between values for recoverable tissue, (18)F-FDG (84±2%), ADC (108±5%) and PWI (70±8%), and recruited tissue, (18)F-FDG (77±3%), ADC (109±4%) and PWI (77±4%), are shown in (18)F-FDG ratios. We also show that recoverable tissue values are different from those in non-infarcted tissue. The combination of (18)F-FDG PET, ADC and PWI MRI is useful for identification of ischemic penumbra, with (18)F-FDG PET being the most sensitive approach to its study at early times after stroke, when a clear DWI deficit is not observed.
Collapse
Affiliation(s)
- M Sobrado
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - M Delgado
- CAI de Cartografía Cerebral Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain
| | - E Fernández-Valle
- CAI Resonancia Magnética Nuclear, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain
| | - L García-García
- CAI de Cartografía Cerebral Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain
| | - M Torres
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | - J Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense de Madrid, Spain
| | - J Vivancos
- Unidad de Ictus, Servicio de Neurología, Hospital La Princesa, Madrid, Spain
| | - R Manzanares
- Servicio de Radiodiagnóstico Sección Neurorradiología, Hospital La Princesa, Madrid, Spain
| | - M A Moro
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain
| | - M A Pozo
- CAI de Cartografía Cerebral Instituto Pluridisciplinar, Universidad Complutense de Madrid, Spain
| | - I Lizasoain
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense de Madrid, Spain.
| |
Collapse
|
13
|
Permanent or transient chronic ischemic stroke in the non-human primate: behavioral, neuroimaging, histological, and immunohistochemical investigations. J Cereb Blood Flow Metab 2010; 30:273-85. [PMID: 19794396 PMCID: PMC2949113 DOI: 10.1038/jcbfm.2009.209] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Using multimodal magnetic resonance imaging (MRI), behavioral, and immunohistochemical analyses, we examined pathological changes at the acute, sub-acute, and chronic stages, induced by permanent or temporary ischemia in the common marmoset. Animals underwent either permanent (pMCAO) or 3-h transient (tMCAO) occlusion of the middle cerebral artery (MCAO) by the intraluminal thread approach. MRI scans were performed at 1 h, 8, and 45 days after MCAO. Sensorimotor deficits were assessed weekly up to 45 days after MCAO. Immunohistological studies were performed to examine neuronal loss, astrogliosis, and neurogenesis. Remote lesions were analyzed using retrograde neuronal tracers. At day 8 (D8), the lesion defined on diffusion tensor imaging (DTI)-MRI and T2-MRI was significantly larger in pMCAO as compared with that in the tMCAO group. At D45, the former still displayed abnormal signals in T2-MRI. Post-mortem analyses revealed widespread neuronal loss and associated astrogliosis to a greater extent in the pMCAO group. Neurogenesis was increased in both groups in the vicinity of the lesion. Disconnections between the caudate and the temporal cortex, and between the parietal cortex and the thalamus, were observed. Sensorimotor impairments were more severe and long-lasting in pMCAO relative to tMCAO. The profile of brain damage and functional deficits seen in the marmoset suggests that this model could be suitable to test therapies against stroke.
Collapse
|
14
|
Glaser N. Cerebral injury and cerebral edema in children with diabetic ketoacidosis: could cerebral ischemia and reperfusion injury be involved? Pediatr Diabetes 2009; 10:534-41. [PMID: 19821944 DOI: 10.1111/j.1399-5448.2009.00511.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Nicole Glaser
- Department of Pediatrics, University of California, Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
15
|
Xu Y, Liachenko SM, Tang P, Chan PH. Faster recovery of cerebral perfusion in SOD1-overexpressed rats after cardiac arrest and resuscitation. Stroke 2009; 40:2512-8. [PMID: 19461023 DOI: 10.1161/strokeaha.109.548453] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Protracted hypoperfusion is one of the hallmarks of secondary cerebral derangement after cardiac arrest and resuscitation (CAR), and reactive oxygen species have been implicated in reperfusion abnormalities. METHODS Using transgenic (Tg) rats overexpressing copper zinc superoxide dismutase (SOD1), we investigated the role of this intrinsic antioxidant in the restoration of cerebral blood flow (CBF) after CAR. Nine Tg and 11 wild-type (WT) rats were subjected to a nominal 15-minute cardiac arrest, and CBF was measured using the noninvasive arterial spin labeling MRI method before and during cardiac arrest, and 0 to 2 hours and 1 to 5 days after resuscitation. RESULTS The SOD1-Tg rats showed rapid normalization of CBF 1 day after the insult, whereas CBF in WT animals remained abnormal for at least 5 days, showing a progressive increase in CBF from hypo- to hyperperfusion on postresuscitation days 1 to 5. The long-term outcome, as measured by survival time, change in body weight, and mapping of apparent diffusion coefficient (ADC) for ion/water homeostasis, was significantly better in the SOD1-Tg rats. CONCLUSIONS Our results support the notion that reactive oxygen species are at least partially responsible for microvascular reperfusion disorders.
Collapse
Affiliation(s)
- Yan Xu
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| | | | | | | |
Collapse
|
16
|
Nakamura K, Wright D, Kondoh Y, Mizusawa S, Kinoshita T. Quantitative accuracy of delayed hyperperfusion in MRI of transient ischemia in rats. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2008; 2008:839-842. [PMID: 19162787 DOI: 10.1109/iembs.2008.4649284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A strong hyperperfusion was reported in transient ischemic tissue between 48 and 72 hours after middle cerebral artery occlusion (MCAO). Cerebral blood flow (CBF) estimated by continuous arterial spin labeling (CASL) with short delay after tagging was sensitive to cerebral blood volume (CBV) change. The delayed hyperperfusion may indicate a CBV increase after MCAO. For confirmation of the delayed hyperperfusion, we investigated a transit-time dependency in CASL at two days after MCAO. We also acquired CBF using the dynamic susceptibility contrast (DSC) at the same day. We have confirmed the CBF in transient ischemic tissue is quite higher (179.1+/-21.6 ml/100g/min) than normal tissue (121.0+/-6.9 ml/100g/min) with CASL using tagging delay of 0.4 sec. CBF estimated by DSC also show delayed hyperperfusion in transient ischemic tissue. These results confirm existence of physiological delayed hyperperfusion in transient ischemic area.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Akita Research Institute for brain and blood vessels, Akita 010-0874, Japan.
| | | | | | | | | |
Collapse
|
17
|
Drobyshevsky A, Derrick M, Prasad PV, Ji X, Englof I, Tan S. Fetal brain magnetic resonance imaging response acutely to hypoxia-ischemia predicts postnatal outcome. Ann Neurol 2007; 61:307-14. [PMID: 17444507 DOI: 10.1002/ana.21095] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cerebral palsy (CP) is caused by either hypoxia-ischemia (H-I) or long-standing causative factors such as inflammation or genetics. Multiple pathophysiological events over time are thought to contribute eventually to cerebral palsy. Our objective was to examine whether the immediate response of the fetus to an acute H-I event determined the motor deficits associated with cerebral palsy. METHODS Serial diffusion-weighted imaging were performed on 79% gestation New Zealand white rabbits using a 3-Tesla magnetic resonance scanner during 40 minutes of uterine ischemia, 20 minutes of reperfusion, and at 4, 24, and 72 hours. Individual fetuses were tracked to near term, and the delivered kits were divided into hypertonic H-I (n = 18), nonhypertonic H-I (n = 9), stillbirth H-I (n = 4), and control groups (n = 16). RESULTS The hypertonia group had significantly less of a nadir in apparent diffusion coefficient (ADC) during H-I (71.6 +/- 23.8% vs 84.5 +/- 9.3% baseline) and slower and incomplete recovery of ADC during reperfusion compared with the nonhypertonic group. All fetuses in the hypertonic and stillbirth groups had an ADC nadir of less than 0.83 microm(2)/msec (70.3% decrease from baseline), whereas 94% of control animals had an ADC nadir greater than this value. The difference between outcome groups was the largest at 4 hours reperfusion and persisted for 24 hours. INTERPRETATION Serial fetal brain scans indicate that the immediate response of a fetus to H-I is crucial to the development of hypertonia. If the fetal brain can be scanned at the time of insult, ADC changes can predict which fetuses will have an unfavorable outcome.
Collapse
Affiliation(s)
- Alexander Drobyshevsky
- Department of Pediatrics, Evanston Northwestern Healthcare and Northwestern University, Evanston, IL 60201, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Kelsen J, Kjær K, Chen G, Pedersen M, Røhl L, Frøkiær J, Nielsen S, Nyengaard JR, Rønn LCB. Parecoxib is neuroprotective in spontaneously hypertensive rats after transient middle cerebral artery occlusion: a divided treatment response? J Neuroinflammation 2006; 3:31. [PMID: 17150094 PMCID: PMC1764728 DOI: 10.1186/1742-2094-3-31] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 12/06/2006] [Indexed: 02/05/2023] Open
Abstract
Background Anti-inflammatory treatment affects ischemic damage and neurogenesis in rodent models of cerebral ischemia. We investigated the potential benefit of COX-2 inhibition with parecoxib in spontaneously hypertensive rats (SHRs) subjected to transient middle cerebral artery occlusion (tMCAo). Methods Sixty-four male SHRs were randomized to 90 min of intraluminal tMCAo or sham surgery. Parecoxib (10 mg/kg) or isotonic saline was administered intraperitoneally (IP) during the procedure, and twice daily thereafter. Nineteen animals were euthanized after 24 hours, and each hemisphere was examined for mRNA expression of pro-inflammatory cytokines and COX enzymes by quantitative RT-PCR. Twenty-three tMCAo animals were studied with diffusion and T2 weighted MRI within the first 24 hours, and ten of the SHRs underwent follow-up MRI six days later. Thirty-three SHRs were given 5-bromo-2'-deoxy-uridine (BrdU) twice daily on Day 4 to 7 after tMCAo. Animals were euthanized on Day 8 and the brains were studied with free-floating immunohistochemistry for activated microglia (ED-1), hippocampal granule cell BrdU incorporation, and neuronal nuclei (NeuN). Infarct volume estimation was done using the 2D nucleator and Cavalieri principle on NeuN-stained coronal brain sections. The total number of BrdU+ cells in the dentate gyrus (DG) of the hippocampus was estimated using the optical fractionator. Results We found a significant reduction in infarct volume in parecoxib treated animals one week after tMCAo (p < 0.03). Cortical ADC values in the parecoxib group were markedly less increased on Day 8 (p < 0.01). Interestingly, the parecoxib treated rats were segregated into two subgroups, suggesting a responder vs. non-responder phenomenon. We found indications of mRNA up-regulation of IL-1β, IL-6, TNF-α and COX-2, whereas COX-1 remained unaffected. Hippocampal granule cell BrdU incorporation was not affected by parecoxib treatment. Presence of ED-1+ activated microglia in the hippocampus was related to an increase in BrdU uptake in the DG. Conclusion IP parecoxib administration during tMCAo was neuroprotective, as evidenced by a large reduction in mean infarct volume and a lower cortical ADC increment. Increased pro-inflammatory cytokine mRNA levels and hippocampal granule cell BrdU incorporation remained unaffected.
Collapse
Affiliation(s)
- Jesper Kelsen
- The Water and Salt Research Centre, University of Aarhus, DK-8000 Aarhus C, Denmark
- Department of Neurosurgery NK, University Hospital of Aarhus, Noerrebrogade 44, DK-8000 Aarhus C, Denmark
- Institute of Clinical Medicine, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Katrine Kjær
- NEUROSEARCH A/S, Pederstrupvej 93, DK-2750 Ballerup, Denmark
| | - Gang Chen
- Institute of Clinical Medicine, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
- MR Research Centre, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Michael Pedersen
- Institute of Clinical Medicine, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
- MR Research Centre, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Lisbeth Røhl
- Department of Radiology, University Hospital of Aarhus, Noerrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Jørgen Frøkiær
- The Water and Salt Research Centre, University of Aarhus, DK-8000 Aarhus C, Denmark
- Institute of Clinical Medicine, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
| | - Søren Nielsen
- The Water and Salt Research Centre, University of Aarhus, DK-8000 Aarhus C, Denmark
- Institute of Anatomy, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Jens R Nyengaard
- Institute of Clinical Medicine, University Hospital of Aarhus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark
- Stereology and EM Research Laboratory and MIND Center, University of Aarhus, DK-8000 Aarhus C, Denmark
| | | |
Collapse
|
19
|
Jomura S, Uy M, Mitchell K, Dallasen R, Bode CJ, Xu Y. Potential treatment of cerebral global ischemia with Oct-4+ umbilical cord matrix cells. Stem Cells 2006; 25:98-106. [PMID: 16960128 DOI: 10.1634/stemcells.2006-0055] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Potential therapeutic effects of Oct-4-positive rat umbilical cord matrix (RUCM) cells in treating cerebral global ischemia were evaluated using a reproducible model of cardiac arrest (CA) and resuscitation in rats. Animals were randomly assigned to four groups: A, sham-operated; B, 8-minute CA without pretreatment; C, 8-minute CA pretreated with defined media; and D, 8-minute CA pretreated with Oct-4(+) RUCM cells. Pretreatment was done 3 days before CA by 2.5-microl microinjection of defined media or approximately 10(4) Oct-4(+) RUCM cells in left thalamic nucleus, hippocampus, corpus callosum, and cortex. Damage was assessed histologically 7 days after CA and was quantified by the percentage of injured neurons in hippocampal CA1 regions. Little damage (approximately 3%-4%) was found in the sham group, whereas 50%-68% CA1 pyramidal neurons were injured in groups B and C. Pretreatment with Oct-4(+) RUCM cells significantly (p < .001) reduced neuronal loss to 25%-32%. Although the transplanted cells were found to have survived in the brain with significant migration, few were found directly in CA1. Therefore, transdifferentiation and fusion with host cells cannot be the predominant mechanisms for the observed protection. The Oct-4(+) RUCM cells might repair nonfocal tissue damage by an extracellular signaling mechanism. Treating cerebral global ischemia with umbilical cord matrix cells seems promising and worthy of further investigation.
Collapse
Affiliation(s)
- Sachiko Jomura
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, USA
| | | | | | | | | | | |
Collapse
|
20
|
Rojas S, Martín A, Justicia C, Falcón C, Bargalló N, Chamorro A, Planas AM. Modest MRI Signal Intensity Changes Precede Delayed Cortical Necrosis After Transient Focal Ischemia in the Rat. Stroke 2006; 37:1525-32. [PMID: 16675741 DOI: 10.1161/01.str.0000221713.06148.16] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose—
Diffusion-weighted imaging (DWI) hyperintensities and apparent diffusion coefficient (ADC) hypointensities are MRI features of acute stroke. DWI alterations during ischemia recover with early reperfusion, but they can reappear later. Pronounced signal abnormalities early after stroke are associated with infarction, but the significance of subtle changes is unclear. Here we evaluated the degree and time course of regional signal intensity changes during the first 24 hours of reperfusion after transient ischemia, and we related them to the progression of the histopathological damage.
Methods—
Rats (n=54) were subjected to 1-hour intraluminal middle cerebral artery occlusion to assess the dynamics of MRI signal intensity changes during the initial 24 hours and their correspondent histopathological features: 2,3,5-triphenyltetrazolium chloride (TTC) staining, and hematoxylin and eosin, and immunoreactivity to 70-kDa heat shock protein and to astroglial and microglial markers.
Results—
This model of ischemia caused early striatal infarction but delayed necrosis in the cortex. The striatum showed marked MRI changes from 4 hours of reperfusion. By 12 hours, the striatal ADC signal intensity ratio to the homologous contralateral region was 30% reduced, and the TTC staining evidenced infarction. Contrarily, the cortical ADC ratio was only 15% reduced, and TTC staining was normal at 12 hours. After this time, the cortex showed sudden and pronounced (>30%) ADC signal intensity changes coincidentally with the manifestation of infarction, accompanied with severe vacuolation and unambiguous signs of neuronal and astroglial death.
Conclusions—
These findings suggest that minor changes in ADC signal intensity early after ischemia should not be underestimated because they may be harbingers of delayed infarction.
Collapse
Affiliation(s)
- Santiago Rojas
- Department of Pharmacology and Toxicology, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
21
|
Bardutzky J, Shen Q, Bouley J, Sotak CH, Duong TQ, Fisher M. Perfusion and diffusion imaging in acute focal cerebral ischemia: temporal vs. spatial resolution. Brain Res 2005; 1043:155-62. [PMID: 15862529 PMCID: PMC2949952 DOI: 10.1016/j.brainres.2005.02.073] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2004] [Revised: 02/15/2005] [Accepted: 02/23/2005] [Indexed: 11/29/2022]
Abstract
High-resolution diffusion- (DWI) and perfusion-weighted (PWI) imaging may provide substantial benefits in accurate delineation of normal, ischemic, and at-risk tissue. We compared the capability of low (400 x 400 microm(2)) and high (200 x 200 microm(2)) spatial resolution imaging in characterizing the spatiotemporal evolution of the ischemic lesion in a permanent middle artery occlusion (MCAO) model in rats. Serial measurements of cerebral blood flow (CBF) and the apparent diffusion coefficient (ADC) were performed. Lesion volumes were calculated by using viability thresholds or by visual inspection, and correlated with infarct volume defined by TTC staining at 24 h after MCAO. At the very early phase of ischemia, high-resolution resulted in a significantly larger ADC-derived lesion volume and a smaller PWI/DWI mismatch. At 3 h after MCAO, ADC and CBF lesions showed similar robust correlations with TTC-defined infarct volumes for both groups using previously established thresholds. When lesions were determined visually, low-resolution resulted in a substantial overestimation of TTC-defined infarct volume and a lower inter-observer reliability (r = 0.75), whereas high-resolution produced an excellent correlation with TTC-defined infarct volume and inter-observer reliability (r = 0.96). In conclusion, high-resolution MRI resulted in substantial temporal averaging of the ischemic lesion during the early phase, but was clearly superior in visual determination of final infarct size. Low-resolution reasonably evaluated the temporal and spatial evolution of ischemia when thresholds were used.
Collapse
Affiliation(s)
- Juergen Bardutzky
- Department of Neurology, University of Massachusetts Medical School, Boston, MA 02125, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Qiao M, Latta P, Foniok T, Buist R, Meng S, Tomanek B, Tuor UI. Cerebral blood flow response to a hypoxic-ischemic insult differs in neonatal and juvenile rats. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2004; 17:117-24. [PMID: 15538659 DOI: 10.1007/s10334-004-0058-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Accepted: 07/29/2004] [Indexed: 01/07/2023]
Abstract
To compare the cerebral blood flow (CBF) response to a transient episode of hypoxia-ischemia producing damage in neonatal and juvenile rats. One- and four-week-old rats were subjected to unilateral carotid artery occlusion plus hypoxia (8% oxygen). Perfusion MR images were acquired either in sham controls or in hypoxic-ischemic rats before, during, 1 h and 24 h after hypoxia-ischemia. At 24 h post hypoxia-ischemia, T2 maps and histology were used to assess damage. In sham controls, CBF increased twofold between the age of one and four weeks. Reductions in CBF ipsilateral to the occlusion occurred during hypoxia-ischemia followed by a substantial recovery at 1 h post in both age groups. However, contralaterally, hyperemia occurred during hypoxia-ischemia in four-week but not one-week-old rats. Similarly, hyperemia occurred ipsilaterally at 24 h post hypoxia-ischemia in four-week but not one-week-olds, corresponding to the distribution of elevations in T2. Despite CBF differences, extensive cell death occurred ipsilaterally in both age groups. The CBF responses to hypoxia-ischemia and reperfusion differ depending on postnatal age, with hyperemia occurring in juvenile but not neonatal rats. The results suggest a greater CBF responsiveness and differential relationship between post-ischemic vascular perfusion and tissue injury in older compared with immature animals.
Collapse
Affiliation(s)
- M Qiao
- Institute for Biodiagnostics (West), National Research Council of Canada, B153, 3330 Hospital Dr. NW, Calgary, AB, Canada, T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
23
|
Chen F, Suzuki Y, Nagai N, Peeters R, Coenegrachts K, Coudyzer W, Marchal G, Ni Y. Visualization of stroke with clinical MR imagers in rats: a feasibility study. Radiology 2004; 233:905-11. [PMID: 15498899 DOI: 10.1148/radiol.2333031658] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This experiment was conducted in compliance with the guidelines of the International Committee on Thrombosis and Hemostasis and the current institutional regulations for use and care of laboratory animals. The purpose of the present study was to report the feasibility of using clinical magnetic resonance (MR) imaging devices for depiction of stroke in a rat model. Twenty-four rats with photochemically induced thrombosis of the middle cerebral artery were examined at superacute (1 hour, n = 24), acute (12 hours, n = 12), and subacute (24 hours, n = 12) phases with 1.5-T MR imaging weighted for T1, T2, diffusion, and gadopentetate dimeglumine-enhanced perfusion. With reasonable signal-to-noise ratio and imaging times, ischemic lesions were well distinguished on MR images as validated qualitatively and quantitatively with postmortem standard-of-reference techniques, including volume-rendered computed tomography, microangiography, and histochemistry. In the superacute phase, the perfusion defect at perfusion-weighted MR imaging was well matched with microangiographic and pathologic findings (P > .05). There was no difference in lesion size at perfusion-weighted MR imaging between superacute and subacute phases (P > .05). Performance of certain stroke-related research in rats is feasible with clinical MR imagers.
Collapse
Affiliation(s)
- Feng Chen
- Department of Radiology, University Hospitals, K. U. Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Schepers J, Veldhuis WB, Pauw RJ, de Groot JW, van Osch MJP, Nicolay K, van der Sanden BPJ. Comparison of FAIR perfusion kinetics with DSC-MRI and functional histology in a model of transient ischemia. Magn Reson Med 2004; 51:312-20. [PMID: 14755657 DOI: 10.1002/mrm.10691] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Flow-sensitive alternating inversion recovery (FAIR) is a noninvasive method for perfusion imaging. It has been shown that the FAIR signal may depend on hemodynamic parameters other than perfusion, the most important one being transit delays of labeled spins to the observed tissue. These parameters are expected to change with ischemia. The goal of this study was to assess the effect of these changes on the interpretation of FAIR results in the case of altered perfusion. This was investigated in a rat model of transient cerebral ischemia. It was shown that the ratio of FAIR signal in the infarct compared to the contralateral side was lower at short inflow times, which suggests that transit times affected the effective FAIR signal. The FAIR results were compared with those from functional histology and dynamic susceptibility contrast MRI, and the findings indicated that the altered kinetics of the FAIR signal were related to reduced and delayed inflow in the infarct region--not to a decrease in the number of functional vessels.
Collapse
Affiliation(s)
- Janneke Schepers
- Department of Experimental In Vivo NMR, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
25
|
Liachenko S, Tang P, Xu Y. Deferoxamine improves early postresuscitation reperfusion after prolonged cardiac arrest in rats. J Cereb Blood Flow Metab 2003; 23:574-81. [PMID: 12771572 DOI: 10.1097/01.wcb.0000057742.00152.3f] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The no-reflow phenomenon and delayed hypoperfusion after transient cardiac arrest (CA) impede postischemic recovery. Activation of lipid peroxidation (LPO) after ischemia and reperfusion is considered one of the mechanisms responsible for such abnormalities. The present study investigates the influence of iron-dependent LPO inhibitor deferoxamine (DFO) on the cerebral perfusion after prolonged CA and resuscitation. Fourteen male Sprague-Dawley rats were subjected to 17 minutes of CA, induced by esmolol (an ultrashort-acting beta-blocker) and apnea, followed by resuscitation by retrograde intraaortic infusion of oxygenated donor blood mixed with a resuscitation cocktail inside a vertical-bore 9.4-T magnetic resonance imaging (MRI) magnet. Animals were randomized double-blindly into two groups to receive DFO or saline, respectively. Cerebral perfusion was measured by MRI continuously using the arterial spin-labeling method before, during, and after CA. All animals were successfully resuscitated in 1.36 +/- 0.04 minutes with well-controlled arrest time (17.99 +/- 0.03 minutes) in both groups. Deferoxamine significantly increased cerebral perfusion in hippocampus, thalamus, hypothalamus, and amygdala, but not in cortex, during the first 20 minutes of reperfusion. In the DFO-treated group, the neurologic deficit score was significantly better (400 +/- 30 vs. 250 +/- 47, out of 500 as the best, P < 0.05) and weight loss was significantly less (33 +/- 6 vs. 71 +/- 19 g, P < 0.05) 5 d after arrest. The finding supports the notion that early reperfusion immediately after resuscitation is important for long-term outcome and that LPO may be involved in microvascular disorders during the reperfusion, particularly in the brain after prolonged cardiac arrest and resuscitation.
Collapse
Affiliation(s)
- Serguei Liachenko
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, U.S.A
| | | | | |
Collapse
|