1
|
Colin M, Delaitre C, Foulquier S, Dupuis F. The AT 1/AT 2 Receptor Equilibrium Is a Cornerstone of the Regulation of the Renin Angiotensin System beyond the Cardiovascular System. Molecules 2023; 28:5481. [PMID: 37513355 PMCID: PMC10383525 DOI: 10.3390/molecules28145481] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The AT1 receptor has mainly been associated with the pathological effects of the renin-angiotensin system (RAS) (e.g., hypertension, heart and kidney diseases), and constitutes a major therapeutic target. In contrast, the AT2 receptor is presented as the protective arm of this RAS, and its targeting via specific agonists is mainly used to counteract the effects of the AT1 receptor. The discovery of a local RAS has highlighted the importance of the balance between AT1/AT2 receptors at the tissue level. Disruption of this balance is suggested to be detrimental. The fine tuning of this balance is not limited to the regulation of the level of expression of these two receptors. Other mechanisms still largely unexplored, such as S-nitrosation of the AT1 receptor, homo- and heterodimerization, and the use of AT1 receptor-biased agonists, may significantly contribute to and/or interfere with the settings of this AT1/AT2 equilibrium. This review will detail, through several examples (the brain, wound healing, and the cellular cycle), the importance of the functional balance between AT1 and AT2 receptors, and how new molecular pharmacological approaches may act on its regulation to open up new therapeutic perspectives.
Collapse
Affiliation(s)
- Mélissa Colin
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France
- Department of Pharmacology and Toxicology, MHeNS-School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | | - Sébastien Foulquier
- Department of Pharmacology and Toxicology, MHeNS-School for Mental Health and Neuroscience, Maastricht University, 6200 MD Maastricht, The Netherlands
- CARIM-School for Cardiovascular Diseases, Maastricht University, 6200 MD Maastricht, The Netherlands
| | | |
Collapse
|
2
|
Semedi BP, Rehatta NM, Soetjipto S, Nugraha J, Mahyuddin MH, Arnindita JN, Wairooy NAP. How Effective is Angiotensin II in Decreasing Mortality of Vasodilatory Shock? A Systematic Review. Open Access Emerg Med 2023; 15:1-11. [PMID: 36636460 PMCID: PMC9830054 DOI: 10.2147/oaem.s391167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Background Patients with severe vasodilation accompanied by refractory hypotension despite high doses of vasopressors were associated with a high mortality rate. The Ang-2 for the Treatment of High-Output Shock (ATHOS) 3 trial demonstrated that angiotensin 2 (Ang-2) could effectively increase MAP and blood pressure in vasodilatory shock patients. This systematic review aims to summarize the impact of Ang-2 for the treatment of vasodilatory shock on clinical outcomes, including length of stay, MAP level (before and after), and mortality also Ang-2 dose needed. Methods A systematic search in PubMed, Sage, ScienceDirect, Scopus and Gray literature was conducted to obtain studies about the use of Ang-2 in vasodilatory shock patients. Results In all of the studies that we obtained, there were different results regarding mortality in patients with vasodilatory shock with Ang-2. Mortality was significantly lower when Ang-2 was administered to patients with elevated renin. The initial dose of Ang-2 can be started at 10-20 ng/kg/min, but there is no agreement on the maximum dose. Ang-2 may be considered a third-line vasopressor if the targeted MAP has not been achieved after administration of norepinephrine >200 ng/kg/min for more than 6 hours. Although not statistically significant, the use of Ang-2 can reduce the length of stay in the ICU and in the hospital when compared to patients without Ang-2 therapy, in addition to reducing the dose of vasopressor. Conclusion Overall, the use of Ang-2 has potential to be a regimen for patients with vasodilatory shock. Further study is needed to obtain more data.
Collapse
Affiliation(s)
- Bambang Pujo Semedi
- Doctoral Program of Medical Science, Faculty of Medicine, Universitas Airlangga, Surabaya, East Java, 60132, Indonesia,Department of Anesthesiology and Reanimation, Medical Faculty of Medicine, Universitas Airlangga—Dr Soetomo General Hospital, Surabaya, East Java, 60132, Indonesia
| | - Nancy Margarita Rehatta
- Department of Anesthesiology and Reanimation, Medical Faculty of Medicine, Universitas Airlangga—Dr Soetomo General Hospital, Surabaya, East Java, 60132, Indonesia,Correspondence: Nancy Margarita Rehatta, Email
| | - Soetjipto Soetjipto
- Department of Medical Biochemistry, Medical Faculty of Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| | - Jusak Nugraha
- Department of Clinical Pathology, Medical Faculty of Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| | | | | | - Nabilah A P Wairooy
- Medical Faculty Universitas Airlangga, Surabaya, East Java, 60132, Indonesia
| |
Collapse
|
3
|
Xu C, Yang G, Fu Z, Chen Y, Xie S, Wang F, Yang T. Na +-Retaining Action of COX-2 (Cyclooxygenase-2)/EP 1 Pathway in the Collecting Duct via Activation of Intrarenal Renin-Angiotensin-Aldosterone System and Epithelial Sodium Channel. Hypertension 2022; 79:1190-1202. [PMID: 35296155 DOI: 10.1161/hypertensionaha.121.17245] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The collecting duct (CD) is a major site of both biosynthesis and action of prostaglandin E2 as highlighted by the predominant expression of COX-2 (cyclooxygenase-2) and some E-prostanoid (EP) subtypes at this nephron site. The purpose of this study was to determine the relevance and mechanism of CD COX-2/prostaglandin E2/EP1 signaling for the regulation of Na+ hemostasis during Na+ depletion. METHODS Mice with Aqp2Cre-driven deletion of COX-2 (COX-2fl/flAqp2Cre+) or the EP1 subtype (EP1fl/flAqp2Cre+) were generated and the Na+-wasting phenotype of these mice during low-salt (LS) intake was examined. EP subtypes responsible for prostaglandin E2-induced local renin response were analyzed in primary cultured mouse inner medullary CD cells. RESULTS Following 28-day LS intake, COX-2fl/flAqp2Cre+ mice exhibited a higher urinary Na+ excretion and lower cumulative Na+ balance, accompanied with suppressed intrarenal renin, AngII (angiotensin II), and aldosterone, expression of CYP11B2 (cytochrome P450 family 11 subfamily B member 2), and blunted expression of epithelial sodium channel subunits compared to floxed controls (COX-2fl/flAqp2Cre-), whereas no differences were observed for indices of systemic renin-angiotensin-aldosterone system. In cultured CD cells, exposure to prostaglandin E2 stimulated release of soluble (pro)renin receptor, prorenin/renin and aldosterone and the stimulation was more sensitive to antagonism of EP1 as compared other EP subtypes. Subsequently, EP1fl/flAqp2Cre+ mice largely recapitulated Na+-wasting phenotype seen in COX-2fl/flAqp2Cre+ mice. CONCLUSIONS The study for the first time reports that CD COX-2/EP1 pathway might play a key role in maintenance of Na+ homeostasis in the face of Na+ depletion, at least in part, through activation of intrarenal renin-angiotensin-aldosterone-system and epithelial sodium channel.
Collapse
Affiliation(s)
- Chuanming Xu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Guangrui Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Ziwei Fu
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Yanting Chen
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Shiying Xie
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Fei Wang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| | - Tianxin Yang
- Department of Internal Medicine, University of Utah and Veterans Affairs Medical Center, Salt Lake City
| |
Collapse
|
4
|
Kuriakose J, Montezano A, Touyz R. ACE2/Ang-(1-7)/Mas1 axis and the vascular system: vasoprotection to COVID-19-associated vascular disease. Clin Sci (Lond) 2021; 135:387-407. [PMID: 33511992 PMCID: PMC7846970 DOI: 10.1042/cs20200480] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
The two axes of the renin-angiotensin system include the classical ACE/Ang II/AT1 axis and the counter-regulatory ACE2/Ang-(1-7)/Mas1 axis. ACE2 is a multifunctional monocarboxypeptidase responsible for generating Ang-(1-7) from Ang II. ACE2 is important in the vascular system where it is found in arterial and venous endothelial cells and arterial smooth muscle cells in many vascular beds. Among the best characterized functions of ACE2 is its role in regulating vascular tone. ACE2 through its effector peptide Ang-(1-7) and receptor Mas1 induces vasodilation and attenuates Ang II-induced vasoconstriction. In endothelial cells activation of the ACE2/Ang-(1-7)/Mas1 axis increases production of the vasodilator's nitric oxide and prostacyclin's and in vascular smooth muscle cells it inhibits pro-contractile and pro-inflammatory signaling. Endothelial ACE2 is cleaved by proteases, shed into the circulation and measured as soluble ACE2. Plasma ACE2 activity is increased in cardiovascular disease and may have prognostic significance in disease severity. In addition to its enzymatic function, ACE2 is the receptor for severe acute respiratory syndrome (SARS)-coronavirus (CoV) and SARS-Cov-2, which cause SARS and coronavirus disease-19 (COVID-19) respectively. ACE-2 is thus a double-edged sword: it promotes cardiovascular health while also facilitating the devastations caused by coronaviruses. COVID-19 is associated with cardiovascular disease as a risk factor and as a complication. Mechanisms linking COVID-19 and cardiovascular disease are unclear, but vascular ACE2 may be important. This review focuses on the vascular biology and (patho)physiology of ACE2 in cardiovascular health and disease and briefly discusses the role of vascular ACE2 as a potential mediator of vascular injury in COVID-19.
Collapse
Affiliation(s)
- Jithin Kuriakose
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhian M. Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
5
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 769] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
6
|
Patel SN, Ali Q, Samuel P, Steckelings UM, Hussain T. Angiotensin II Type 2 Receptor and Receptor Mas Are Colocalized and Functionally Interdependent in Obese Zucker Rat Kidney. Hypertension 2017; 70:831-838. [PMID: 28827476 DOI: 10.1161/hypertensionaha.117.09679] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/18/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022]
Abstract
The actions of angiotensin II type 2 receptor (AT2R) and the receptor Mas (MasR) are complex but show similar pronatriuretic function; particularly, AT2R expression and natriuretic function are enhanced in obese/diabetic rat kidney. In light of some reports suggesting a potential positive interaction between these receptors, we tested hypothesis that renal AT2R and MasR physically interact and are interdependent to stimulate cell signaling and promote natriuresis in obese rats. We found that infusion of AT2R agonist C21 in obese Zucker rats (OZR) increased urine flow and urinary Na excretion which were attenuated by simultaneous infusion of the AT2R antagonist PD123319 or the MasR antagonist A-779. Similarly, infusion of MasR agonist Ang-(1-7) in OZR increased urine flow and urinary Na excretion, which were attenuated by simultaneous infusion of A-779 or PD123319. Experiment in isolated renal proximal tubules of OZR revealed that both the agonists C21 and Ang-(1-7) stimulated NO which was blocked by either of the receptor antagonists. Dual labeling of AT2R and MasR in OZR kidney sections and human proximal tubule epithelial cells showed that AT2R and MasR are colocalized. The AT2R also coimmunoprecipitated with MasR in cortical homogenate of OZR. Immunoblotting of cortical homogenate cross-linked with zero-length oxidative (sulfhydryl groups) cross-linker cupric-phenanthroline revealed a shift of AT2R and MasR bands upward with overlapping migration for their complexes which were sensitive to the reducing β-mercaptoethanol, suggesting involvement of -SH groups in cross-linking. Collectively, the study reveals that AT2R and MasR are colocalized and functionally interdependent in terms of stimulating NO and promoting diuretic/natriuretic response.
Collapse
Affiliation(s)
- Sanket N Patel
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX (S.N.P., Q.A., P.S., T.H.); and Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense (U.M.S.)
| | - Quaisar Ali
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX (S.N.P., Q.A., P.S., T.H.); and Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense (U.M.S.)
| | - Preethi Samuel
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX (S.N.P., Q.A., P.S., T.H.); and Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense (U.M.S.)
| | - Ulrike Muscha Steckelings
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX (S.N.P., Q.A., P.S., T.H.); and Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense (U.M.S.)
| | - Tahir Hussain
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX (S.N.P., Q.A., P.S., T.H.); and Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense (U.M.S.).
| |
Collapse
|
7
|
Angiotensin II type 2 receptor (AT2R) in renal and cardiovascular disease. Clin Sci (Lond) 2017; 130:1307-26. [PMID: 27358027 DOI: 10.1042/cs20160243] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/06/2016] [Indexed: 12/14/2022]
Abstract
Angiotensin II (Ang II) is well-considered to be the principal effector of the renin-angiotensin system (RAS), which binds with strong affinity to the angiotensin II type 1 (AT1R) and type 2 (AT2R) receptor subtype. However, activation of both receptors is likely to stimulate different signalling mechanisms/pathways and produce distinct biological responses. The haemodynamic and non-haemodynamic effects of Ang II, including its ability to regulate blood pressure, maintain water-electrolyte balance and promote vasoconstriction and cellular growth are well-documented to be mediated primarily by the AT1R. However, its biological and functional effects mediated through the AT2R subtype are still poorly understood. Recent studies have emphasized that activation of the AT2R regulates tissue and organ development and provides in certain context a potential counter-regulatory mechanism against AT1R-mediated actions. Thus, this review will focus on providing insights into the biological role of the AT2R, in particular its actions within the renal and cardiovascular system.
Collapse
|
8
|
Neuroprotective mechanisms of the ACE2-angiotensin-(1-7)-Mas axis in stroke. Curr Hypertens Rep 2016; 17:3. [PMID: 25620630 DOI: 10.1007/s11906-014-0512-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of beneficial neuroprotective effects of the angiotensin converting enzyme 2-angiotensin-(1-7)-Mas axis [ACE2-Ang-(1-7)-Mas] in ischemic and hemorrhagic stroke has spurred interest in a more complete characterization of its mechanisms of action. Here, we summarize findings that describe the protective role of the ACE2-Ang-(1-7)-Mas axis in stroke, along with a focused discussion on the potential mechanisms of neuroprotective effects of Ang-(1-7) in stroke. The latter incorporates evidence describing the actions of Ang-(1-7) to counter the deleterious effects of angiotensin II (AngII) via its type 1 receptor, including anti-inflammatory, anti-oxidant, vasodilatory, and angiogenic effects, and the role of altered kinase-phosphatase signaling. Interactions of Mas with other receptors, including bradykinin receptors and AngII type 2 receptors are also considered. A more complete understanding of the mechanisms of action of Ang-(1-7) to elicit neuroprotection will serve as an essential step toward research into potential targeted therapeutics in the clinical setting.
Collapse
|
9
|
Abstract
The angiotensin type 2 receptor (AT2R) and the receptor Mas are components of the protective arms of the renin-angiotensin system (RAS), i.e. they both mediate tissue protective and regenerative actions. The spectrum of actions of these two receptors and their signalling mechanisms display striking similarities. Moreover, in some instances, antagonists for one receptor are able to inhibit the action of agonists for the respective other receptor. These observations suggest that there may be a functional or even physical interaction of both receptors. This article discusses potential mechanisms underlying the phenomenon of blockade of angiotensin-(1-7) [Ang-(1-7)] actions by AT2R antagonists and vice versa. Such mechanisms may comprise dimerization of the receptors or dimerization-independent mechanisms such as lack of specificity of the receptor ligands used in the experiments or involvement of the Ang-(1-7) metabolite alamandine and its receptor MrgD in the observed effects. We conclude that evidence for a functional interaction of both receptors is strong, but that such an interaction may be species- and/or tissue-specific and that elucidation of the precise nature of the interaction is only at the very beginning.
Collapse
|
10
|
Increase in Vascular Injury of Sodium Overloaded Mice May be Related to Vascular Angiotensin Modulation. PLoS One 2015; 10:e0128141. [PMID: 26030299 PMCID: PMC4451144 DOI: 10.1371/journal.pone.0128141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
This study aimed to analyzing the effect of chronic sodium overload upon carotid and femoral injury, and its relation to vascular angiotensin modulation. Male C57Bl6 mice were divided in: control (cont), receiving 1% NaCl solution for 2 weeks (salt-2) or 12 weeks (salt-12). Two-weeks before the end of the study, a 2mm catheter was implanted around the left femoral and carotid arteries to induce injury. Blood pressure (BP) and heart rate (HR) were measured at the end of the study by tail plethysmography. Arteries were collected and prepared for histological analysis to determine arterial thickening and perivascular collagen deposition. Angiotensin II and Ang(1-7) were quantified in fresh arteries using the HPLC method. There were no differences in body weight, BP and HR. Intima/media ratio had a similar increase in both injured arteries of cont and salt-2 mice, but a more pronounced increase was observed in salt-12 mice (31.1±6%). On the other hand, sodium overload modified perivascular collagen deposition, increasing thick fibers (cont: 0.5%; salt-2: 3.4%; salt-12: 0.6%) and decreasing thin fibers (cont: 7.4%; salt-2: 0.5%; salt-12: 6.8%) in non-injured arteries. Injured arteries presented similar collagen fiber distribution. Angiotensin quantification showed increased Ang(1-7) in salt treated mice (salt-2: +72%; salt-12: +45%) with a concomitant decrease in Ang II (salt-2: -54%; salt-12: -60%). Vascular injury increased significantly Ang(1-7) in salt-12 mice (+80%), maintaining Ang II reduction similar to that of a non-injured artery. The lack of changes in BP and HR suggests that the structural changes observed may be due to non-hemodynamic mechanisms such as local renin-angiotensin system. Collagen evaluation suggests that sodium overload induces time-related changes in vascular remodeling. The increase of artery injury with concomitant increase in Ang(1-7) in 12-week treated mice shows a direct association between the duration of salt treatment and the magnitude of vascular injury.
Collapse
|
11
|
Sevá Pessôa B, Becher PM, Van Veghel R, De Vries R, Tempel D, Sneep S, Van Beusekom H, Van Der Velden VHJ, Westermann D, Danser AHJ, Roks AJM. Effect of a stable Angiotensin-(1-7) analogue on progenitor cell recruitment and cardiovascular function post myocardial infarction. J Am Heart Assoc 2015; 4:jah3823. [PMID: 25655571 PMCID: PMC4345874 DOI: 10.1161/jaha.114.001510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Angiotensin‐(1–7) improves cardiac function and remodeling after myocardial infarction (MI). This may involve recruitment of hematopoietic progenitor cells that support angiogenesis. However, angiotensin‐(1–7) is rapidly metabolized in plasma and tissue. The authors investigated in mice the effect of a metabolically stable angiotensin‐(1–7) analogue, cyclic angiotensin‐(1–7), on progenitor cell recruitment and on the heart post MI, when given in the angiogenesis phase of remodeling. Methods and Results Angiogenic progenitor cell recruitment was measured by using flow cytometry 24 and 72 hours after a daily bolus injection of cyclic angiotensin‐(1–7) in healthy C57BL/6 mice. Further, mice underwent MI or sham surgery and subsequently received saline or 2 different doses of cyclic angiotensin‐(1–7) for 3 or 9 weeks. Cyclic angiotensin‐(1–7) increased circulating hematopoietic progenitor cells at 24 hours but not 72 hours. Post MI, cyclic angiotensin‐(1–7) diminished cardiomyocyte hypertrophy and reduced myogenic tone, without altering cardiovascular function or cardiac histology at 9 weeks. Importantly, cyclic angiotensin‐(1–7)–treated mice had reduced cardiac capillary density at 3 weeks after MI but not after 9 weeks. Finally, cyclic angiotensin‐(1–7) decreased tube formation by cultured human umbilical vein endothelial cells. Conclusions Our results suggest that cyclic angiotensin‐(1–7), when given early after MI, recruits progenitor cells but does not lead to improved angiogenesis, most likely because it simultaneously exerts antiangiogenic effect in adult endothelial cells. Apparently, optimal treatment with cyclic angiotensin‐(1–7) depends on the time point of onset of application after MI.
Collapse
Affiliation(s)
- Bruno Sevá Pessôa
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - Peter Moritz Becher
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Germany (P.M.B., D.W.)
| | - Richard Van Veghel
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - René De Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - Dennie Tempel
- Division of Cardiology and Pulmonology, Department of Interventional Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands (D.T.)
| | - Stefan Sneep
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (S.S., H.V.B.)
| | - Heleen Van Beusekom
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (S.S., H.V.B.)
| | - Vincent H J Van Der Velden
- Department of Immunology, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (V.J.V.D.V.)
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Germany (P.M.B., D.W.)
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands (B.S.P., R.V.V., R.D.V., J.D., A.M.R.)
| |
Collapse
|
12
|
Affiliation(s)
- Robson Augusto Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, CEP 31270-910, Brazil.
| |
Collapse
|
13
|
van Twist DJL, Houben AJHM, de Haan MW, Mostard GJM, Kroon AA, de Leeuw PW. Angiotensin-(1-7)-induced renal vasodilation in hypertensive humans is attenuated by low sodium intake and angiotensin II co-infusion. Hypertension 2013; 62:789-93. [PMID: 23918750 DOI: 10.1161/hypertensionaha.113.01814] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current evidence suggests that angiotensin-(1-7) plays an important role in the regulation of tissue blood flow. This evidence, however, is restricted to studies in animals and human forearm. Therefore, we studied the effects of intrarenal angiotensin-(1-7) infusion on renal blood flow in hypertensive humans. To assess the influence of renin-angiotensin system activity, sodium intake was varied and co-infusion with angiotensin II was performed in a subgroup. In 57 hypertensive patients who were scheduled for renal angiography, renal blood flow was measured ((133)Xenon washout method) before and during intrarenal infusion of angiotensin-(1-7) (3 incremental doses: 0.27, 0.9, and 2.7 ng/kg per minute). Patients were randomized into low or high sodium intake. These 2 groups of patients received angiotensin-(1-7), with or without intrarenal co-infusion of angiotensin II (0.3 ng/kg per minute). Angiotensin-(1-7) infusion resulted in intrarenal vasodilation in patients adhering to a sodium-rich diet. This vasodilatory effect of angiotensin-(1-7) was clearly attenuated by low sodium intake, angiotensin II co-infusion, or both. Regression analyses showed that the prevailing renin concentration was the only independent predictor of angiotensin-(1-7)-induced renal vasodilation. In conclusion, angiotensin-(1-7) induces renal vasodilation in hypertensive humans, but the effect of angiotensin-(1-7) is clearly attenuated by low sodium intake and co-infusion of angiotensin II. This supports the hypothesis that angiotensin-(1-7) induced renal vasodilation depends on the degree of renin-angiotensin-system activation.
Collapse
Affiliation(s)
- Daan J L van Twist
- Department of Internal Medicine, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
14
|
Tikellis C, Pickering RJ, Tsorotes D, Huet O, Chin-Dusting J, Cooper ME, Thomas MC. Activation of the Renin-Angiotensin system mediates the effects of dietary salt intake on atherogenesis in the apolipoprotein E knockout mouse. Hypertension 2012; 60:98-105. [PMID: 22647892 DOI: 10.1161/hypertensionaha.112.191767] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dietary salt intake is a major determinant of the activation state of renin-angiotensin-aldosterone system. Given the important role of the renin-angiotensin-aldosterone system in plaque accumulation, we investigated its role in the development of atherogenesis associated with sodium intake in apolipoprotein E knockout mice. Six-weeks of a low-salt diet (containing 0.03% sodium) resulted in a 4-fold increase in plaque accumulation in apolipoprotein E knockout mice when compared with mice receiving normal chow (containing 0.30% sodium). This was associated with activation of the renin-angiotensin-aldosterone system, increased vascular expression of adhesion molecules and inflammatory cytokines, and increased adhesion of labeled leukocytes across the whole aorta on a dynamic flow assay. These changes were blocked with the angiotensin-converting enzyme inhibitor perindopril (2 mg/kg per day). A high-salt diet (containing 3% sodium) attenuated vascular inflammation and atherogenesis, associated with suppression of the renin-angiotensin-aldosterone system, although systolic blood pressure levels were modestly increased (5 ± 1 mmHg). Constitutive activation of the renin-angiotensin-aldosterone system in angiotensin-converting enzyme 2 apolipoprotein E knockout mice was also associated with increased atherosclerosis and vascular adhesion, and this was attenuated by a high-salt diet associated with suppression of the renin-angiotensin-aldosterone system. By contrast, a low-salt diet failed to further activate the renin-angiotensin-aldosterone system or to increase atherosclerosis in angiotensin-converting enzyme 2 apolipoprotein E knockout mice. Together, these data validate a relationship between salt-mediated renin-angiotensin-aldosterone system activation and atherogenesis, which may partly explain the inconclusive or paradoxical findings of recent observational studies, despite clear effects on blood pressure.
Collapse
Affiliation(s)
- Chris Tikellis
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
15
|
Raffai G, Durand MJ, Lombard JH. Acute and chronic angiotensin-(1-7) restores vasodilation and reduces oxidative stress in mesenteric arteries of salt-fed rats. Am J Physiol Heart Circ Physiol 2011; 301:H1341-52. [PMID: 21803946 DOI: 10.1152/ajpheart.00202.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study determined the effect of ANG-(1-7) on salt-induced suppression of endothelium-dependent vasodilatation in the mesenteric arteries of male Sprague-Dawley rats. Chronic intravenous infusion of ANG-(1-7), oral administration of the nonpeptide mas receptor agonist AVE-0991, and acute preincubation of the arteries with ANG-(1-7) and AVE-0991 all restored vasodilator responses to both ACh and histamine that were absent in the arteries of rats fed a high-salt (4% NaCl) diet. The protective effects of ANG-(1-7) and AVE-0991 were inhibited by acute or chronic administration of the mas receptor antagonist A-779, the ANG II type 2 (AT(2)) receptor blocker PD-123319, or N-nitro-l-arginine methyl ester, but not the ANG II type 1 receptor antagonist losartan. Preincubation with the antioxidant tempol or the nitric oxide (NO) donor diethylenetriamine NONOate and acute and chronic administration of the AT(2) receptor agonist CGP-42112 mimicked the protective effect of ANG-(1-7) to restore vascular relaxation. Acute preincubation with ANG-(1-7) and chronic infusion of ANG-(1-7) ameliorated the elevated superoxide levels in rats fed a high-salt diet, but the expression of Cu/Zn SOD and Mn SOD enzyme proteins in the vessel wall was unaffected by ANG-(1-7) infusion. These results indicate that both acute and chronic systemic administration of ANG-(1-7) or AVE-0991 restore endothelium-dependent vascular relaxation in salt-fed Sprague-Dawley rats by reducing vascular oxidant stress and enhancing NO availability via mas and AT(2) receptors. These findings suggest a therapeutic potential for mas/AT(2) receptor activation in preventing the vascular oxidant stress and endothelial dysfunction associated with elevated dietary salt intake.
Collapse
Affiliation(s)
- Gábor Raffai
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
16
|
Huang A, Yan C, Suematsu N, Cuevas A, Yang YM, Kertowidjojo E, Hintze TH, Kaley G, Sun D. Impaired flow-induced dilation of coronary arterioles of dogs fed a low-salt diet: roles of ANG II, PKC, and NAD(P)H oxidase. Am J Physiol Heart Circ Physiol 2010; 299:H1476-83. [PMID: 20833958 DOI: 10.1152/ajpheart.01250.2009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Low-salt (LS) diet has been considered to be beneficial in the prevention and treatment of hypertension; however, it also increases plasma angiotensin (ANG) II and may cause adverse cardiovascular effects, such as endothelial dysfunction. We assessed endothelial function of coronary arterioles and vascular superoxide production, as a function of LS diet. Dogs were fed with LS (0.05% NaCl) or a normal-salt (NS, 0.65% NaCl) diet for 2 wk. There were threefold increases in plasma ANG II, associated with a 60% reduction in flow-induced dilation (FID) in coronary arterioles of LS compared with NS dogs. In vessels of NS dogs, FID was primarily mediated by nitric oxide (NO), as indicated by an eliminated FID by N(ω)-nitro-l-arginine methyl ester (l-NAME). In vessels of LS dogs, however, FID was eliminated. Administration of apocynin, a NAD(P)H oxidase inhibitor, partially restored FID and additional l-NAME eliminated FID. Generation of superoxide, measured with dihydroethidium, was significantly greater in vessels of LS than in NS dogs, which was further increased in response to ANG II or phorbol 12,13-dibutyrate, an agonist of protein kinase C (PKC). The enhanced superoxide was normalized by apocynin, losartan (a blocker of angiotensin type 1 receptor), and chelerythrine chloride (an antagonist of PKC). Western blotting indicated an upregulation of gp91(phox) and p47(phox), associated with increased expression of phosphorylated PKC in vessels of LS dogs. In separate experiments, dogs were fed simultaneously with LS and losartan (LS + Losa) for 2 wk. There was a significant increase in plasma ANG II in LS + Losa dogs, which, however, was associated with normal FID and gp91(phox) expression in coronary arterioles. In conclusion, LS led to endothelial dysfunction, as indicated by an impaired flow-induced dilation caused by decreasing NO bioavailibility, a response that involves angiotensin-induced activation of PKC that, in turn, activates vascular NAD(P)H oxidase to produce superoxide.
Collapse
Affiliation(s)
- An Huang
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Durand MJ, Raffai G, Weinberg BD, Lombard JH. Angiotensin-(1-7) and low-dose angiotensin II infusion reverse salt-induced endothelial dysfunction via different mechanisms in rat middle cerebral arteries. Am J Physiol Heart Circ Physiol 2010; 299:H1024-33. [PMID: 20656887 DOI: 10.1152/ajpheart.00328.2010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The goals of this study were to 1) determine the acute effect of ANG-(1-7) on vascular tone in isolated middle cerebral arteries (MCAs) from Sprague-Dawley rats fed a normal salt (NS; 0.4% NaCl) diet, 2) evaluate the ability of chronic intravenous infusion of ANG-(1-7) (4 ng·kg(-1)·min(-1)) for 3 days to restore endothelium-dependent dilation to acetylcholine (ACh) in rats fed a high-salt (HS; 4% NaCl) diet, and 3) determine whether the amelioration of endothelial dysfunction by ANG-(1-7) infusion in rats fed a HS diet is different from the protective effect of low-dose ANG II infusion in salt-fed rats. MCAs from rats fed a NS diet dilated in response to exogenous ANG-(1-7) (10(-10)-10(-5) M). Chronic ANG-(1-7) infusion significantly reduced vascular superoxide levels and restored the nitric oxide-dependent dilation to ACh (10(-10)-10(-5) M) that was lost in MCAs of rats fed a HS diet. Acute vasodilation to ANG-(1-7) and the restoration of ACh-induced dilation by chronic ANG-(1-7) infusion in rats fed a HS diet were blocked by the Mas receptor antagonist [D-ALA(7)]-ANG-(1-7) or the ANG II type 2 receptor antagonist PD-123319 and unaffected by ANG II type 1 receptor blockade with losartan. The restoration of ACh-induced dilation in MCAs of HS-fed rats by chronic intravenous infusion of ANG II (5 ng·kg(-1)·min(-1)) was blocked by losartan and unaffected by d-ALA. These findings demonstrate that circulating ANG-(1-7), working via the Mas receptor, restores endothelium-dependent vasodilation in cerebral resistance arteries of animals fed a HS diet via mechanisms distinct from those activated by low-dose ANG II infusion.
Collapse
Affiliation(s)
- Matthew J Durand
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
18
|
DeMello WC, Frohlich ED. Angiotensin-(1-7), Angiotensin-Converting Enzyme 2, and New Components of the Renin Angiotensin System. RENIN ANGIOTENSIN SYSTEM AND CARDIOVASCULAR DISEASE 2010. [PMCID: PMC7120984 DOI: 10.1007/978-1-60761-186-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The discovery of angiotensin-(1-7) [Ang-(1-7)] in 1988 represented the first deviation from the traditional biochemical cascade of forming bioactive angiotensin peptides. Prior to that time, the biological actions of angiotensin II (Ang II) were being investigated as it relates to cardiovascular function, including hypertension, cardiac hypertrophy and failure, as well as biological actions in the brain and kidney. We now know that Ang II elicits a whole host of actions both within and outside of the cardiovascular system. Furthermore, the discovery of Ang-(1-7) by our laboratory was also the first indication of a biologically active angiotensin peptide that further studies revealed served to counter-balance the actions of Ang II. This chapter reviews the data demonstrating the role of the vasodepressor axis of the renin angiotensin system in the regulation of cardiovascular function and the new data that shows the existence of angiotensin-(1-12) as a novel alternate substrate for the production of angiotensin peptides. The ultimate role of this discovery, as well as the continuing elucidation of mechanisms pertaining to RAS physiology, will likely be clarified in the coming years, in hopes of improving the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Walmor C. DeMello
- Department of Pharmacology, University of Puerto Rico, San Juan, 00936 U.S.A
| | - Edward D. Frohlich
- Ochsner Clinic Foundation, Jefferson Highway 1514 , New Orleans, 70121 U.S.A
| |
Collapse
|
19
|
Iusuf D, Henning RH, van Gilst WH, Roks AJ. Angiotensin-(1–7): Pharmacological properties and pharmacotherapeutic perspectives. Eur J Pharmacol 2008; 585:303-12. [DOI: 10.1016/j.ejphar.2008.02.090] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 01/23/2008] [Accepted: 02/06/2008] [Indexed: 11/30/2022]
|
20
|
Dimitropoulou C, Chatterjee A, McCloud L, Yetik-Anacak G, Catravas JD. Angiotensin, bradykinin and the endothelium. Handb Exp Pharmacol 2007:255-94. [PMID: 16999222 DOI: 10.1007/3-540-32967-6_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Angiotensins and kinins are endogenous peptides with diverse biological actions; as such, they represent current and future targets of therapeutic intervention. The field of angiotensin biology has changed significantly over the last 50 years. Our original understanding of the crucial role of angiotensin II in the regulation of vascular tone and electrolyte homeostasis has been expanded to include the discovery of new angiotensins, their important role in cardiovascular inflammation and the development of clinically useful synthesis inhibitors and receptor antagonists. While less applied progress has been achieved in the kinin field, there are continuous discoveries in bradykinin physiology and in the complexity of kinin interactions with other proteins. The present review focuses on mechanisms and interactions of angiotensins and kinins that deal specifically with vascular endothelium.
Collapse
Affiliation(s)
- C Dimitropoulou
- Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912-2500, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW In this review we will focus on the recent findings related to angiotensin-(1-7) as an angiotensin II counter-regulatory peptide within the renin-angiotensin system. RECENT FINDINGS The identification of the angiotensin-converting enzyme homologue ACE2 as an angiotensin peptide processing enzyme and of Mas as a receptor for angiotensin-(1-7) has contributed to establishing this heptapeptide as a biologically active member of the renin-angiotensin system cascade. SUMMARY The previously unsuspected complexity of the renin-angiotensin system, unmasked by novel findings, has revealed new possibilities for exploring its physiological and pathophysiological roles. In addition, the ACE2-angiotensin-(1-7)-Mas axis may be seriously considered as a putative target for the development of new cardiovascular drugs.
Collapse
Affiliation(s)
- Robson A S Santos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | | |
Collapse
|
22
|
Toda N, Ayajiki K, Okamura T. Interaction of endothelial nitric oxide and angiotensin in the circulation. Pharmacol Rev 2007; 59:54-87. [PMID: 17329548 DOI: 10.1124/pr.59.1.2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Discovery of the unexpected intercellular messenger and transmitter nitric oxide (NO) was the highlight of highly competitive investigations to identify the nature of endothelium-derived relaxing factor. This labile, gaseous molecule plays obligatory roles as one of the most promising physiological regulators in cardiovascular function. Its biological effects include vasodilatation, increased regional blood perfusion, lowering of systemic blood pressure, and antithrombosis and anti-atherosclerosis effects, which counteract the vascular actions of endogenous angiotensin (ANG) II. Interactions of these vasodilator and vasoconstrictor substances in the circulation have been a topic that has drawn the special interest of both cardiovascular researchers and clinicians. Therapeutic agents that inhibit the synthesis and action of ANG II are widely accepted to be essential in treating circulatory and metabolic dysfunctions, including hypertension and diabetes mellitus, and increased availability of NO is one of the most important pharmacological mechanisms underlying their beneficial actions. ANG II provokes vascular actions through various receptor subtypes (AT1, AT2, and AT4), which are differently involved in NO synthesis and actions. ANG II and its derivatives, ANG III, ANG IV, and ANG-(1-7), alter vascular contractility with different mechanisms of action in relation to NO. This review article summarizes information concerning advances in research on interactions between NO and ANG in reference to ANG receptor subtypes, radical oxygen species, particularly superoxide anions, ANG-converting enzyme inhibitors, and ANG receptor blockers in patients with cardiovascular disease, healthy individuals, and experimental animals. Interactions of ANG and endothelium-derived relaxing factor other than NO, such as prostaglandin I2 and endothelium-derived hyperpolarizing factor, are also described.
Collapse
Affiliation(s)
- Noboru Toda
- Department of Pharmacology, Shiga University of Medical Science, Seta, Otsu, Japan.
| | | | | |
Collapse
|
23
|
Gurzu B, Costuleanu M, Slatineanu SM, Ciobanu A, Petrescu G. Are multiple angiotensin receptor types involved in angiotensin (1-7) actions on isolated rat portal vein. J Renin Angiotensin Aldosterone Syst 2006; 6:90-5. [PMID: 16470488 DOI: 10.3317/jraas.2005.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Angiotensin (1-7) [Ang (1-7)] is a bioactive component of the renin angiotensin system. Ang (1-7) may interact with angiotensin type 1 (AT1) or type 2 (AT2) receptors and with Ang (1-7) - specific receptors. We examined the interactions between different doses of Ang (1-7) (1 nM-1 microM) and angiotensin II (Ang II) (10 and 100 nM) on isolated rat portal vein. In endothelium-denuded portal vein rings, Ang (1-7) inhibited contractile effects induced by Ang II. The effects of Ang (1-7) were modified by indomethacin, N(G)-nitro-L-arginine methyl ester (L-NAME), (D-Ala7)-Angiotensin (1-7) (H-2888) and losartan. Our results suggest that on rat isolated portal vein rings without endothelium, Ang (1-7) reduces Ang II-induced contractions by acting mostly on Ang (1-7) specific receptors, and this effect is mediated by vasodilatatory prostaglandins. At high concentrations, Ang (1-7) effects are mediated by AT1-receptors, though to a lesser extent than by Ang (1-7) specific receptors.
Collapse
Affiliation(s)
- Bogdan Gurzu
- Department of Physiology, Faculty of Dentistry, University of Medicine and Pharmacy "Gr. T. Popa", Iasi, RO-700115, Romania
| | | | | | | | | |
Collapse
|
24
|
Grobe JL, Katovich MJ. Alterations in aortic vascular reactivity to angiotensin 1–7 in 17-β-estradiol-treated female SD rats. ACTA ACUST UNITED AC 2006; 133:62-7. [PMID: 16219374 DOI: 10.1016/j.regpep.2005.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Revised: 09/09/2005] [Accepted: 09/12/2005] [Indexed: 12/01/2022]
Abstract
Estrogen's suggested cardio-protective effects have come into question following the results of recent clinical trials. Two major components of the renin-angiotensin system (RAS) that are modulated by estrogen are angiotensin converting enzyme, and the angiotensin II type 1 receptor. Further research has revealed several new components of the RAS, including angiotensin converting enzyme 2, its peptide product angiotensin 1-7 (Ang 1-7), and that peptide's receptor, Mas. These components appear to oppose the classical effects of the RAS, and may act to buffer the RAS in vivo. Recent work has shown that during pregnancy, when estradiol levels are elevated, renal and urinary Ang 1-7 are greatly increased. This study examined the effects of estradiol on the efficacy of Ang 1-7 in the rat aorta. Female Sprague-Dawley rats were ovariectomized and a subgroup was chronically treated with subcutaneous pellets of estradiol for 3 weeks. Thoracic aortas were harvested for assessment of in vitro vascular reactivity to Ang 1-7. The results demonstrated that increased estradiol exposure attenuated the relaxation response to Ang 1-7 in a dose-dependent manner. These findings are in contrast to recent work showing potentiated responses to Ang 1-7 in mesenteric arteries from estrogen-manipulated rats, and may suggest a regional specificity in estradiol-mediated changes in the RAS.
Collapse
Affiliation(s)
- Justin L Grobe
- Department of Pharmacodynamics, University of Florida College of Pharmacy, JHMHSC, PO Box 100487, Gainesville, FL 32610, USA
| | | |
Collapse
|
25
|
Castro CHD, Santos RASD, Ferreira AJ, Bader M, Alenina N, Almeida APD. Evidence for a Functional Interaction of the Angiotensin-(1–7) Receptor Mas With AT
1
and AT
2
Receptors in the Mouse Heart. Hypertension 2005; 46:937-42. [PMID: 16157793 DOI: 10.1161/01.hyp.0000175813.04375.8a] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of this study was to evaluate the angiotensin (Ang)-(1–7) effects in isolated mouse hearts. The hearts of male C57BL/6J and knockout mice for the Ang-(1–7) receptor Mas were perfused by the Langendorff method. After a basal period, the hearts were perfused for 20 minutes with Krebs-Ringer solution (KRS) alone (control) or KRS containing Ang-(1–7) (0.22 pmol/L), the Mas antagonist A-779 (115 nmol/L), the angiotensin type 1 receptor antagonist losartan (2.2 μmol/L), or the angiotensin type 2 receptor antagonist PD123319 (130 nmol/L). To evaluate the involvement of Ang receptors, prostaglandins, and nitric oxide in the Ang-(1–7) effects, the hearts were perfused for 20 to 30 minutes with KRS containing either A-779, losartan, PD123319, indomethacin, or
N
G
-nitro-
l
-arginine methyl ester (
l
-NAME) alone or in association with subsequent Ang-(1–7) perfusion. In addition, hearts from Mas-knockout mice were perfused for 20 minutes with KRS containing Ang-(1–7) (0.22 pmol/L) and losartan. Ang-(1–7) alone did not change the perfusion pressure. Strikingly, in the presence of losartan, 0.22 pmol/L Ang-(1–7) induced a significant decrease in perfusion pressure, which was blocked by A-779, indomethacin, and
l
-NAME. Furthermore, this effect was not observed in Mas-knockout mice. In contrast, in the presence of PD123319, Ang-(1–7) produced a significant increase in perfusion pressure. This change was not modified by the addition of A-779. Losartan reduced but did not abolish this effect. Our results suggest that Ang-(1–7) produces complex vascular effects in isolated, perfused mouse hearts involving interaction of its receptor with angiotensin type 1- and type 2-related mechanisms, leading to the release of prostaglandins and nitric oxide.
Collapse
|