1
|
Li J, Gao MH, Gao XJ, Lau K. A child with megaloblastic anemia and proteinuria: Answers. Pediatr Nephrol 2022; 37:809-811. [PMID: 34999977 DOI: 10.1007/s00467-021-05282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Jun Li
- Division of Pediatric Nephrology, Shenzhen Children's Hospital, Shenzhen, China
| | - Mei-Hao Gao
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xiao-Jie Gao
- Division of Pediatric Nephrology, Shenzhen Children's Hospital, Shenzhen, China
| | - Keith Lau
- Raffles Hospital Chongqing, No. 2 Huashan Middle Road, Yubei District, Chongqing, China.
| |
Collapse
|
2
|
Gräsbeck R. Hooked to vitamin B12 since 1955: A historical perspective. Biochimie 2013; 95:970-5. [DOI: 10.1016/j.biochi.2012.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/11/2012] [Indexed: 11/28/2022]
|
3
|
Gräsbeck R, Tanner SM. Juvenile selective vitamin B₁₂ malabsorption: 50 years after its description-10 years of genetic testing. Pediatr Res 2011; 70:222-8. [PMID: 21623254 PMCID: PMC3152595 DOI: 10.1203/pdr.0b013e3182242124] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fifty years have passed since the description of juvenile selective malabsorption of cobalamin (Cbl). Quality of life improvements have dramatically reduced the incidence of parasite-induced or nutritional Cbl deficiency. Consequently, inherited defects have become a leading cause of Cbl deficiency in children, which is not always expressed as anemia. Unfortunately, the gold standard for clinical diagnosis, the Schilling test, has increasingly become unavailable, and replacement tests are only in their infancy. Genetic testing is complicated by genetic heterogeneity and differential diagnosis. This review documents the history, research, and advances in genetics that have elucidated the causes of juvenile Cbl malabsorption. Genetic research has unearthed many cases in the past decade, mostly in Europe and North America, often among immigrants from the Middle East or North Africa. Lack of suitable clinical testing potentially leaves many patients inadequately diagnosed. The consequences of suboptimal Cbl levels for neurological development are well documented. By raising awareness, we wish to push for fast track development of better clinical tools and suitable genetic testing. Clinical awareness must include attention to ethnicity, a sensitive topic but effective for fast diagnosis. The treatment with monthly parenteral Cbl for life offers a simple and cost-effective solution once proper diagnosis is made.
Collapse
Affiliation(s)
- Ralph Gräsbeck
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Helsinki 00290, Finland
| | | |
Collapse
|
4
|
Namour F, Dobrovoljski G, Chery C, Audonnet S, Feillet F, Sperl W, Gueant JL. Luminal expression of cubilin is impaired in Imerslund-Grasbeck syndrome with compound AMN mutations in intron 3 and exon 7. Haematologica 2011; 96:1715-9. [PMID: 21750092 DOI: 10.3324/haematol.2011.043984] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Juvenile megaloblastic anaemia 1 (OMIM # 261100) is a rare autosomic disorder characterized by selective cobalamin mal-absorption and inconstant proteinuria produced by mutations in either CUBN or AMN genes. Amnionless, the gene product of AMN, is a transmembrane protein that binds tightly to the N-terminal end of cubilin, the gene product of CUBN. Cubilin binds to intrinsic factor-cobalamin complex and is expressed in the distal intestine and the proximal renal tubule. We report a compound AMN heterozygosity with c.742C>T, p.Gln248X and c.208-2A>G mutations in 2 siblings that led to premature termination codon in exon 7 and exon 6, respectively. It produced a dramatic decrease in receptor activity in urine, despite absence of CUBN mutation and normal affinity of the receptor for intrinsic factor binding. Heterozygous carriers for c.742T and c.208-2G had no pathological signs. These results indicate that amnionless is essential for the correct luminal expression of cubilin in humans.
Collapse
Affiliation(s)
- Fares Namour
- Faculté de Médecine, INSERM U954 Nutrition, Genetics, and Environmental Risk Exposure, Vandoeuvre Les Nancy, France.
| | | | | | | | | | | | | |
Collapse
|
5
|
Gräsbeck R. Imerslund-Gräsbeck syndrome (selective vitamin B(12) malabsorption with proteinuria). Orphanet J Rare Dis 2006; 1:17. [PMID: 16722557 PMCID: PMC1513194 DOI: 10.1186/1750-1172-1-17] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2006] [Accepted: 05/19/2006] [Indexed: 11/10/2022] Open
Abstract
Imerslund-Gräsbeck syndrome (IGS) or selective vitamin B(12) (cobalamin) malabsorption with proteinuria is a rare autosomal recessive disorder characterized by vitamin B(12) deficiency commonly resulting in megaloblastic anemia, which is responsive to parenteral vitamin B(12) therapy and appears in childhood. Other manifestations include failure to thrive and grow, infections and neurological damage. Mild proteinuria (with no signs of kidney disease) is present in about half of the patients. Anatomical anomalies in the urinary tract were observed in some Norwegian patients. Vitamin B(12) absorption tests show low absorption, not corrected by administration of intrinsic factor. The symptoms appear from 4 months (not immediately after birth as in transcobalamin deficiency) up to several years after birth. The syndrome was first described in Finland and Norway where the prevalence is about 1:200,000. The cause is a defect in the receptor of the vitamin B(12)-intrinsic factor complex of the ileal enterocyte. In most cases, the molecular basis of the selective malabsorption and proteinuria involves a mutation in one of two genes, cubilin (CUBN) on chromosome 10 or amnionless (AMN) on chromosome 14. Both proteins are components of the intestinal receptor for the vitamin B(12)-intrinsic factor complex and the receptor mediating the tubular reabsorption of protein from the primary urine. Management includes life-long vitamin B(12) injections, and with this regimen, the patients stay healthy for decades. However, the proteinuria persists. In diagnosing this disease, it is important to be aware that cobalamin deficiency affects enterocyte function; therefore, all tests suggesting general and cobalamin malabsorption should be repeated after abolishment of the deficiency.
Collapse
Affiliation(s)
- Ralph Gräsbeck
- Biochemistry Unit, Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, FI-00290 Helsinki, Finland.
| |
Collapse
|
6
|
Norio R. The Finnish Disease Heritage III: the individual diseases. Hum Genet 2003; 112:470-526. [PMID: 12627297 DOI: 10.1007/s00439-002-0877-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2002] [Accepted: 10/30/2002] [Indexed: 02/03/2023]
Abstract
This article is the third and last in a series entitled The Finnish Disease Heritage I-III. All the 36 rare hereditary diseases belonging to this entity are described for clinical and molecular genetic purposes, based on the Finnish experience gathered over a period of half a century. In addition, five other diseases are mentioned. They may be included in the list of the "Finnish diseases" after adequate complementary studies.
Collapse
Affiliation(s)
- Reijo Norio
- Department of Medical Genetics, The Family Federation of Finland, Helsinki, Finland.
| |
Collapse
|
7
|
Guéant JL, Chéry C, Namour F. Cubilin and the hydrophobic intrinsic factor receptor are distinct molecules. Blood 2001; 97:3316-7. [PMID: 11368063 DOI: 10.1182/blood.v97.10.3316] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
8
|
Cubilin and the hydrophobic intrinsic factor receptor are distinct molecules. Blood 2001. [DOI: 10.1182/blood.v97.10.3316.h8003313c_3316_3318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
9
|
Brada N, Gordon MM, Shao JS, Wen J, Alpers DH. Production of gastric intrinsic factor, transcobalamin, and haptocorrin in opossum kidney cells. Am J Physiol Renal Physiol 2000; 279:F1006-13. [PMID: 11097618 DOI: 10.1152/ajprenal.2000.279.6.f1006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opossum kidney epithelial cells were shown previously to synthesize and secrete two cobalamin (Cbl)-binding proteins, presumed to be haptocorrin (Hc) and transcobalamin II (TCII). The present study examines the hypothesis that renal tubular cells also produce intrinsic factor (IF), and this production provides an explanation for the presence of IF in urine. By using antisera raised against human IF and against TCII, the presence of TCII was confirmed, and that of IF discovered in the media of opossum kidney (OK) cells in culture. The apparent molecular weight of IF and TCII was 68 and 43 kDa, respectively. Immunoreactivity on Western blot of the putative IF protein was blocked by recombinant human IF. When proteins secreted into the media were separated electrophoretically under nondenaturing conditions after binding with [(57)Co]Cbl, a broad major band migrated at a relative front independently of recombinant IF or TCII, and probably represents Hc, as the Cbl binding is blocked by cobinamide. Small amounts of bound [(57)Co]Cbl migrated in the position of both IF and TCII, when cobinamide was present. The presence of IF and TCII in OK cells was confirmed by immunohistology. Specific reactivity for IF (blocked by recombinant IF) was found in proximal tubules of opossum kidney, but not in other portions of the nephron, confirming the ability of anti-human IF antiserum to detect opossum IF. A 732-bp fragment of IF, nearly identical in sequence to rat IF, was isolated by RT-PCR from opossum kidney mRNA, and Western blot confirmed the presence of IF protein. The presence of IF was also documented in rat kidney by isolation of an RT-PCR fragment, immunocytochemistry, and Western blot. IF should be added to the list of renal (proximal) tubular antigens that are shared by other epithelia.
Collapse
Affiliation(s)
- N Brada
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
10
|
Dugué B, Ismail E, Sequeira F, Thakkar J, Gräsbeck R. Urinary excretion of intrinsic factor and the receptor for its cobalamin complex in Gräsbeck-Imerslund patients: the disease may have subsets. J Pediatr Gastroenterol Nutr 1999; 29:227-30. [PMID: 10435666 DOI: 10.1097/00005176-199908000-00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- B Dugué
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | | | | | | |
Collapse
|
11
|
Guéant JL, Chery C, Namour F, Aimone-Gastin I, Wustinger M. Decreased affinity of urinary intrinsic factor-cobalamin receptor in a case of Gräsbeck-Imerslund syndrome. Gastroenterology 1999; 116:1274-6. [PMID: 10220529 DOI: 10.1016/s0016-5085(99)70041-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
12
|
Aminoff M, Carter JE, Chadwick RB, Johnson C, Gräsbeck R, Abdelaal MA, Broch H, Jenner LB, Verroust PJ, Moestrup SK, de la Chapelle A, Krahe R. Mutations in CUBN, encoding the intrinsic factor-vitamin B12 receptor, cubilin, cause hereditary megaloblastic anaemia 1. Nat Genet 1999; 21:309-13. [PMID: 10080186 DOI: 10.1038/6831] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Megaloblastic anaemia 1 (MGA1, OMIM 261100) is a rare, autosomal recessive disorder characterized by juvenile megaloblastic anaemia, as well as neurological symptoms that may be the only manifestations. At the cellular level, MGA1 is characterized by selective intestinal vitamin B12 (B12, cobalamin) malabsorption. MGA1 occurs worldwide, but its prevalence is higher in several Middle Eastern countries and Norway, and highest in Finland (0.8/100,000). We previously mapped the MGA1 locus by linkage analysis in Finnish and Norwegian families to a 6-cM region on chromosome 10p12.1 (ref. 8). A functional candidate gene encoding the intrinsic factor (IF)-B12 receptor, cubilin, was recently cloned; the human homologue, CUBN, was mapped to the same region. We have now refined the MGA1 region by linkage disequilibrium (LD) mapping, fine-mapped CUBN and identified two independent disease-specific CUBN mutations in 17 Finnish MGA1 families. Our genetic and molecular data indicate that mutations in CUBN cause MGA1.
Collapse
Affiliation(s)
- M Aminoff
- Department of Medical Microbiology and Immunology, Comprehensive Cancer Center, Ohio State University, Columbus 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|