1
|
Kistamás K, Szentandrássy N, Hegyi B, Ruzsnavszky F, Váczi K, Bárándi L, Horváth B, Szebeni A, Magyar J, Bányász T, Kecskeméti V, Nánási PP. Effects of pioglitazone on cardiac ion currents and action potential morphology in canine ventricular myocytes. Eur J Pharmacol 2013; 710:10-9. [PMID: 23588116 DOI: 10.1016/j.ejphar.2013.03.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 12/17/2022]
Abstract
Despite its widespread therapeutical use there is little information on the cellular cardiac effects of the antidiabetic drug pioglitazone in larger mammals. In the present study, therefore, the concentration-dependent effects of pioglitazone on ion currents and action potential configuration were studied in isolated canine ventricular myocytes using standard microelectrode, conventional whole cell patch clamp, and action potential voltage clamp techniques. Pioglitazone decreased the maximum velocity of depolarization and the amplitude of phase-1 repolarization at concentrations ≥3 μM. Action potentials were shortened by pioglitazone at concentrations ≥10 μM, which effect was accompanied with significant reduction of beat-to-beat variability of action potential duration. Several transmembrane ion currents, including the transient outward K(+) current (Ito), the L-type Ca(2+) current (ICa), the rapid and slow components of the delayed rectifier K(+) current (IKr and IKs, respectively), and the inward rectifier K(+) current (IK1) were inhibited by pioglitazone under conventional voltage clamp conditions. Ito was blocked significantly at concentrations ≥3 μM, ICa, IKr, IKs at concentrations ≥10 μM, while IK1 at concentrations ≥30 μM. Suppression of Ito, ICa, IKr, and IK1 has been confirmed also under action potential voltage clamp conditions. ATP-sensitive K(+) current, when activated by lemakalim, was effectively blocked by pioglitazone. Accordingly, action potentials were prolonged by 10 μM pioglitazone when the drug was applied in the presence of lemakalim. All these effects developed rapidly and were readily reversible upon washout. In conclusion, pioglitazone seems to be a harmless agent at usual therapeutic concentrations.
Collapse
Affiliation(s)
- Kornél Kistamás
- Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Szebeni A, Szentandrássy N, Pacher P, Simkó J, Nánási PP, Kecskeméti V. Can the electrophysiological action of rosiglitazone explain its cardiac side effects? Curr Med Chem 2011; 18:3720-8. [PMID: 21774756 DOI: 10.2174/092986711796642364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Accepted: 07/09/2011] [Indexed: 01/30/2023]
Abstract
Recent large clinical trials found an association between the antidiabetic drug rosiglitazone therapy and increased risk of cardiovascular adverse events. The aim of this report is to elucidate the cardiac electrophysiological properties of rosiglitazone (R) on isolated rat and murine ventricular papillary muscle cells and canine ventricular myocytes using conventional microelectrode, whole cell voltage clamp, and action potential (AP) voltage clamp techniques. In histidine-decarboxylase knockout mice as well as in their wild types R (1-30 µM) shortened AP duration at 90% level of repolarization (APD(90)) and increased the AP amplitude (APA) in a concentration-dependent manner. In rat ventricular papillary muscle cells R (1-30 µM) caused a significant reduction of APA and maximum velocity of depolarization (V(max)) which was accompanied by lengthening of APD(90). In single canine ventricular myocytes at concentrations ≥10 µM R decreased the amplitude of phase-1 repolarization, the plateau potential and reduced V(max). R suppressed several ion currents in a concentration-dependent manner under voltage clamp conditions. The EC(50) value for this inhibition was 25.2±2.7 µM for the transient outward K(+ ) current (I(to)), 72.3±9.3 µM for the rapid delayed rectifier K(+ ) current (I(Kr)), and 82.5±9.4 µM for the L-type Ca(2+ ) current (I(Ca)) with Hill coefficients close to unity. The inward rectifier K(+ ) current (I(K1)) was not affected by R up to concentrations of 100 µM. Suppression of I(to), I(Kr), and I(Ca) has been confirmed under action potential voltage clamp conditions as well. The observed alterations in the AP morphology and densities of ion currents may predict serious proarrhythmic risk in case of intoxication with R as a consequence of overdose or decreased elimination of the drug, particularly in patients having multiple cardiovascular risk factors, such as elderly diabetic patients.
Collapse
Affiliation(s)
- A Szebeni
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Nagyvárad tér 4, P.O.B. 370, 1445, Hungary
| | | | | | | | | | | |
Collapse
|
3
|
Szentandrássy N, Harmati G, Bárándi L, Simkó J, Horváth B, Magyar J, Bányász T, Lorincz I, Szebeni A, Kecskeméti V, Nánási PP. Effects of rosiglitazone on the configuration of action potentials and ion currents in canine ventricular cells. Br J Pharmacol 2011; 163:499-509. [PMID: 21232044 PMCID: PMC3101613 DOI: 10.1111/j.1476-5381.2011.01215.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 10/21/2010] [Accepted: 10/28/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE In spite of its widespread clinical application, there is little information on the cellular cardiac effects of the antidiabetic drug rosiglitazone in larger experimental animals. In the present study therefore concentration-dependent effects of rosiglitazone on action potential morphology and the underlying ion currents were studied in dog hearts. EXPERIMENTAL APPROACH Standard microelectrode techniques, conventional whole cell patch clamp and action potential voltage clamp techniques were applied in enzymatically dispersed ventricular cells from dog hearts. KEY RESULTS At concentrations ≥10 µM rosiglitazone decreased the amplitude of phase-1 repolarization, reduced the maximum velocity of depolarization and caused depression of the plateau potential. These effects developed rapidly and were readily reversible upon washout. Rosiglitazone suppressed several transmembrane ion currents, concentration-dependently, under conventional voltage clamp conditions and altered their kinetic properties. The EC(50) value for this inhibition was 25.2 ± 2.7 µM for the transient outward K(+) current (I(to)), 72.3 ± 9.3 µM for the rapid delayed rectifier K(+) current (I(Kr)) and 82.5 ± 9.4 µM for the L-type Ca(2+) current (I(Ca) ) with Hill coefficients close to unity. The inward rectifier K(+) current (I(K1)) was not affected by rosiglitazone up to concentrations of 100 µM. Suppression of I(to), I(Kr), and I(Ca) was confirmed also under action potential voltage clamp conditions. CONCLUSIONS AND IMPLICATIONS Alterations in the densities and kinetic properties of ion currents may carry serious pro-arrhythmic risk in case of overdose with rosiglitazone, especially in patients having multiple cardiovascular risk factors, like elderly diabetic patients.
Collapse
|
4
|
Blalock EM, Phelps JT, Pancani T, Searcy JL, Anderson KL, Gant JC, Popovic J, Avdiushko MG, Cohen DA, Chen KC, Porter NM, Thibault O. Effects of long-term pioglitazone treatment on peripheral and central markers of aging. PLoS One 2010; 5:e10405. [PMID: 20454453 PMCID: PMC2861595 DOI: 10.1371/journal.pone.0010405] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 04/07/2010] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Thiazolidinediones (TZDs) activate peroxisome proliferator-activated receptor gamma (PPARgamma) and are used clinically to help restore peripheral insulin sensitivity in Type 2 diabetes (T2DM). Interestingly, long-term treatment of mouse models of Alzheimer's disease (AD) with TZDs also has been shown to reduce several well-established brain biomarkers of AD including inflammation, oxidative stress and Abeta accumulation. While TZD's actions in AD models help to elucidate the mechanisms underlying their potentially beneficial effects in AD patients, little is known about the functional consequences of TZDs in animal models of normal aging. Because aging is a common risk factor for both AD and T2DM, we investigated whether the TZD, pioglitazone could alter brain aging under non-pathological conditions. METHODS AND FINDINGS We used the F344 rat model of aging, and monitored behavioral, electrophysiological, and molecular variables to assess the effects of pioglitazone (PIO-Actos(R) a TZD) on several peripheral (blood and liver) and central (hippocampal) biomarkers of aging. Starting at 3 months or 17 months of age, male rats were treated for 4-5 months with either a control or a PIO-containing diet (final dose approximately 2.3 mg/kg body weight/day). A significant reduction in the Ca(2+)-dependent afterhyperpolarization was seen in the aged animals, with no significant change in long-term potentiation maintenance or learning and memory performance. Blood insulin levels were unchanged with age, but significantly reduced by PIO. Finally, a combination of microarray analyses on hippocampal tissue and serum-based multiplex cytokine assays revealed that age-dependent inflammatory increases were not reversed by PIO. CONCLUSIONS While current research efforts continue to identify the underlying processes responsible for the progressive decline in cognitive function seen during normal aging, available medical treatments are still very limited. Because TZDs have been shown to have benefits in age-related conditions such as T2DM and AD, our study was aimed at elucidating PIO's potentially beneficial actions in normal aging. Using a clinically-relevant dose and delivery method, long-term PIO treatment was able to blunt several indices of aging but apparently affected neither age-related cognitive decline nor peripheral/central age-related increases in inflammatory signaling.
Collapse
Affiliation(s)
- Eric M. Blalock
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Jeremiah T. Phelps
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Tristano Pancani
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - James L. Searcy
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Katie L. Anderson
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - John C. Gant
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Jelena Popovic
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Margarita G. Avdiushko
- Department of Microbiology and Immunology, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Don A. Cohen
- Department of Microbiology and Immunology, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Kuey-Chu Chen
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Nada M. Porter
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| | - Olivier Thibault
- Department of Molecular and Biomedical Pharmacology, University of Kentucky Medical Center, Lexington, Kentucky, United States of America
| |
Collapse
|
5
|
Hsiao SH, Chung HH, Tong YC, Cheng JT. Chronic fluoxetine administration desensitizes the hyperglycemia but not the anorexia induced by serotonin in rats receiving fructose-enriched chow. Neurosci Lett 2006; 404:6-8. [PMID: 16782272 DOI: 10.1016/j.neulet.2006.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 05/01/2006] [Accepted: 05/05/2006] [Indexed: 11/27/2022]
Abstract
The present study examined the effect of chronic fluoxetine administration on the feeding behavior of fructose-fed rats. Male fructose-fed rats were divided into two groups: (1) control fructose-fed rats (CFR), and (2) fructose-fed rats treated with oral fluoxetine 5 mg/kg/day for 30 days (FFR). The feeding behaviors and plasma glucose levels in response to either serotonin (5-HT, 5 mg/kg) or saline injection were studied. The results showed 5-HT increased CFR plasma glucose in a dose-dependent fashion while FFR demonstrated significantly lower responses to 5-HT stimulation. 5-HT significantly increased the feeding latency and decreased the amount of food intake in the CFR. Fluoxetine treatment did not affect the 5-HT effect on food intake amount but significantly reduced the 5-HT effect on feeding latency. Putting the animals in a new environment increased the 5-HT effect on feeding latency further; the effect was ameliorated in the FFR. In conclusion, 5-HT induced hyperglycemia, increased feeding latency and decreased food intake amount in fructose-fed rats. Chronic administration of fluoxetine counteracted the 5-HT effects on blood glucose level and feeding latency, but not on the amount of food intake.
Collapse
Affiliation(s)
- Sheng-Huang Hsiao
- Department of Neurosurgery, Taiepi City Hospital, Taipei City, Taiwan
| | | | | | | |
Collapse
|
6
|
Zhou Y, Mitra S, Varadharaj S, Parinandi N, Zweier JL, Flavahan NA. Increased expression of cyclooxygenase-2 mediates enhanced contraction to endothelin ETA receptor stimulation in endothelial nitric oxide synthase knockout mice. Circ Res 2006; 98:1439-45. [PMID: 16645140 DOI: 10.1161/01.res.0000224120.52792.10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The aim of this study was to determine whether prolonged loss of NO activity, in endothelial NO synthase knockout (eNOS(-/-)) mice, influences endothelin (ET) ETA receptor-mediated smooth muscle contraction and, if so, to define the underlying mechanism(s). In isolated endothelium-denuded abdominal aortas, contractions to the selective ETA receptor agonist ET-1(1-31) were significantly increased in aortas from eNOS(-/-) compared with wild-type (WT) mice. In contrast, contractions to the alpha1-adrenergic agonist phenylephrine or the thromboxane (TX) A2 analog U-46619 were similar between eNOS(-/-) and WT mice. Immunofluorescent and Western blot analysis demonstrated that the aortic expression of ETA receptors was decreased in eNOS(-/-) compared with WT mice. Contractions evoked by ET-1(1-31), but not phenylephrine, were reduced by inhibition of cyclooxygenase-2 (COX-2) (indomethacin or celecoxib) or of TXA2/prostaglandin H2 receptors (SQ-29548). After COX inhibition, contractions to ET-1(1-31) were no longer increased and were actually decreased in eNOS(-/-) compared with WT aortas. Western blot analysis revealed that endothelium-denuded abdominal aortas express COX-2, but not COX-1, and that expression of COX-2 was significantly increased in eNOS(-/-) compared with WT mice. Contractions to the COX substrate arachidonic acid were also increased in eNOS(-/-) aortas. Furthermore, ET-1(1-31) but not phenylephrine stimulated production of the TXA2 metabolite TXB2, which was increased in eNOS(-/-) compared with WT aortas. Therefore, COX-2 plays a crucial and selective role in ETA-mediated smooth muscle contraction. Furthermore, COX-2 expression is increased in eNOS(-/-) mice, which overcomes a reduced expression of ETA receptors and enables a selective increase in contraction to ETA receptor stimulation.
Collapse
Affiliation(s)
- Yingbi Zhou
- Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Félétou M, Vanhoutte PM. Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 2006; 291:H985-1002. [PMID: 16632549 DOI: 10.1152/ajpheart.00292.2006] [Citation(s) in RCA: 547] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endothelial cells synthesize and release various factors that regulate angiogenesis, inflammatory responses, hemostasis, as well as vascular tone and permeability. Endothelial dysfunction has been associated with a number of pathophysiological processes. Oxidative stress appears to be a common denominator underlying endothelial dysfunction in cardiovascular diseases. However, depending on the pathology, the vascular bed studied, the stimulant, and additional factors such as age, sex, salt intake, cholesterolemia, glycemia, and hyperhomocysteinemia, the mechanisms underlying the endothelial dysfunction can be markedly different. A reduced bioavailability of nitric oxide (NO), an alteration in the production of prostanoids, including prostacyclin, thromboxane A2, and/or isoprostanes, an impairment of endothelium-dependent hyperpolarization, as well as an increased release of endothelin-1, can individually or in association contribute to endothelial dysfunction. Therapeutic interventions do not necessarily restore a proper endothelial function and, when they do, may improve only part of these variables.
Collapse
Affiliation(s)
- Michel Félétou
- Department of Angiology, Institut de Recherches Servier, Suresnes, France
| | | |
Collapse
|