1
|
Fernández-Pérez I, Jiménez-Balado J, Macias-Gómez A, Suárez-Pérez A, Vallverdú-Prats M, Pérez-Giraldo A, Viles-García M, Peris-Subiza J, Vidal-Notari S, Giralt-Steinhauer E, Guisado-Alonso D, Esteller M, Rodriguez-Campello A, Jiménez-Conde J, Ois A, Cuadrado-Godia E. Blood DNA Methylation Analysis Reveals a Distinctive Epigenetic Signature of Vasospasm in Aneurysmal Subarachnoid Hemorrhage. Transl Stroke Res 2025; 16:715-727. [PMID: 38649590 DOI: 10.1007/s12975-024-01252-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/06/2024] [Indexed: 04/25/2024]
Abstract
Vasospasm is a potentially preventable cause of poor prognosis in patients with aneurysmal subarachnoid hemorrhage (aSAH). Epigenetics might provide insight on its molecular mechanisms. We aimed to analyze the association between differential DNA methylation (DNAm) and development of vasospasm. We conducted an epigenome-wide association study in 282 patients with aSAH admitted to our hospital. DNAm was assessed with the EPIC Illumina chip (> 850 K CpG sites) in whole-blood samples collected at hospital admission. We identified differentially methylated positions (DMPs) at the CpG level using Cox regression models adjusted for potential confounders, and then we used the DMP results to find differentially methylated regions (DMRs) and enriched biological pathways. A total of 145 patients (51%) experienced vasospasm. In the DMP analysis, we identified 31 CpGs associated with vasospasm at p-value < 10-5. One of them (cg26189827) was significant at the genome-wide level (p-value < 10-8), being hypermethylated in patients with vasospasm and annotated to SUGCT gene, mainly expressed in arteries. Region analysis revealed 13 DMRs, some of them annotated to interesting genes such as POU5F1, HLA-DPA1, RUFY1, and CYP1A1. Functional enrichment analysis showed the involvement of biological processes related to immunity, inflammatory response, oxidative stress, endothelial nitric oxide, and apoptosis. Our findings show, for the first time, a distinctive epigenetic signature of vasospasm in aSAH, establishing novel links with essential biological pathways, including inflammation, immune responses, and oxidative stress. Although further validation is required, our results provide a foundation for future research into the complex pathophysiology of vasospasm.
Collapse
Affiliation(s)
- Isabel Fernández-Pérez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Joan Jiménez-Balado
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain.
| | - Adrià Macias-Gómez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Antoni Suárez-Pérez
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Marta Vallverdú-Prats
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | | | - Marc Viles-García
- Neuroradiology Department, Hospital del Mar, Barcelona, Catalunya, Spain
| | | | | | - Eva Giralt-Steinhauer
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Daniel Guisado-Alonso
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
| | - Manel Esteller
- Cancer Epigenetics Group, Research Institute Against Leukemia Josep Carreras, Badalona, Catalunya, Spain
- Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Catalunya, Spain
| | - Ana Rodriguez-Campello
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Jordi Jiménez-Conde
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Angel Ois
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| | - Elisa Cuadrado-Godia
- Neurology Department, Hospital del Mar, Barcelona, Catalunya, Spain
- Neurovascular Research Group, Hospital del Mar Medical Research Institute, C/Dr. Aiguader, 88, 08003, Barcelona, Catalunya, Spain
- Pompeu Fabra University, Barcelona, Catalunya, Spain
| |
Collapse
|
2
|
Mittal AM, Nowicki KW, Mantena R, Cao C, Rochlin EK, Dembinski R, Lang MJ, Gross BA, Friedlander RM. Advances in biomarkers for vasospasm - Towards a future blood-based diagnostic test. World Neurosurg X 2024; 22:100343. [PMID: 38487683 PMCID: PMC10937316 DOI: 10.1016/j.wnsx.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
Objective Cerebral vasospasm and the resultant delayed cerebral infarction is a significant source of mortality following aneurysmal SAH. Vasospasm is currently detected using invasive or expensive imaging at regular intervals in patients following SAH, thus posing a risk of complications following the procedure and financial burden on these patients. Currently, there is no blood-based test to detect vasospasm. Methods PubMed, Web of Science, and Embase databases were systematically searched to retrieve studies related to cerebral vasospasm, aneurysm rupture, and biomarkers. The study search dated from 1997 to 2022. Data from eligible studies was extracted and then summarized. Results Out of the 632 citations screened, only 217 abstracts were selected for further review. Out of those, only 59 full text articles met eligibility and another 13 were excluded. Conclusions We summarize the current literature on the mechanism of cerebral vasospasm and delayed cerebral ischemia, specifically studies relating to inflammation, and provide a rationale and commentary on a hypothetical future bloodbased test to detect vasospasm. Efforts should be focused on clinical-translational approaches to create such a test to improve treatment timing and prediction of vasospasm to reduce the incidence of delayed cerebral infarction.
Collapse
Affiliation(s)
- Aditya M. Mittal
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | | | - Rohit Mantena
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Catherine Cao
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Emma K. Rochlin
- Loyola University Stritch School of Medicine, Maywood, IL, USA
| | - Robert Dembinski
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Michael J. Lang
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Bradley A. Gross
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| | - Robert M. Friedlander
- University of Pittsburgh Medical Center, Department of Neurosurgery, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Narayan V, Kumar M, Mahajan S, Ganesh V, Luthra A, Gupta T, Rawat A, Singh A, Vyas S, Narayanan V, Depuru A, Kaur K, Panda N, Bhagat H. The Role of Serum Matrix Metalloproteinase-9 as a Predictor of Delayed Cerebral Ischemia in Patients with Aneurysmal Subarachnoid Hemorrhage. J Mol Neurosci 2024; 74:18. [PMID: 38315311 DOI: 10.1007/s12031-024-02194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/26/2024] [Indexed: 02/07/2024]
Abstract
Delayed cerebral ischemia (DCI) is one of the major causes of a poor neurological outcome following aneurysmal subarachnoid hemorrhage (aSAH). Several biomarkers, including matrix metalloproteinase-9 (MMP-9), have been evaluated to predict the development of DCI for timely management. This prospective cohort study was done on 98 patients with aSAH presenting within 72 h of the ictus. Serum samples were collected preoperatively, 7 days after ictus, 10 days after ictus, or when the patient developed DCI, whichever was earlier. The primary objective was to correlate the serum MMP-9 levels with the development of DCI. The secondary objectives were to correlate the serum MMP-9 levels with sonographic vasospasm and the neurological outcome. There was no correlation between the serum MMP-9 levels and the development of DCI (p = 0.37). Similarly, there was no correlation between the serum MMP-9 levels and the sonographic vasospasm (0.05) nor with the modified Rankin Scale (mRS) at discharge (p = 0.27), mRS at 3 months (p = 0.22), and Glasgow Outcome Scale Extended (GOSE) at 3 months (p = 0.15). Serum MMP-9 levels do not predict the development of DCI following aSAH.
Collapse
Affiliation(s)
- Vinitha Narayan
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Munish Kumar
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Shalvi Mahajan
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Venkata Ganesh
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Ankur Luthra
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Tulika Gupta
- Department of Anatomy, PGIMER, Chandigarh, India
| | - Amit Rawat
- Department of Pediatric Immunology, PGIMER, Chandigarh, India
| | | | - Sameer Vyas
- Department of Radiodiagnosis, PGIMER, Chandigarh, India
| | - Vidhya Narayanan
- Department of Anesthesia, Sree Balaji Medical College and Hospital, Chennai, Tamil Nadu, India
| | | | - Kirandeep Kaur
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Nidhi Panda
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India
| | - Hemant Bhagat
- Department of Anesthesia and Intensive Care 4th Floor, Nehru Hospital PGIMER, Sector 12, Chandigarh, 160012, India.
| |
Collapse
|
4
|
Batista S, Bocanegra-Becerra JE, Claassen B, Rubião F, Rabelo NN, Figueiredo EG, Oberman DZ. Biomarkers in aneurysmal subarachnoid hemorrhage: A short review. World Neurosurg X 2023; 19:100205. [PMID: 37206060 PMCID: PMC10189293 DOI: 10.1016/j.wnsx.2023.100205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/21/2023] Open
Abstract
Poor outcomes of aneurysmal subarachnoid hemorrhage (aSAH) can be the result of the initial catastrophic event or the many acute or delayed neurological complications. Recent evidence suggests that some molecules play a critical role in both events, through some unknown pathways involved. Understanding the role of these molecules in these events could allow to improve diagnostic accuracy, guide management, and prevent long-term disability in aSAH. Here we present the studies on aSAH biomarkers present in current medical literature, highlighting their roles and main results.
Collapse
Affiliation(s)
- Sávio Batista
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Bernardo Claassen
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe Rubião
- Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Dan Zimelewicz Oberman
- Department of Neurosurgery, Hospital de Força Aérea do Galeão, Rio de Janeiro, Brazil
- Corresponding author. Neurosurgery Department Hospital Força Aérea do Galeão, Estrada do Galeão, 4101 - Galeão, Rio de Janeiro - RJ, 21941-353, Brazil.
| |
Collapse
|
5
|
Romoli M, Giammello F, Mosconi MG, De Mase A, De Marco G, Digiovanni A, Ciacciarelli A, Ornello R, Storti B. Immunological Profile of Vasospasm after Subarachnoid Hemorrhage. Int J Mol Sci 2023; 24:ijms24108856. [PMID: 37240207 DOI: 10.3390/ijms24108856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) carries high mortality and disability rates, which are substantially driven by complications. Early brain injury and vasospasm can happen after SAH and are crucial events to prevent and treat to improve prognosis. In recent decades, immunological mechanisms have been implicated in SAH complications, with both innate and adaptive immunity involved in mechanisms of damage after SAH. The purpose of this review is to summarize the immunological profile of vasospasm, highlighting the potential implementation of biomarkers for its prediction and management. Overall, the kinetics of central nervous system (CNS) immune invasion and soluble factors' production critically differs between patients developing vasospasm compared to those not experiencing this complication. In particular, in people developing vasospasm, a neutrophil increase develops in the first minutes to days and pairs with a mild depletion of CD45+ lymphocytes. Cytokine production is boosted early on after SAH, and a steep increase in interleukin-6, metalloproteinase-9 and vascular endothelial growth factor (VEGF) anticipates the development of vasospasm after SAH. We also highlight the role of microglia and the potential influence of genetic polymorphism in the development of vasospasm and SAH-related complications.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology and Stroke Unit, Department of Neuroscience, Bufalini Hospital, 47521 Cesena, Italy
| | - Fabrizio Giammello
- Translational Molecular Medicine and Surgery, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, 98122 Messina, Italy
| | - Maria Giulia Mosconi
- Emergency and Vascular Medicine, University of Perugia-Santa Maria Della Misericordia Hospital, 06129 Perugia, Italy
| | - Antonio De Mase
- Neurology and Stroke Unit, AORN Cardarelli, 80131 Napoli, Italy
| | - Giovanna De Marco
- Department of Biomedical and NeuroMotor Sciences of Bologna, University of Bologna, 40126 Bologna, Italy
| | - Anna Digiovanni
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, 66013 Chieti, Italy
| | - Antonio Ciacciarelli
- Stroke Unit, Department of Emergency Medicine, University of Roma La Sapienza-Umberto I Hospital, 00161 Rome, Italy
| | - Raffaele Ornello
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Benedetta Storti
- Cerebrovascular Diseases Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| |
Collapse
|
6
|
Sharma VK, Singh TG, Mehta V, Mannan A. Biomarkers: Role and Scope in Neurological Disorders. Neurochem Res 2023; 48:2029-2058. [PMID: 36795184 DOI: 10.1007/s11064-023-03873-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
Neurological disorders pose a great threat to social health and are a major cause for mortality and morbidity. Effective drug development complemented with the improved drug therapy has made considerable progress towards easing symptoms associated with neurological illnesses, yet poor diagnosis and imprecise understanding of these disorders has led to imperfect treatment options. The scenario is complicated by the inability to extrapolate results of cell culture studies and transgenic models to clinical applications which has stagnated the process of improving drug therapy. In this context, the development of biomarkers has been viewed as beneficial to easing various pathological complications. A biomarker is measured and evaluated in order to gauge the physiological process or a pathological progression of a disease and such a marker can also indicate the clinical or pharmacological response to a therapeutic intervention. The development and identification of biomarkers for neurological disorders involves several issues including the complexity of the brain, unresolved discrepant data from experimental and clinical studies, poor clinical diagnostics, lack of functional endpoints, and high cost and complexity of techniques yet research in the area of biomarkers is highly desired. The present work describes existing biomarkers for various neurological disorders, provides support for the idea that biomarker development may ease our understanding underlying pathophysiology of these disorders and help to design and explore therapeutic targets for effective intervention.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.,Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India.
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Shimla, Himachal Pradesh, 171207, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Chandigarh, Punjab, 140401, India
| |
Collapse
|
7
|
Wang Y, Sun J, Zhao P, Yi H, Yuan H, Yang M, Sun B, Che F. Rapid magnetic separation: An immunoassay platform for the SERS-based detection of subarachnoid hemorrhage biomarkers. Front Chem 2022; 10:1002351. [PMID: 36339041 PMCID: PMC9634124 DOI: 10.3389/fchem.2022.1002351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/12/2022] [Indexed: 12/01/2022] Open
Abstract
The blood-brain barrier (BBB) is of vital importance to the progression and prognosis of subarachnoid hemorrhage (SAH). The construction of a simple, sensitive, and accurate detection assay for measuring the biomarkers associated with BBB injury is still an urgent need owing to the complex pathogenesis of SAH and low expression levels of pathological molecules. Herein, we introduced surface-enhanced Raman scattering (SERS) label-embedded Fe3O4@Au core-shell nanoparticles as ideal SERS sensors for quantitative double detection of MMP-9 and occludin in SAH patients. Meanwhile, utilizing the SERS signals to dynamically estimate MMP-9 and occludin concentration in the rat SAH model is the first application in exploring the relationship of pathological MMP-9 and occludin molecular levels with neurobehavioral score. This method warrants reliable detection toward MMP-9 and occludin with a wide recognition range and a low detection limit in blood samples. Furthermore, the results monitored by the SERS assay exactly matched with those obtained through a traditional enzyme-linked immunosorbent assay (ELISA). The aforementioned results demonstrated this novel biosensor strategy has extensive application prospects in the quantitative measurement of multiple types of biomolecules in body fluid samples.
Collapse
Affiliation(s)
- Ying Wang
- Linyi People’s Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Jingyi Sun
- Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peng Zhao
- Linyi People’s Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Hui Yi
- Linyi People’s Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Hui Yuan
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Mingfeng Yang
- Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Baoliang Sun
- Linyi People’s Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| | - Fengyuan Che
- Linyi People’s Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, China
| |
Collapse
|
8
|
Strickland BA, Barisano G, Abedi A, Shiroishi MS, Cen S, Emanuel B, Bulic S, Kim-Tenser M, Nguyen P, Giannotta SL, Mack W, Russin J. Minocycline decreases blood-brain barrier permeability following aneurysmal subarachnoid hemorrhage: a randomized, double-blind, controlled trial. J Neurosurg 2022; 136:1251-1259. [PMID: 35349976 DOI: 10.3171/2021.6.jns211270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/18/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Aneurysmal subarachnoid hemorrhage (aSAH)-induced vasospasm is linked to increased inflammatory cell trafficking across a permeable blood-brain barrier (BBB). Elevations in serum levels of matrix metalloprotease 9 (MMP9), a BBB structural protein, have been implicated in the pathogenesis of vasospasm onset. Minocycline is a potent inhibitor of MMP9. The authors sought to detect an effect of minocycline on BBB permeability following aSAH. METHODS Patients presenting within 24 hours of symptom onset with imaging confirmed aSAH (Fisher grade 3 or 4) were randomized to high-dose (10 mg/kg) minocycline or placebo. The primary outcome of interest was BBB permeability as quantitated by contrast signal intensity ratios in vascular regions of interest on postbleed day (PBD) 5 magnetic resonance permeability imaging. Secondary outcomes included serum MMP9 levels and radiographic and clinical evidence of vasospasm. RESULTS A total of 11 patients were randomized to minocycline (n = 6) or control (n = 5) groups. No adverse events or complications attributable to minocycline were reported. High-dose minocycline administration was associated with significantly lower permeability indices on imaging analysis (p < 0.01). There was no significant difference with respect to serum MMP9 levels between groups, although concentrations trended upward in both cohorts. Radiographic vasospasm was noted in 6 patients (minocycline = 3, control = 3), with only 1 patient developing symptoms of clinical vasospasm in the minocycline cohort. There was no difference between cohorts with respect to Lindegaard ratios, transcranial Doppler values, or onset of vasospasm. CONCLUSIONS Minocycline at high doses is well tolerated in the ruptured cerebral aneurysm population. Minocycline curtails breakdown of the BBB following aSAH as evidenced by lower permeability indices, though minocycline did not significantly alter serum MMP9 levels. Larger randomized clinical trials are needed to assess minocycline as a neuroprotectant against aSAH-induced vasospasm. Clinical trial registration no.: NCT04876638 (clinicaltrials.gov).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jonathan Russin
- 1Departments of Neurosurgery
- 5Neurorestoration Center, University of Southern California, Los Angeles, California
| |
Collapse
|
9
|
Demirci AY, Güvenç Y, Özeren E, Akyol Ç, Bayram P, Billur D, Aydın S, Seçkin H, Yiğitkanlı K. What is the restorative effect of VEGF inhibitor bevacuzimab against subarachnoid hemorrhage in an experimental model? Turk J Med Sci 2021; 51:2698-2704. [PMID: 33356024 DOI: 10.3906/sag-2001-230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 12/26/2020] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND This study investigated the effect of vascular endothelial growth factor (VEGF) inhibitor bevacuzimab (BVZ) on the rabbit basilar artery using an experimental subarachnoid hemorrhage (SAH) model. METHODS Eighteen adult male New-Zealand white rabbits were randomly divided into three groups: a control group (n = 6), SAH group (n = 6), and SAH+BVZ group (n = 6). Experimental SAH was created by injecting autologous arterial blood into the cisterna magna. In the treatment group, the subjects were administered a daily dose of 10 mg/kg, intravenous BVZ for 2 days after the SAH. Basilar artery diameters were measured with magnetic resonance angiography (MRA) 72 h after the SAH in all groups. After 72 h, whole brains, including the upper cervical region, were obtained from all the animals after perfusion and fixation of the animal. The wall thickness, luminal area, and the apoptosis at the basilar arteries were evaluated in all groups. RESULTS BVZ significantly prevented SAH-induced vasospasm confirmed in vivo with MRA imaging with additional suppression of apoptosis on basilar artery wall. DISCUSSION VEGF inhibition with BVZ has shown to have a vasospasm and apoptosis attenuating effect on basilar artery in a SAH model.
Collapse
Affiliation(s)
- Adnan Yalçın Demirci
- Department of Neurosurgery, Yüksek İhtisas Education and Training Hospital, Bursa, Turkey
| | - Yahya Güvenç
- Department of Neurosurgery, Faculty of Medicine, Marmara University, İstanbul, Turkey
| | - Ersin Özeren
- Department of Neurosurgery, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Çetin Akyol
- Department of Histology and Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Pınar Bayram
- Department of Neurosurgery, Yıldırım Beyazıt Training and Research Hospital, Ankara, Turkey
| | - Deniz Billur
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Sevim Aydın
- Department of Histology and Embryology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Hakan Seçkin
- Neurosurgery Clinic, Medicana Bursa Hospital, Bursa, Turkey
| | | |
Collapse
|
10
|
Tsai TH, Chang CH, Lin SH, Su YF, Tsai YC, Yang SF, Lin CL. Therapeutic effect of and mechanisms underlying the effect of miR-195-5p on subarachnoid hemorrhage-induced vasospasm and brain injury in rats. PeerJ 2021; 9:e11395. [PMID: 34221706 PMCID: PMC8231314 DOI: 10.7717/peerj.11395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/12/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives There is much evidence suggesting that inflammation contributes majorly to subarachnoid hemorrhage (SAH)-induced cerebral vasospasm and brain injury. miRNAs have been found to modulate inflammation in several neurological disorders. This study investigated the effect of miR-195-5p on SAH-induced vasospasm and early brain injury in experimental rats. Methods Ninety-six Sprague-Dawley male rats were randomly and evenly divided into a control group (no SAH, sham surgery), a SAH only group, a SAH + NC-mimic group, and a SAH + miR-195-5p group. SAH was induced using a single injection of blood into the cisterna magna. Suspensions containing NC-mimic and miR-195-5p were intravenously injected into rat tail 30 mins after SAH was induced. We determined degree of vasospasm by averaging areas of cross-sections the basilar artery 24h after SAH. We measured basilar artery endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κ B), phosphorylated NF-κ B (p-NF-κ B), inhibitor of NF-κ B (Iκ Bα) and phosphorylated-Iκ Bα (p-Iκ Bα). Cell death assay was used to quantify the DNA fragmentation, an indicator of apoptotic cell death, in the cortex, hippocampus, and dentate gyrus. Tumor necrosis factor alpha (TNF-α) levels were measured using sample protein obtained from the cerebral cortex, hippocampus and dentate gyrus. Results Prior to fixation by perfusion, there were no significant physiological differences among the control and treatment groups. SAH successfully induced vasospasm and early brain injury. MiR-195-5p attenuated vasospasam-induced changes in morphology, reversed SAH-induced elevation of iNOS, p-NF-κ B, NF-κ B, and p-Iκ Bα and reversed SAH-induced suppression of eNOS in the basilar artery. Cell death assay revealed that MiR-195-5p significantly decreased SAH-induced DNA fragmentation (apoptosis) and restored TNF-α level in the dentate gyrus. Conclusion In conclusion, MiRNA-195-5p attenuated SAH-induced vasospasm by up-regulating eNOS, down-regulating iNOS and inhibiting the NF-κ B signaling pathway. It also protected neurons by decreasing SAH-induced apoptosis-related cytokine TNF-α expression in the dentate gyrus. Further study is needed to elucidate the detail mechanism underlying miR-195-5p effect on SAH-induced vasospasm and cerebral injury. We believe that MiR-195-5p can potentially be used to manage SAH-induced cerebral vasospasm and brain injury.
Collapse
Affiliation(s)
- Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Hui Chang
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Huai Lin
- Department of Nursing, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yu-Feng Su
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Cheng Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheau-Fang Yang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
11
|
Kashefiolasl S, Leisegang MS, Helfinger V, Schürmann C, Pflüger-Müller B, Randriamboavonjy V, Vasconez AE, Carmeliet G, Badenhoop K, Hintereder G, Seifert V, Schröder K, Konczalla J, Brandes RP. Vitamin D-A New Perspective in Treatment of Cerebral Vasospasm. Neurosurgery 2021; 88:674-685. [PMID: 33269399 PMCID: PMC7884149 DOI: 10.1093/neuros/nyaa484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/29/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cerebral vasospasm (CVS) is a frequent complication after subarachnoid hemorrhage (SAH), with no sufficient therapy and a complex pathophysiology. OBJECTIVE To explore the vitamin D system as a potential treatment for CVS. METHODS 25-vitamin D3 levels tested between 2007 and 2015 and data of SAH patients admitted during the months with a peak vs nadir of VitD3 values were analyzed, retrospectively. We prospectively correlated VitD3 and vasospasm/outcome data in SAH patients admitted in 2017. An experimental mice SAH model and cell culture model were used to investigate the effect of 1,25-dihydroxyvitamin D3 (1,25-VitD3). Additionally, the mediators acting in the VitD mechanism were researched and detected. RESULTS Based on the retrospective analysis demonstrating an increased frequency of vasospasm in SAH patients during the low vitamin D period in winter, we started basic research experiments. Active 1,25-VitD3 hormone attenuated CVS, neurological deficit, and inflammation after intrathecal blood injection in mice. Deletion of the vitamin D receptor in the endothelium or in myeloid cells decreased the protective 1,25-VitD3 effect. Co-culture experiments of myeloid and endothelial cells with blood confirmed the anti-inflammatory 1,25-VitD3 effect but also revealed an induction of stroma-cell-derived factor 1α (SDF1α), vascular endothelial growth factor, and endothelial nitric oxide synthase by 1,25-VitD3. In mice, SDF1α mimicked the protective effect of 1,25-VitD3 against CVS. From bench to bedside, CVS severity was inversely correlated with vitamin D plasma level, prospectively. Patients with more severe CVS exhibited attenuated expression of SDF1α and 1,25-VitD3-responsive genes on circulating myeloid cells. CONCLUSION 1,25-VitD3 attenuates CVS after SAH by inducing SDF1α. However, VitD administration should be tested as optional treatment to prevent CVS.
Collapse
Affiliation(s)
- Sepide Kashefiolasl
- Department of Neurosurgery, University Hospital Frankfurt, Frankfurt, Germany.,Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany
| | - Matthias S Leisegang
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Rhein-Main, Frankfurt, Germany
| | - Valeska Helfinger
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Rhein-Main, Frankfurt, Germany
| | - Christoph Schürmann
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Rhein-Main, Frankfurt, Germany
| | - Beatrice Pflüger-Müller
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Rhein-Main, Frankfurt, Germany
| | - Voahanginirina Randriamboavonjy
- German Center of Cardiovascular Research (DZHK), Rhein-Main, Frankfurt, Germany.,Institute for Vascular Signalling, Goethe-University, Frankfurt, Germany
| | - Andrea E Vasconez
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Rhein-Main, Frankfurt, Germany
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Klaus Badenhoop
- Department of Endocrinology and Diabetes, Internal Medicine 1, University Hospital Frankfurt, Germany
| | - Gudrun Hintereder
- Central Laboratory, University Hospital Frankfurt, Frankfurt, Germany
| | - Volker Seifert
- Department of Neurosurgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Rhein-Main, Frankfurt, Germany
| | - Juergen Konczalla
- Department of Neurosurgery, University Hospital Frankfurt, Frankfurt, Germany
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe-University, Frankfurt, Germany.,German Center of Cardiovascular Research (DZHK), Rhein-Main, Frankfurt, Germany
| |
Collapse
|
12
|
Fukuda S, Koga Y, Fujita M, Suehiro E, Kaneda K, Oda Y, Ishihara H, Suzuki M, Tsuruta R. Hyperoxemia during the hyperacute phase of aneurysmal subarachnoid hemorrhage is associated with delayed cerebral ischemia and poor outcome: a retrospective observational study. J Neurosurg 2021; 134:25-32. [PMID: 31731268 DOI: 10.3171/2019.9.jns19781] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/11/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The harmful effects of hyperoxemia have been reported in critically ill patients with various disorders, including those with brain injuries. However, the effect of hyperoxemia on aneurysmal subarachnoid hemorrhage (aSAH) patients is unclear. In this study the authors aimed to determine whether hyperoxemia during the hyperacute or acute phase in patients with aSAH is associated with delayed cerebral ischemia (DCI) and poor neurological outcome. METHODS In this single-center retrospective study, data from patients with aSAH treated between January 2011 and June 2017 were reviewed. The patients were classified into groups according to whether they experienced DCI (DCI group and non-DCI group) and whether they had a poor outcome at discharge (poor outcome group and favorable outcome group). The background characteristics and time-weighted average (TWA) PaO2 during the first 24 hours after arrival at the treatment facility (TWA24h-PaO2) and between the first 24 hours after arrival and day 6 (TWA6d-PaO2), the hyperacute and acute phases, respectively, were compared between the groups. Factors related to DCI and poor outcome were evaluated with logistic regression analyses. RESULTS Of 197 patients with aSAH, 42 patients experienced DCI and 82 patients had a poor outcome at discharge. TWA24h-PaO2 was significantly higher in the DCI group than in the non-DCI group (186 [141-213] vs 161 [138-192] mm Hg, p = 0.029) and in the poor outcome group than in the favorable outcome group (176 [154-205] vs 156 [136-188] mm Hg, p = 0.004). TWA6d-PaO2 did not differ significantly between the groups. Logistic regression analyses revealed that higher TWA24h-PaO2 was an independent risk factor for DCI (OR 1.09, 95% CI 1.01-1.17, p = 0.037) and poor outcome (OR 1.17, 95% CI 1.06-1.29, p = 0.002). CONCLUSIONS Hyperoxemia during the first 24 hours was associated with DCI and a poor outcome in patients with aSAH. Excessive oxygen therapy might have an adverse effect in the hyperacute phase of aSAH.
Collapse
Affiliation(s)
- Shinya Fukuda
- 1Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Ube, Yamaguchi; and
| | - Yasutaka Koga
- 1Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Ube, Yamaguchi; and
| | | | - Eiichi Suehiro
- 1Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Ube, Yamaguchi; and
- 3Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Kotaro Kaneda
- 1Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Ube, Yamaguchi; and
| | | | - Hideyuki Ishihara
- 3Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Michiyasu Suzuki
- 3Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Ryosuke Tsuruta
- 1Advanced Medical Emergency and Critical Care Center, Yamaguchi University Hospital, Ube, Yamaguchi; and
- 2Acute and General Medicine and
| |
Collapse
|
13
|
Abdelnaseer MM, Nemr AA, Ahmed SM, Aboul fotouh AM, Soliman AMA, El-Fiki AA, Osman SH. Role of serum biomarkers and transcranial Doppler in predicting cerebral vasospasm after aneurysmal subarachnoid hemorrhage. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-0156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Aneurysmal subarachnoid hemorrhage (aSAH) can have serious consequences related to vasospasm and delayed cerebral ischemia (DCI). Serum biomarkers have emerged as a promising assessment tool to facilitate earlier diagnosis of cerebral vasospasm (CV) and to identify pre-clinical vessel narrowing.
Objectives
Our aim was to detect the predictive value of serum biomarkers such as von Willebrand factor (vWF), vascular endothelial growth factor (VEGF) and matrix metalloproteinase9 (MMP-9) in CV after aSAH.
Subjects and methods
Thirty five patients with recent aSAH were included. Patients were divided into two groups; 19 patients (CV group) and 16 patients (non-CV group). The CV group was further subdivided into 9 symptomatic (DCI) and 10 asymptomatic patients. All patients underwent transcranial Doppler (TCD) evaluations three times a week for 2 weeks measuring the mean flow velocities. Serum level of vWF, MMP-9, and VEGF were assessed twice (at onset and within 2 weeks).
Results
A statistically significant increase in serum biomarker levels was found in the CV group. Cutoff value for vWF, MMP-9, and VEGF were > 4985 ng/ml, > 495 ng/ml, and > 184 pg/ml, respectively. Statistically significant positive correlations were found between serum levels of biomarkers and degree of vasospasm. No difference was found in the biomarkers between symptomatic CV and asymptomatic CV.
Conclusion
Serum biomarkers are a reliable tool to predict CV following aSAH, their levels reflect the severity of vascular vasospasm, yet, they cannot predict DCI. TCD has a strong role in early detection, monitoring of post subarachnoid vasospasm and successfully capturing asymptomatic DCI.
Collapse
|
14
|
Neuroprotective Role of the Nrf2 Pathway in Subarachnoid Haemorrhage and Its Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6218239. [PMID: 31191800 PMCID: PMC6525854 DOI: 10.1155/2019/6218239] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/17/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
The mechanisms underlying poor outcome following subarachnoid haemorrhage (SAH) are complex and multifactorial. They include early brain injury, spreading depolarisation, inflammation, oxidative stress, macroscopic cerebral vasospasm, and microcirculatory disturbances. Nrf2 is a global promoter of the antioxidant and anti-inflammatory response and has potential protective effects against all of these mechanisms. It has been shown to be upregulated after SAH, and Nrf2 knockout animals have poorer functional and behavioural outcomes after SAH. There are many agents known to activate the Nrf2 pathway. Of these, the actions of sulforaphane, curcumin, astaxanthin, lycopene, tert-butylhydroquinone, dimethyl fumarate, melatonin, and erythropoietin have been studied in SAH models. This review details the different mechanisms of injury after SAH including the contribution of haemoglobin (Hb) and its breakdown products. It then summarises the evidence that the Nrf2 pathway is active and protective after SAH and finally examines the evidence supporting Nrf2 upregulation as a therapy after SAH.
Collapse
|
15
|
Uchikawa H, Kuroiwa T, Nishio A, Tempaku A, Kondo K, Mukasa A, Kamada H. Vasospasm as a major complication after acute mechanical thrombectomy with stent retrievers. J Clin Neurosci 2019; 64:163-168. [PMID: 30904242 DOI: 10.1016/j.jocn.2019.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Mechanical thrombectomy using a stent retriever for acute large vessel occlusion is indispensable in stroke treatment, however, vasospasm may occur. The objective of this retrospective study was to investigate which cases are more likely to experience vasospasm after thrombectomy with stent retrievers. METHODS We included 29 patients diagnosed with acute cardiogenic cerebral embolism who were treated with stent retrievers at our facility from December 2014 to December 2017. Atherothrombotic brain infarction cases were excluded because it was difficult to evaluate for vasospasms. Vasospasm was defined as reversible arterial narrowing of <80% of the normal vessel diameter after usage of the stent retriever. The age, sex, type of stent retriever, occlusion site, number of procedures, thrombolysis in cerebral infarction (TICI) grade, degree of vasospasm, intracranial hemorrhage by the procedure, and neurological outcomes were analyzed. RESULTS Among the 29 cases, 12 (41.4%) resulted in vasospasm; nine cases were mild (20-50% stenosis) and 3 cases were severe (≥50% stenosis). Vasospasm frequently occurred in the distal part of the anterior circulation when compared to the proximal part. In addition, the frequency of vasospasm increased as the number of procedures increased. Pooled analysis showed significant difference in the intravenous tissue-type plasminogen activator group (P = 0.029). There was no significant difference in the other groups. CONCLUSION Stent retrievers appear to cause vasospasm more than expected when including mild cases. Vasospasm tends to occur especially in cases with IV-tPA; prognosis is generally good, and it rarely requires any treatment.
Collapse
Affiliation(s)
- Hiroki Uchikawa
- Department of Neurosurgery, Hokuto Hospital, Obihiro, Japan; Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan.
| | | | - Akimasa Nishio
- Department of Neurosurgery, Hokuto Hospital, Obihiro, Japan.
| | - Akira Tempaku
- Department of Neurosurgery, Hokuto Hospital, Obihiro, Japan.
| | - Kimito Kondo
- Department of Neurology, Hokuto Hospital, Obihiro, Japan.
| | - Akitake Mukasa
- Department of Neurosurgery, Kumamoto University Hospital, Kumamoto, Japan.
| | - Hajime Kamada
- Department of Neurosurgery, Hokuto Hospital, Obihiro, Japan.
| |
Collapse
|
16
|
Zhu Y, Zhang H, Zhang Y, Wu H, Wei L, Zhou G, Zhang Y, Deng L, Cheng Y, Li M, Santos HA, Cui W. Endovascular Metal Devices for the Treatment of Cerebrovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805452. [PMID: 30589125 DOI: 10.1002/adma.201805452] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/20/2018] [Indexed: 06/09/2023]
Abstract
Cerebrovascular disease involves various medical disorders that obstruct brain blood vessels or deteriorate cerebral circulation, resulting in ischemic or hemorrhagic stroke. Nowadays, platinum coils with or without biological modification have become routine embolization devices to reduce the risk of cerebral aneurysm bleeding. Additionally, many intracranial stents, flow diverters, and stent retrievers have been invented with uniquely designed structures. To accelerate the translation of these devices into clinical usage, an in-depth understanding of the mechanical and material performance of these metal-based devices is critical. However, considering the more distal location and tortuous anatomic characteristics of cerebral arteries, present devices still risk failing to arrive at target lesions. Consequently, more flexible endovascular devices and novel designs are under urgent demand to overcome the deficiencies of existing devices. Herein, the pros and cons of the current structural designs are discussed when these devices are applied to the treatment of diseases ranging broadly from hemorrhages to ischemic strokes, in order to encourage further development of such kind of devices and investigation of their use in the clinic. Moreover, novel biodegradable materials and drug elution techniques, and the design, safety, and efficacy of personalized devices for further clinical applications in cerebral vasculature are discussed.
Collapse
Affiliation(s)
- Yueqi Zhu
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Hongbo Zhang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-20520, Finland
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku, FI-20520, Finland
| | - Yiran Zhang
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Huayin Wu
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Liming Wei
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Gen Zhou
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Yuezhou Zhang
- Department of Pharmaceutical Sciences Laboratory, Åbo Akademi University, Turku, FI-20520, Finland
- Turku Center for Biotechnology, University of Turku and Åbo Akademi University, Turku, FI-20520, Finland
| | - Lianfu Deng
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yingsheng Cheng
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Minghua Li
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, P. R. China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
17
|
Venous and arterial TNF-R1 predicts outcome and complications in acute subarachnoid hemorrhage. Neurocrit Care 2019; 31:107-115. [DOI: 10.1007/s12028-019-00669-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Anti-vasospastic Effects of Epidermal Growth Factor Receptor Inhibitors After Subarachnoid Hemorrhage in Mice. Mol Neurobiol 2018; 56:4730-4740. [PMID: 30382533 DOI: 10.1007/s12035-018-1400-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/17/2018] [Indexed: 01/10/2023]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating disease. Cerebral vasospasm is still an important cause of post-SAH poor outcomes, but its mechanisms remain unveiled. Activation of epidermal growth factor receptor (EGFR) is suggested to cause vasoconstriction in vitro, but no report has demonstrated the involvement of EGFR in vasospasm development after SAH in vivo. Cross-talk of EGFR and vascular endothelial growth factor (VEGF) receptor, which may affect post-SAH vasospasm, was also reported in cancer cells, but has not been demonstrated in post-SAH vasospasm. The aim of this study was to investigate whether EGFR as well as EGFR-VEGF receptor cross-talk engage in the development of cerebral vasospasm in a mouse SAH model. C57BL6 mice underwent endovascular perforation SAH or sham modeling. At 30 min post-modeling, mice were randomly administrated vehicle or 2 doses of selective EGFR inhibitors intracerebroventricularly. A higher dose of the inhibitor significantly prevented post-SAH neurological impairments at 72 h and vasospasm at 24 h associated with suppression of post-SAH activation of EGFR and extracellular signal-regulated kinase (ERK) 1/2 in the cerebral artery wall, especially in the smooth muscle cell layers. Anti-EGFR neutralizing antibody also showed similar effects. However, neither expression levels of VEGF nor activation levels of a major receptor of VEGF, VEGF receptor-2, were affected by SAH and two kinds of EGFR inactivation. Thus, this study first showed that EGFR-ERK1/2 pathways may be involved in post-SAH vasospasm development, and that EGFR-VEGF receptor cross-talk may not play a significant role in the development of vasospasm in mice.
Collapse
|
19
|
Russin JJ, Montagne A, D’Amore F, He S, Shiroishi MS, Rennert RC, Depetris J, Zlokovic BV, Mack WJ. Permeability imaging as a predictor of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Cereb Blood Flow Metab 2018; 38:973-979. [PMID: 29611451 PMCID: PMC5998996 DOI: 10.1177/0271678x18768670] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Blood-brain barrier (BBB) dysfunction has been implicated in ischemic risk following aneurysmal subarachnoid hemorrhage (aSAH), but never directly imaged. We prospectively examined whether post-bleed day 4 dynamic contrast-enhanced magnetic resonance (DCE-MR) BBB permeability imaging could predict development of delayed cerebral ischemia (DCI). Global MR-derived BBB permeability ( Ktrans) was significantly higher in aSAH patients who subsequently developed DCI (five patients; 2.28 ± 0.09 × 10-3 min-1) compared to those who experienced radiographic vasospasm only (three patients; 1.85 ± 0.12 × 10-3 min-1; p < 0.05), or no vasospasm/ischemia (eight patients; 1.74 ± 0.07 × 10-3 min-1; p < 0.01). Ktrans > 2 × 10-3 min-1 predicted development of DCI (AUC = 0.98, 95% CI: 0.93-1). Global BBB dysfunction following aSAH is detectable with DCE-MR and predictive of ischemic risk.
Collapse
Affiliation(s)
- Jonathan J Russin
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Jonathan J Russin, USC Neurorestoration Center, Keck School of Medicine, University of Southern California, 1200 N State Street, Suite 3300, Los Angeles, CA 90033, USA.
| | - Axel Montagne
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesco D’Amore
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shuhan He
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mark S Shiroishi
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert C Rennert
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jena Depetris
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - William J Mack
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Kiiski H, Långsjö J, Tenhunen J, Ala-Peijari M, Huhtala H, Hämäläinen M, Moilanen E, Peltola J. S100B, NSE and MMP-9 fail to predict neurologic outcome while elevated S100B associates with milder initial clinical presentation after aneurysmal subarachnoid hemorrhage. J Neurol Sci 2018; 390:129-134. [PMID: 29801873 DOI: 10.1016/j.jns.2018.04.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/21/2018] [Accepted: 04/18/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Despite advances in the treatment of aneurysmal subarachnoid hemorrhage (aSAH) one-year mortality remains approximately 50%. Making an accurate prognosis at the early phase of the disease is notoriously difficult. A clinically reliable biomarker that could be used for better prediction of prognosis and/or as a surrogate for developing complications after aSAH is still lacking. In this study, we evaluated the prognostic values of three promising biomarkers, i.e. S100B, NSE, and MMP-9 in aSAH. METHODS In this prospective population-based study, S100B, NSE, and MMP-9 levels were measured in 47 aSAH patients for up to five days. Blood samples were taken at 0, 12 and 24 h after the admission to the intensive care unit (ICU) and daily after that until the patient was transferred from the ICU. The patients' neurological outcome was evaluated with the modified Rankin Scale (mRS) at six months after aSAH. RESULTS Biomarker-levels measured during the first 24 h were not associated with neurological outcome. S100B levels during the first 24 h were elevated in patients with a non-severe initial clinical presentation. Otherwise, there was no association between selected clinical variables and the early biomarker levels. In 22 patients, whose ICU follow-up lasted for up to five days, the total release of biomarkers was not associated with the neurological outcome. CONCLUSIONS None of the measured biomarkers were associated with the neurological outcome evaluated at six months after aSAH. Elevated levels of S100B in patients with non-severe initial presentation suggest an adaptive role of this biomarker in aSAH. Based on our findings it is not advisable to use these biomarkers to guide clinical decision-making in patients with aSAH.
Collapse
Affiliation(s)
- Heikki Kiiski
- Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland.
| | - Jaakko Långsjö
- Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Jyrki Tenhunen
- Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland; Department of Surgical Sciences, Division of Anesthesiology and Intensive Care, Uppsala University, Uppsala, Sweden
| | - Marika Ala-Peijari
- Critical Care Medicine Research Group, Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University Hospital, Tampere, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Life Sciences, University of Tampere, Tampere University Hospital, Tampere, Finland
| | - Jukka Peltola
- Department of Neurology, University of Tampere and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
21
|
Early matrix metalloproteinase-9 concentration in the first 48 h after aneurysmal subarachnoid haemorrhage predicts delayed cerebral ischaemia: An observational study. Eur J Anaesthesiol 2018; 33:662-9. [PMID: 27355865 DOI: 10.1097/eja.0000000000000494] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Delayed cerebral ischaemia from vasospasm is an important cause of complications and death after aneurysmal subarachnoid haemorrhage. There is currently no established biomarker for identifying patients at high risk of delayed cerebral ischaemia. OBJECTIVE Considering the important role of inflammation in the pathogenesis of delayed cerebral ischaemia, we investigated whether matrix metalloproteinase-9 (MMP-9) may be an efficient biomarker for predicting elayed cerebral ischaemia after subarachnoid haemorrhage. DESIGN Single-centre prospective observational study. SETTING Neuroscience Critical Care Unit of a teaching hospital. PARTICIPANTS Thirty consecutive patients with severe subarachnoid haemorrhage requiring external ventricular drainage were enrolled during 2013 and 2014. INTERVENTIONS Blood and cerebrospinal fluid (CSF) were sampled within the first 24 h and between 48 and 72 h after admission. We evaluated the activity and concentrations of MMP-9 and endothelin-1 with zymography and ELISA. Patients were allocated to groups with delayed cerebral ischaemia (n = 16) or without delayed cerebral ischaemia (n = 14). RESULTS Within 24 h, median [interquartile range] MMP-9 concentrations in CSF were significantly higher in patients with delayed cerebral ischaemia (47 [21 to 102] ng ml) than in those without delayed cerebral ischaemia (4 [2 to 13] ng ml, P = 0.001). CSF MMP-9 activity and endothelin-1 concentrations were correlated (r = 0.6, P = 0.02). The areas under the receiver operating characteristic curves were 0.73 (95% confidence interval [0.53 to 0.87]) and 0.91 (95% confidence interval [0.75 to 0.98]) for MMP-9 concentrations in plasma and CSF, respectively, at 24 h to predict delayed cerebral ischaemia CSF MMP-9 concentrations more than 14.3 ng ml at 24 h predicted the occurrence of delayed cerebral ischaemia with a sensitivity and specificity of 88 and 86%, respectively. After multivariate logistic analysis, only CSF MMP-9 concentrations at 24 h predicted the occurrence of delayed cerebral ischaemia (P = 0.01). CONCLUSION MMP-9 concentrations in both plasma and CSF, measured within 48 h after subarachnoid haemorrhage, were highly predictive of the occurrence of delayed cerebral ischaemia within the first 2 weeks. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT02397759.
Collapse
|
22
|
Schneider U, Xu R, Vajkoczy P. Inflammatory Events Following Subarachnoid Hemorrhage (SAH). Curr Neuropharmacol 2018; 16:1385-1395. [PMID: 29651951 PMCID: PMC6251050 DOI: 10.2174/1570159x16666180412110919] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Acute SAH from a ruptured intracranial aneurysm contributes for 30% of all hemorrhagic strokes. The bleeding itself occurs in the subarachnoid space. Nevertheless, injury to the brain parenchyma occurs as a consequence of the bleeding, directly, via several well-defined mechanisms and pathways, but also indirectly, or secondarily. This secondary brain injury following SAH has a variety of causes and possible mechanisms. Amongst others, inflammatory events have been shown to occur in parallel to, contribute to, or even to initiate programmed cell death (PCD) within the central nervous system (CNS) in human and animal studies alike. Mechanisms of secondary brain injury are of utmost interest not only to scientists, but also to clinicians, as they often provide possibilities for translational approaches as well as distinct time windows for tailored treatment options. In this article, we review secondary brain injury due to inflammatory changes, that occur on cellular, as well as on molecular level in the various different compartments of the CNS: the brain vessels, the subarachnoid space, and the brain parenchyma itself and hypothesize about possible signaling mechanisms between these compartments.
Collapse
Affiliation(s)
- U.C. Schneider
- Dept. Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - R. Xu
- Dept. Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - P. Vajkoczy
- Dept. Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
23
|
Höllig A, Stoffel-Wagner B, Clusmann H, Veldeman M, Schubert GA, Coburn M. Time Courses of Inflammatory Markers after Aneurysmal Subarachnoid Hemorrhage and Their Possible Relevance for Future Studies. Front Neurol 2017; 8:694. [PMID: 29312122 PMCID: PMC5744005 DOI: 10.3389/fneur.2017.00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/04/2017] [Indexed: 12/02/2022] Open
Abstract
Object Aneurysmal subarachnoid hemorrhage triggers an intense inflammatory response, which is suspected to increase the risk for secondary complications such as delayed cerebral ischemia (DCI). However, to date, the monitoring of the inflammatory response to detect secondary complications such as DCI has not become part of the clinical routine diagnostic. Here, we aim to illustrate the time courses of inflammatory parameters after aneurysmal subarachnoid hemorrhage (aSAH) and discuss the problems of inflammatory parameters as biomarkers but also their possible relevance for deeper understanding of the pathophysiology after aSAH and sophisticated planning of future studies. Materials and methods In this prospective cohort study, 109 patients with aSAH were initially included, n = 28 patients had to be excluded. Serum and—if possible—cerebral spinal fluid samples (n = 48) were retrieved at days 1, 4, 7, 10, and 14 after aSAH. Samples were analyzed for leukocyte count and C-reactive protein (CRP) (serum samples only) as well as matrix metallopeptidase 9 (MMP9), intercellular adhesion molecule 1 (ICAM1), and leukemia inhibitory factor (LIF) [both serum and cerebrospinal fluid (CSF) samples]. Time courses of the inflammatory parameters were displayed and related to the occurrence of DCI. Results We illustrate the time courses of leukocyte count, CRP, MMP9, ICAM1, and LIF in patients’ serum samples from the first until the 14th day after aSAH. Time courses of MMP9, ICAM1, and LIF in CSF samples are demonstrated. Furthermore, no significant difference was shown relating the time courses to the occurrence of DCI. Conclusion We estimate that the wide range of the measured values hampers their interpretation and usage as a biomarker. However, understanding the inflammatory response after aSAH and generating a multicenter database may facilitate further studies: realistic sample size calculations on the basis of a multicenter database will increase the quality and clinical relevance of the acquired results.
Collapse
Affiliation(s)
- Anke Höllig
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Birgit Stoffel-Wagner
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Hans Clusmann
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Michael Veldeman
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Gerrit A Schubert
- Department of Neurosurgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Mark Coburn
- Department of Anesthesiology, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
24
|
Vellimana AK, Zhou ML, Singh I, Aum DJ, Nelson JW, Harris GR, Athiraman U, Han BH, Zipfel GJ. Minocycline protects against delayed cerebral ischemia after subarachnoid hemorrhage via matrix metalloproteinase-9 inhibition. Ann Clin Transl Neurol 2017; 4:865-876. [PMID: 29296615 PMCID: PMC5740245 DOI: 10.1002/acn3.492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/06/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Objective Delayed cerebral ischemia (DCI) is an independent risk factor for poor outcome after aneurysmal subarachnoid hemorrhage (SAH) and is multifactorial in etiology. While prior studies have suggested a role for matrix metalloproteinase-9 (MMP-9) in early brain injury after SAH, its contribution to the pathophysiology of DCI is unclear. Methods In the first experiment, wild-type (WT) and MMP-9-/- mice were subjected to sham or endovascular perforation SAH surgery. In separate experiments, WT and MMP-9-/-mice were administered vehicle or minocycline either pre- or post-SAH. All mice underwent assessment of multiple components of DCI including vasospasm, neurobehavioral function, and microvessel thrombosis. In another experiment, rabbits were subjected to sham or cisterna magna injection SAH surgery, and administered vehicle or minocycline followed by vasospasm assessment. Results MMP-9 expression and activity was increased after SAH. Genetic (MMP-9-/- mice) and pharmacological (pre-SAH minocycline administration) inhibition of MMP-9 resulted in decreased vasospasm and neurobehavioral deficits. A therapeutically feasible strategy of post-SAH administration of minocycline resulted in attenuation of multiple components of DCI. Minocycline administration to MMP-9-/- mice did not yield additional protection. Consistent with experiments in mice, both pre- and post-SAH administration of minocycline attenuated SAH-induced vasospasm in rabbits. Interpretation MMP-9 is a key player in the pathogenesis of DCI. The consistent attenuation of multiple components of DCI with both pre- and post-SAH administration of minocycline across different species and experimental models of SAH, combined with the excellent safety profile of minocycline in humans suggest that a clinical trial in SAH patients is warranted.
Collapse
Affiliation(s)
- Ananth K Vellimana
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Meng-Liang Zhou
- Department of Neurosurgery Jinling Hospital School of Medicine Nanjing University Nanjing Jiangsu Province China
| | - Itender Singh
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Diane J Aum
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - James W Nelson
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Glenn R Harris
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Umeshkumar Athiraman
- Department of Anesthesiology Washington University School of Medicine St. Louis Missouri
| | - Byung H Han
- Department of Pharmacology A.T. Still University of Health Sciences Kirksville College of Osteopathic Medicine Kirksville Missouri
| | - Gregory J Zipfel
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| |
Collapse
|
25
|
Sharma R, Rosenberg A, Bennett ER, Laskowitz DT, Acheson SK. A blood-based biomarker panel to risk-stratify mild traumatic brain injury. PLoS One 2017; 12:e0173798. [PMID: 28355230 PMCID: PMC5371303 DOI: 10.1371/journal.pone.0173798] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 02/27/2017] [Indexed: 11/19/2022] Open
Abstract
Mild traumatic brain injury (TBI) accounts for the vast majority of the nearly two million brain injuries suffered in the United States each year. Mild TBI is commonly classified as complicated (radiographic evidence of intracranial injury) or uncomplicated (radiographically negative). Such a distinction is important because it helps to determine the need for further neuroimaging, potential admission, or neurosurgical intervention. Unfortunately, imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI) are costly and not without some risk. The purpose of this study was to screen 87 serum biomarkers to identify a select panel of biomarkers that would predict the presence of intracranial injury as determined by initial brain CT. Serum was collected from 110 patients who sustained a mild TBI within 24 hours of blood draw. Two models were created. In the broad inclusive model, 72kDa type IV collagenase (MMP-2), C-reactive protein (CRP), creatine kinase B type (CKBB), fatty acid binding protein-heart (hFABP), granulocyte-macrophage colony-stimulating factor (GM-CSF) and malondialdehyde modified low density lipoprotein (MDA-LDL) significantly predicted injury visualized on CT, yielding an overall c-statistic of 0.975 and a negative predictive value (NPV) of 98.6. In the parsimonious model, MMP-2, CRP, and CKBB type significantly predicted injury visualized on CT, yielding an overall c-statistic of 0.964 and a negative predictive value (NPV) of 97.2. These results suggest that a serum based biomarker panel can accurately differentiate patients with complicated mild TBI from those with uncomplicated mild TBI. Such a panel could be useful to guide early triage decisions, including the need for further evaluation or admission, especially in those environments in which resources are limited.
Collapse
Affiliation(s)
- Richa Sharma
- School of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alexandra Rosenberg
- School of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Ellen R. Bennett
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Daniel T. Laskowitz
- School of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Shawn K. Acheson
- Durham VA Medical Center, Durham, North Carolina, United States of America
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
26
|
Abstract
Subarachnoid hemorrhage (SAH) affects 30,000 people in the Unites States alone each year. Delayed cerebral ischemia occurs days after subarachnoid hemorrhage and represents a potentially treatable cause of morbidity for approximately one-third of those who survive the initial hemorrhage. While vasospasm has been traditionally linked to the development of cerebral ischemia several days after subarachnoid hemorrhage, emerging evidence reveals that delayed cerebral ischemia is part of a much more complicated post-subarachnoid hemorrhage syndrome. The development of delayed cerebral ischemia involves early arteriolar vasospasm with microthrombosis, perfusion mismatch and neurovascular uncoupling, spreading depolarizations, and inflammatory responses that begin at the time of the hemorrhage and evolve over time, culminating in cortical infarction. Large-vessel vasospasm is likely a late contributor to ongoing injury, and effective treatment for delayed cerebral ischemia will require improved detection of critical early pathophysiologic changes as well as therapeutic options that target multiple related pathways.
Collapse
|
27
|
The Role of ABO Blood Group in Cerebral Vasospasm, Associated Intracranial Hemorrhage, and Delayed Cerebral Ischemia in 470 Patients with Subarachnoid Hemorrhage. World Neurosurg 2017; 97:532-537. [DOI: 10.1016/j.wneu.2016.10.065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 11/17/2022]
|
28
|
Biomarkers of Glycocalyx Injury are Associated with Delayed Cerebral Ischemia Following Aneurysmal Subarachnoid Hemorrhage: A Case Series Supporting a New Hypothesis. Neurocrit Care 2016; 26:339-347. [DOI: 10.1007/s12028-016-0357-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Dang B, Shen H, Li H, Zhu M, Guo C, He W. Matrix metalloproteinase 9 may be involved in contraction of vascular smooth muscle cells in an in vitro rat model of subarachnoid hemorrhage. Mol Med Rep 2016; 14:4279-4284. [PMID: 27633189 DOI: 10.3892/mmr.2016.5736] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 08/30/2016] [Indexed: 11/06/2022] Open
Abstract
Our previous study determined that prominent cerebral vasospasm (CVS) may occur in an in vivo model of subarachnoid hemorrhage (SAH) in rats. Matrix metalloproteinase 9 (MMP‑9) expression levels in basilar arteries were upregulated in a similar manner to the development of CVS following SAH. To identify the changes that occur in the contractility of cerebrovascular smooth muscle cells and the expression levels of MMP‑9 in an in vitro model of SAH, rat cerebrovascular smooth muscle cells were isolated, cultured, and then stimulated with hemolysate. Additionally, 2-[(4-phenoxyphenylsulfonyl)methyl]thiirane (SB-3CT), a selective MMP-9 inhibitor, was used to determine the effect of MMP‑9 on the contractility of cerebrovascular smooth muscle cells. Cerebrovascular smooth muscle cells were successfully isolated and cultured in vitro, and hemolysate stimulation enhanced their contractility and increased MMP‑9 expression levels. The present study also revealed that pretreatment with SB‑3CT decreased MMP‑9 expression levels in cerebrovascular smooth muscle cells, and reduced their contractility upon hemolysate treatment. Therefore, the current study confirmed that MMP‑9 is important for the enhancement of the contractility of cerebrovascular smooth muscle cells in an in vitro rat model of SAH.
Collapse
Affiliation(s)
- Baoqi Dang
- Department of Neurosurgery, Zhangjiagang Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Haitao Shen
- Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Haiying Li
- Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Min Zhu
- Department of Neurosurgery, Zhangjiagang Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Chunhua Guo
- Department of Neurosurgery, Zhangjiagang Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Weichun He
- Department of Neurosurgery, Zhangjiagang Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
30
|
Burrell C, Avalon NE, Siegel J, Pizzi M, Dutta T, Charlesworth MC, Freeman WD. Precision medicine of aneurysmal subarachnoid hemorrhage, vasospasm and delayed cerebral ischemia. Expert Rev Neurother 2016; 16:1251-1262. [PMID: 27314601 DOI: 10.1080/14737175.2016.1203257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Precision medicine provides individualized treatment of diseases through leveraging patient-to-patient variation. Aneurysmal subarachnoid hemorrhage carries tremendous morbidity and mortality with cerebral vasospasm and delayed cerebral ischemia proving devastating and unpredictable. Lack of treatment measures for these conditions could be improved through precision medicine. Areas covered: Discussed are the pathophysiology of CV and DCI, treatment guidelines, and evidence for precision medicine used for prediction and prevention of poor outcomes following aSAH. A PubMed search was performed using keywords cerebral vasospasm or delayed cerebral ischemia and either biomarkers, precision medicine, metabolomics, proteomics, or genomics. Over 200 peer-reviewed articles were evaluated. The studies presented cover biomarkers identified as predictive markers or therapeutic targets following aSAH. Expert commentary: The biomarkers reviewed here correlate with CV, DCI, and neurologic outcomes after aSAH. Though practical use in clinical management of aSAH is not well established, using these biomarkers as predictive tools or therapeutic targets demonstrates the potential of precision medicine.
Collapse
Affiliation(s)
| | - Nicole E Avalon
- a Department of Neurology , Mayo Clinic , Jacksonville , FL , USA
| | - Jason Siegel
- a Department of Neurology , Mayo Clinic , Jacksonville , FL , USA
| | - Michael Pizzi
- a Department of Neurology , Mayo Clinic , Jacksonville , FL , USA
| | - Tumpa Dutta
- b Endocrine Research Unit , Mayo Clinic , Rochester , MN , USA
| | | | | |
Collapse
|
31
|
Fujimoto M, Shiba M, Kawakita F, Liu L, Nakasaki A, Shimojo N, Imanaka-Yoshida K, Yoshida T, Suzuki H. Epidermal growth factor-like repeats of tenascin-C-induced constriction of cerebral arteries via activation of epidermal growth factor receptors in rats. Brain Res 2016; 1642:436-444. [DOI: 10.1016/j.brainres.2016.04.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 01/01/2023]
|
32
|
Stylli SS, Adamides AA, Koldej RM, Luwor RB, Ritchie DS, Ziogas J, Kaye AH. miRNA expression profiling of cerebrospinal fluid in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg 2016; 126:1131-1139. [PMID: 27128592 DOI: 10.3171/2016.1.jns151454] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE MicroRNAs (miRNAs) regulate gene expression and therefore play important roles in many physiological and pathological processes. The aim of this pilot study was to determine the feasibility of extraction and subsequent profiling of miRNA from CSF samples in a pilot population of aneurysmal subarachnoid hemorrhage patients and establish if there is a distinct CSF miRNA signature between patients who develop cerebral vasospasm and those who do not. METHODS CSF samples were taken at various time points during the clinical management of a subset of SAH patients (SAH patient samples without vasospasm, n = 10; SAH patient samples with vasospasm, n = 10). CSF obtained from 4 patients without SAH was also included in the analysis. The miRNA was subsequently isolated and purified and then analyzed on an nCounter instrument using the Human V2 and V3 miRNA assay kits. The data were imported into the nSolver software package for differential miRNA expression analysis. RESULTS From a total of 800 miRNAs that could be detected with each version of the miRNA assay kit, a total of 691 miRNAs were communal to both kits. There were 36 individual miRNAs that were differentially expressed (p < 0.01) based on group analyses, with a number of miRNAs showing significant changes in more than one group analysis. The changes largely reflected differences between non-SAH and SAH groups. These included miR-204-5p, miR-223-3p, miR-337-5p, miR-451a, miR-489, miR-508-3p, miR-514-3p, miR-516-5p, miR-548 m, miR-599, miR-937, miR-1224-3p, and miR-1301. However, a number of miRNAs did exclusively differ between the vasospasm and nonvasospasm SAH groups including miR-27a-3p, miR-516a-5p, miR-566, and miR-1197. CONCLUSIONS The findings indicate that temporal miRNA profiling can detect differences between CSF from aneurysmal SAH and non-SAH patients. Moreover, the miRNA profile of CSF samples from patients who develop cerebral vasopasm may be distinguishable from those who do not. These results provide a foundation for future research at identifying novel CSF biomarkers that might predispose to the development of cerebral vasospasm after SAH and therefore influence subsequent clinical management.
Collapse
Affiliation(s)
- Stanley S Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital.,Department of Neurosurgery, The Royal Melbourne Hospital
| | - Alexios A Adamides
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital.,Department of Neurosurgery, The Royal Melbourne Hospital
| | - Rachel M Koldej
- ACRF Translational Research Laboratory, The Department of Research, The Royal Melbourne Hospital; and
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital
| | - David S Ritchie
- ACRF Translational Research Laboratory, The Department of Research, The Royal Melbourne Hospital; and
| | - James Ziogas
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital.,Department of Neurosurgery, The Royal Melbourne Hospital
| |
Collapse
|
33
|
Lucke-Wold BP, Logsdon AF, Manoranjan B, Turner RC, McConnell E, Vates GE, Huber JD, Rosen CL, Simard JM. Aneurysmal Subarachnoid Hemorrhage and Neuroinflammation: A Comprehensive Review. Int J Mol Sci 2016; 17:497. [PMID: 27049383 PMCID: PMC4848953 DOI: 10.3390/ijms17040497] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) can lead to devastating outcomes including vasospasm, cognitive decline, and even death. Currently, treatment options are limited for this potentially life threatening injury. Recent evidence suggests that neuroinflammation plays a critical role in injury expansion and brain damage. Red blood cell breakdown products can lead to the release of inflammatory cytokines that trigger vasospasm and tissue injury. Preclinical models have been used successfully to improve understanding about neuroinflammation following aneurysmal rupture. The focus of this review is to provide an overview of how neuroinflammation relates to secondary outcomes such as vasospasm after aneurysmal rupture and to critically discuss pharmaceutical agents that warrant further investigation for the treatment of subarachnoid hemorrhage. We provide a concise overview of the neuroinflammatory pathways that are upregulated following aneurysmal rupture and how these pathways correlate to long-term outcomes. Treatment of aneurysm rupture is limited and few pharmaceutical drugs are available. Through improved understanding of biochemical mechanisms of injury, novel treatment solutions are being developed that target neuroinflammation. In the final sections of this review, we highlight a few of these novel treatment approaches and emphasize why targeting neuroinflammation following aneurysmal subarachnoid hemorrhage may improve patient care. We encourage ongoing research into the pathophysiology of aneurysmal subarachnoid hemorrhage, especially in regards to neuroinflammatory cascades and the translation to randomized clinical trials.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26505, USA.
| | - Aric F Logsdon
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA.
| | - Branavan Manoranjan
- McMaster Stem Cell and Cancer Research Institute, Michael G. DeGroote School of Medicine, Hamilton, ON L8S 4K1, Canada.
| | - Ryan C Turner
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26505, USA.
| | - Evan McConnell
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - George Edward Vates
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Jason D Huber
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA.
| | - Charles L Rosen
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26505, USA.
| | - J Marc Simard
- Departments of Neurosurgery, Pathology, and Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
34
|
Tülü S, Mulino M, Pinggera D, Luger M, Würtinger P, Grams A, Bodner T, Beer R, Helbok R, Matteucci-Gothe R, Unterhofer C, Gizewski E, Schmutzhard E, Thomé C, Ortler M. Remote ischemic preconditioning in the prevention of ischemic brain damage during intracranial aneurysm treatment (RIPAT): study protocol for a randomized controlled trial. Trials 2015; 16:594. [PMID: 26714784 PMCID: PMC4696326 DOI: 10.1186/s13063-015-1102-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The treatment of intracranial aneurysms may be associated with cerebral ischemia. We hypothesize that pre-interventional remote ischemic preconditioning (RIPC) reduces ischemic cerebral tissue damage in patients undergoing elective intracranial aneurysm treatment. METHODS/DESIGN This study is a single-center, prospective, randomized, double-blind explorative trial. Patients with an unruptured intracranial aneurysm admitted to Innsbruck Medical University Hospital for coiling or clipping will be consecutively randomized to either the intervention group (= RIPC by inflating an upper extremity blood-pressure cuff for 3 x 5 min to 200 mmHg) or the control group after induction of anesthesia. Participants will be randomized 1:1 to either the preconditioning group or the sham group using a random allocation sequence and block randomization. The precalculated sample size is n = 24 per group. The primary endpoint is the area-under-the-curve concentration of serum biomarkers (S100B, NSE, GFAP, MMP9, MBP, and cellular microparticles) in the first five days after treatment. Secondary endpoints are the number and volume of new ischemic lesions in magnetic resonance imaging and clinical outcome evaluated with the National Institutes of Health Stroke Scale, the modified Rankin Scale, and neuropsychological tests at six and twelve months. All outcome variables will be determined by observers blinded to group allocation. This study was approved by the local institutional Ethics Committee (UN5164), version 3.0 of the study protocol, dated 20 October 2013. DISCUSSION This study uses the elective treatment of intracranial aneurysms as a paradigmatic situation to explore the neuroprotective effects of RIPC. If effects are demonstrable in this pilot trial, a larger, prospective phase III trial will be considered.
Collapse
Affiliation(s)
- Selma Tülü
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Miriam Mulino
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Daniel Pinggera
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Markus Luger
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Philipp Würtinger
- Central Institute for Medical and Chemical Laboratory Diagnostics, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Astrid Grams
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Thomas Bodner
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Ronny Beer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Raimund Helbok
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Raffaella Matteucci-Gothe
- Department of Public Health and Health Technology Assessment, UMIT Health and Life Sciences University, Hall in Tirol, Austria.
| | - Claudia Unterhofer
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Elke Gizewski
- Department of Neuroradiology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Erich Schmutzhard
- Department of Neurology, Medical University of Innsbruck, Innsbruck, 6020, Austria.
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| | - Martin Ortler
- Department of Neurosurgery, Medical University of Innsbruck, 35, Anichstrasse, Innsbruck, 6020, Austria.
| |
Collapse
|
35
|
Lago A, Tembl JI, López-Cuevas R, Vallés J, Santos MT, Moscardó A, Parkhutik V. Characterisation of DWI-MRI confirmed cerebral infarcts in patients with subarachnoid haemorrhage and their association with MMP-9 levels. Neurol Res 2015; 37:688-92. [PMID: 25916560 DOI: 10.1179/1743132815y.0000000045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES It has been suggested that metalloproteinase-9 (MMP-9) could predict the onset of cerebral vasospasm after subarachnoidal haemorrhage (SAH). The aim of this study was to analyse, in patients with SAH, the difference between patients with MRI ischaemic infarcts and patients without, and to investigate the role of metalloproteases as a prognostic factor for ischaemic infarcts. METHODS Sixty eight consecutive patients with SAH and diffusion-weighted magnetic resonance imaging (DWI-MRI) done 3 weeks after SAH. We define two groups, with and without DWI-MRI infarcts. Blood samples were taken at entry, 3 days and 1 week MMP-9 was determined through ELISA method. RESULTS Forty per cent were male, with a mean age of 54 ± 14 years. Twenty five patients, 36.8%, had DWI-MRI infarcts; in patients with MRI infarcts, SAH was more severe (Fisher = 4 52 vs 25.6%, P = 0.037), with more morbi-mortality (Rankin>3 48 vs 18.6%, P = 0.014), and more symptomatic vasospasm (28 vs 7%, P = 0.031). Levels of MMP-9 were higher than controls, but there were no significant differences between patients with and without infarcts (first determination no infarcts 39.40 ng/ml ± 35.40 vs infarcts 49.75 ng/ml ± 34.54, P > 0.005, 3 days no infarcts 72.10 ng/ml ± 70.95 vs infarcts 62.28 ± 33.84, P > 0.005, 1 week no infarcts 148.48 ng/ml ± 142.73 vs infarcts 91.5 ng/ml ± 1.20, P > 0.005). CONCLUSION Thirty eight percent in a well-studied series of patients with SAH have DWI-MRI infarcts; the infarcts were associated to SAH severity, SAH outcome and symptomatic vasospasm. Metalloproteinase-9 was higher in SAH patients than in controls, but it could not discriminate the infarct patients.
Collapse
|
36
|
Abstract
Cerebral vasospasm causes delayed ischemic neurologic deficits after aneurysmal subarachnoid hemorrhage. This is a well-established clinical entity with significant associated morbidity and mortality. The underlying patholphysiology is highly complex and poorly understood. Large-vessel vasospasm, autoregulatory dysfunction, inflammation, genetic predispositions, microcirculatory failure, and spreading cortical depolarization are aspects of delayed neurologic deterioration that have been described in the literature. This article presents a perspective on cerebral vasospasm, as guided by the literature to date, specifically examining the mechanism, diagnosis, and treatment of cerebral vasospasm.
Collapse
|
37
|
Chou SHY, Robertson CS. Monitoring biomarkers of cellular injury and death in acute brain injury. Neurocrit Care 2014; 21 Suppl 2:S187-214. [PMID: 25208676 PMCID: PMC7888263 DOI: 10.1007/s12028-014-0039-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Molecular biomarkers have revolutionalized diagnosis and treatment of many diseases, such as troponin use in myocardial infarction. Urgent need for high-fidelity biomarkers in neurocritical care has resulted in numerous studies reporting potential candidate biomarkers. METHODS We performed an electronic literature search and systematic review of English language articles on cellular/molecular biomarkers associated with outcome and with disease-specific secondary complications in adult patients with acute ischemic stroke (AIS), intracerebral hemorrhage (ICH), subarachnoid hemorrhage (SAH), traumatic brain injury (TBI), and post-cardiac arrest hypoxic ischemic encephalopathic injuries (HIE). RESULTS A total of 135 articles were included. Though a wide variety of potential biomarkers have been identified, only neuron-specific enolase has been validated in large cohorts and shows 100% specificity for poor outcome prediction in HIE patients not treated with therapeutic hypothermia. There are many promising candidate blood and CSF biomarkers in SAH, AIS, ICH, and TBI, but none yet meets criteria for routine clinical use. CONCLUSION Current studies vary significantly in patient selection, biosample collection/processing, and biomarker measurement protocols, thereby limiting the generalizability of overall results. Future large prospective studies with standardized treatment, biosample collection, and biomarker measurement and validation protocols are necessary to identify high-fidelity biomarkers in neurocritical care.
Collapse
Affiliation(s)
- Sherry H-Y Chou
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA,
| | | |
Collapse
|
38
|
Mrozek S, Dumurgier J, Citerio G, Mebazaa A, Geeraerts T. Biomarkers and acute brain injuries: interest and limits. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:220. [PMID: 25029344 PMCID: PMC4056618 DOI: 10.1186/cc13841] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For patients presenting with acute brain injury (such as traumatic brain injury, subarachnoid haemorrhage and stroke), the diagnosis and identification of intracerebral lesions and evaluation of the severity, prognosis and treatment efficacy can be challenging. The complexity and heterogeneity of lesions after brain injury are most probably responsible for this difficulty. Patients with apparently comparable brain lesions on imaging may have different neurological outcomes or responses to therapy. In recent years, plasmatic and cerebrospinal fluid biomarkers have emerged as possible tools to distinguish between the different pathophysiological processes. This review aims to summarise the plasmatic and cerebrospinal fluid biomarkers evaluated in subarachnoid haemorrhage, traumatic brain injury and stroke, and to clarify their related interests and limits for diagnosis and prognosis. For subarachnoid haemorrhage, particular interest has been focused on the biomarkers used to predict vasospasm and cerebral ischaemia. The efficacy of biomarkers in predicting the severity and outcome of traumatic brain injury has been stressed. The very early diagnostic performance of biomarkers and their ability to discriminate ischaemic from haemorrhagic stroke were studied.
Collapse
|
39
|
Hong CM, Tosun C, Kurland DB, Gerzanich V, Schreibman D, Simard JM. Biomarkers as outcome predictors in subarachnoid hemorrhage--a systematic review. Biomarkers 2014; 19:95-108. [PMID: 24499240 DOI: 10.3109/1354750x.2014.881418] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
CONTEXT Subarachnoid hemorrhage (SAH) has a high fatality rate and many suffer from delayed neurological deficits. Biomarkers may aid in the identification of high-risk patients, guide treatment/management and improve outcome. OBJECTIVE The aim of this review was to summarize biomarkers of SAH associated with outcome. METHODS An electronic database query was completed, including an additional review of reference lists to include all potential human studies. RESULTS A total of 298 articles were identified; 112 were reviewed; 55 studies were included. CONCLUSION This review details biomarkers of SAH that correlate with outcome. It provides the basis for research investigating their possible translation into the management of SAH patients.
Collapse
Affiliation(s)
- Caron M Hong
- Department of Anesthesiology, Division of Critical Care Medicine
| | | | | | | | | | | |
Collapse
|
40
|
Ostrowski RP, Zhang JH. Hyperbaric oxygen for cerebral vasospasm and brain injury following subarachnoid hemorrhage. Transl Stroke Res 2013; 2:316-27. [PMID: 23060945 DOI: 10.1007/s12975-011-0069-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The impact of acute brain injury and delayed neurological deficits due to cerebral vasospasm (CVS) are major determinants of outcomes after subarachnoid hemorrhage (SAH). Although hyperbaric oxygen (HBO) had been used to treat patients with SAH, the supporting evidence and underlying mechanisms have not been systematically reviewed. In the present paper, the overview of studies of HBO for cerebral vasospasm is followed by a discussion of HBO molecular mechanisms involved in the protection against SAH-induced brain injury and even, as hypothesized, in attenuating vascular spasm alone. Faced with the paucity of information as to what degree HBO is capable of antagonizing vasospasm after SAH, the authors postulate that the major beneficial effects of HBO in SAH include a reduction of acute brain injury and combating brain damage caused by CVS. Consequently, authors reviewed the effects of HBO on SAH-induced hypoxic signaling and other mechanisms of neurovascular injury. Moreover, authors hypothesize that HBO administered after SAH may "precondition" the brain against the detrimental sequelae of vasospasm. In conclusion, the existing evidence speaks in favor of administering HBO in both acute and delayed phase after SAH; however, further studies are needed to understand the underlying mechanisms and to establish the optimal regimen of treatment.
Collapse
Affiliation(s)
- Robert P Ostrowski
- Department of Physiology and Pharmacology, Loma Linda University, 11041 Campus Street, Loma Linda, CA 92350, USA
| | | |
Collapse
|
41
|
Naranjo D, Arkuszewski M, Rudzinski W, Melhem ER, Krejza J. Brain ischemia in patients with intracranial hemorrhage: pathophysiological reasoning for aggressive diagnostic management. Neuroradiol J 2013; 26:610-28. [PMID: 24355179 PMCID: PMC4202872 DOI: 10.1177/197140091302600603] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 11/15/2022] Open
Abstract
Patients with intracranial hemorrhage have to be managed aggressively to avoid or minimize secondary brain damage due to ischemia, which contributes to high morbidity and mortality. The risk of brain ischemia, however, is not the same in every patient. The risk of complications associated with an aggressive prophylactic therapy in patients with a low risk of brain ischemia can outweigh the benefits of therapy. Accurate and timely identification of patients at highest risk is a diagnostic challenge. Despite the availability of many diagnostic tools, stroke is common in this population, mostly because the pathogenesis of stroke is frequently multifactorial whereas diagnosticians tend to focus on one or two risk factors. The pathophysiological mechanisms of brain ischemia in patients with intracranial hemorrhage are not yet fully elucidated and there are several important areas of ongoing research. Therefore, this review describes physiological and pathophysiological aspects associated with the development of brain ischemia such as the mechanism of oxygen and carbon dioxide effects on the cerebrovascular system, neurovascular coupling and respiratory and cardiovascular factors influencing cerebral hemodynamics. Consequently, we review investigations of cerebral blood flow disturbances relevant to various hemodynamic states associated with high intracranial pressure, cerebral embolism, and cerebral vasospasm along with current treatment options.
Collapse
Affiliation(s)
- Daniel Naranjo
- Department of Diagnostic Radiology of the University of Maryland, Division of Clinical Research; Baltimore, Maryland, USA
| | - Michal Arkuszewski
- Department of Neurology, Medical University of Silesia, Central University Hospital; Katowice, Poland
| | - Wojciech Rudzinski
- Department of Cardiology, Robert Packer Hospital; Sayre, Pennsylvania USA
| | - Elias R. Melhem
- Department of Diagnostic Radiology of the University of Maryland, Division of Clinical Research; Baltimore, Maryland, USA
| | - Jaroslaw Krejza
- Department of Diagnostic Radiology of the University of Maryland, Division of Clinical Research; Baltimore, Maryland, USA
| |
Collapse
|
42
|
Sarrafzadeh A, Copin JC, Bengualid DJ, Turck N, Vajkoczy P, Bijlenga P, Schaller K, Gasche Y. Matrix metalloproteinase-9 concentration in the cerebral extracellular fluid of patients during the acute phase of aneurysmal subarachnoid hemorrhage. Neurol Res 2013; 34:455-61. [DOI: 10.1179/1743132812y.0000000018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Asita Sarrafzadeh
- Division of NeurosurgeryFaculty of Medicine, University of Geneva, Switzerland
- Department of NeurosurgeryCharité — Universitätsmedizin Berlin, Germany
| | - Jean-Christophe Copin
- Division of NeurosurgeryFaculty of Medicine, University of Geneva, Switzerland
- Division of Intensive CareGeneva University Hospitals, Faculty of Medicine, University of Geneva, Switzerland
- Geneva Neuroscience CenterUniversity of Geneva, Switzerland
| | - Daniel Jiménez Bengualid
- Division of Intensive CareGeneva University Hospitals, Faculty of Medicine, University of Geneva, Switzerland
- Geneva Neuroscience CenterUniversity of Geneva, Switzerland
| | - Natacha Turck
- Biomedical Proteomics Research GroupDepartment of Structural Biology and Bioinformatics, University Medical Center, University of Geneva, Switzerland
| | - Peter Vajkoczy
- Department of NeurosurgeryCharité — Universitätsmedizin Berlin, Germany
| | - Philippe Bijlenga
- Division of NeurosurgeryFaculty of Medicine, University of Geneva, Switzerland
| | - Karl Schaller
- Division of NeurosurgeryFaculty of Medicine, University of Geneva, Switzerland
| | - Yvan Gasche
- Division of Intensive CareGeneva University Hospitals, Faculty of Medicine, University of Geneva, Switzerland
- Geneva Neuroscience CenterUniversity of Geneva, Switzerland
| |
Collapse
|
43
|
Smooth muscle phenotype switching in blast traumatic brain injury-induced cerebral vasospasm. Transl Stroke Res 2013; 5:385-93. [PMID: 24323722 DOI: 10.1007/s12975-013-0300-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/15/2013] [Accepted: 10/20/2013] [Indexed: 10/26/2022]
Abstract
Due to increased survival rates among soldiers exposed to explosive blasts, blast-induced traumatic brain injury (bTBI) has become much more prevalent in recent years. Cerebral vasospasm (CVS) is a common manifestation of brain injury whose incidence is significantly increased in bTBI. CVS is characterized by initial vascular smooth muscle cell (VSMC) hypercontractility, followed by prolonged vessel remodeling and lumen occlusion, and is traditionally associated with subarachnoid hemorrhage (SAH), but recent results suggest that mechanical injury during bTBI can cause mechanotransduced VSMC hypercontractility and phenotype switching necessary for CVS development, even in the absence of SAH. Here, we review the mechanisms by which mechanical stimulation and SAH can synergistically drive CVS progression, complicating treatment options in bTBI patients.
Collapse
|
44
|
Inflammation, cerebral vasospasm, and evolving theories of delayed cerebral ischemia. Neurol Res Int 2013; 2013:506584. [PMID: 24058736 PMCID: PMC3766617 DOI: 10.1155/2013/506584] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 11/23/2022] Open
Abstract
Cerebral vasospasm (CVS) is a potentially lethal complication of aneurysmal subarachnoid hemorrhage (aSAH). Recently, the symptomatic presentation of CVS has been termed delayed cerebral ischemia (DCI), occurring as early as 3-4 days after the sentinel bleed. For the past 5-6 decades, scientific research has promulgated the theory that cerebral vasospasm plays a primary role in the pathology of DCI and subsequently delayed ischemic neurological decline (DIND). Approximately 70% of patients develop CVS after aSAH with 50% long-term morbidity rates. The exact etiology of CVS is unknown; however, a well-described theory involves an antecedent inflammatory cascade with alterations of intracellular calcium dynamics and nitric oxide fluxes, though the intricacies of this inflammatory theory are currently unknown. Consequently, there have been few advances in the clinical treatment of this patient cohort, and morbidity remains high. Identification of intermediaries in the inflammatory cascade can provide insight into newer clinical interventions in the prevention and management of cerebral vasospasm and will hopefully prevent neurological decline. In this review, we discuss current theories implicating the inflammatory cascade in the development of CVS and potential treatment targets.
Collapse
|
45
|
Suzuki H, Kanamaru K, Suzuki Y, Aimi Y, Matsubara N, Araki T, Takayasu M, Kinoshita N, Imanaka-Yoshida K, Yoshida T, Taki W. Tenascin-C is induced in cerebral vasospasm after subarachnoid hemorrhage in rats and humans: a pilot study. Neurol Res 2013; 32:179-84. [DOI: 10.1179/174313208x355495] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Zhao XD, Zhou YT, Lu XJ. Sulforaphane enhances the activity of the Nrf2-ARE pathway and attenuates inflammation in OxyHb-induced rat vascular smooth muscle cells. Inflamm Res 2013; 62:857-63. [PMID: 23756573 DOI: 10.1007/s00011-013-0641-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 02/19/2013] [Accepted: 05/24/2013] [Indexed: 01/13/2023] Open
Abstract
AIM A growing body of evidence indicates that the nuclear factor erythroid 2-related factor 2-antioxidant response element (Nrf2-ARE) pathway plays a protective role in many physiological stress processes such as inflammatory damage, oxidative stress, and the accumulation of toxic metabolites, which are all involved in the cerebral vasospasm following subarachnoid hemorrhage (SAH). We hypothesized that the Nrf2-ARE pathway might have a protective role in cerebral vasospasm following SAH. MATERIALS AND METHODS In our study, we investigate whether the oxyhemoglobin (OxyHb) can induce the activation of the Nrf2-ARE pathway in vascular smooth muscle cells (VSMCs), and evaluate the modulatory effects of sulforaphane (SUL) on OxyHb-induced inflammation in VSMCs. RESULTS As a result, both the protein level and the mRNA level of the nuclear Nrf2 were significantly increased, while the mRNA levels of two Nrf2-regulated gene products, both heme oxygenase-1 and NAD(P)H: quinone oxidoreductase-1, were also up-regulated in VSMCs induced with OxyHb. A marked increase of inflammatory cytokines such as IL-1β, IL-6 and TNF-α release was observed at 48 h after cells were treated with OxyHb. SUL enhanced the activity of the Nrf2-ARE pathway and suppressed cytokine release. CONCLUSIONS Our results indicate that the Nrf2-ARE pathway was activated in OxyHb-induced VSMCs. SUL suppressed cytokine release via the activation of the Nrf2-ARE pathway in OxyHb-induced VSMCs.
Collapse
Affiliation(s)
- X-D Zhao
- Department of Neurosurgery, Wuxi Second Hospital Affiliated Nanjing Medical University, 68 Zhong Shan Road, Wuxi 214002, Jiangsu Province, People's Republic of China
| | | | | |
Collapse
|
47
|
Affiliation(s)
- Sebastian Koch
- From the Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL (S.K.); and Departments of Neurosurgery and Radiology, University of California, Los Angeles, CA (N.G.)
| | - Nestor Gonzalez
- From the Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL (S.K.); and Departments of Neurosurgery and Radiology, University of California, Los Angeles, CA (N.G.)
| |
Collapse
|
48
|
Matrix Metalloproteinases in Cerebral Vasospasm following Aneurysmal Subarachnoid Hemorrhage. Neurol Res Int 2013; 2013:943761. [PMID: 23691315 PMCID: PMC3649803 DOI: 10.1155/2013/943761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/09/2013] [Indexed: 12/13/2022] Open
Abstract
Delayed cerebral vasospasm is a significant cause of morbidity and mortality following aneurysmal subarachnoid hemorrhage (SAH). While the cellular mechanisms underlying vasospasm remain unclear, it is believed that inflammation may play a critical role in vasospasm. Matrix metalloproteinasees (MMPs) are a family of extracellular and membrane-bound proteases capable of degrading the blood-rain barrier (BBB). As such, MMP upregulation following SAH may result in a proinflammatory extravascular environment capable of inciting delayed cerebral vasospasm. This paper presents an overview of MMPs and describes existing data pertinent to delayed cerebral vasospasm.
Collapse
|
49
|
Fischer M, Dietmann A, Beer R, Broessner G, Helbok R, Pfausler B, Schmutzhard E, Lackner P. Differential regulation of matrix-metalloproteinases and their tissue inhibitors in patients with aneurysmal subarachnoid hemorrhage. PLoS One 2013; 8:e59952. [PMID: 23555845 PMCID: PMC3610709 DOI: 10.1371/journal.pone.0059952] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/20/2013] [Indexed: 01/10/2023] Open
Abstract
Background Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in vascular remodeling, (neuro)inflammation, blood-brain barrier breakdown and neuronal apoptosis. Proinflammatory mechanisms are suggested to play an important role during early brain injury and cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH). This study aimed to analyze MMP-3, MMP-9, TIMP-1 and TIMP-3 in patients with SAH and their respective association with cerebral vasospasm (CVS). Methods Blood samples were collected in 20 SAH patients on days 1 to 7, 9, 11, 13 and 15 and 20 healthy age and gender matched volunteers. Serum MMPs and TIMPs were analyzed using enzyme-linked immunosorbent assay. Doppler sonographic CVS was defined as a mean blood flow velocity above 120 cm/sec in the middle cerebral artery. When discharged from hospital and at 6 month follow-up neurological outcome was evaluated using the Glasgow Outcome Score and the modified Rankin Scale. Results MMP-9 was higher in SAH patients compared to healthy controls (p<0.001). Patients with CVS (n = 11) had elevated MMP-9 serum levels compared to patients without CVS (n = 9, p<0.05). Higher MMP-9 was observed in the presence of cerebral ischemia associated with cerebral vasospasm (p<0.05). TIMP-1 was increased in patients with SAH on day 4 (p<0.05). There was an imbalance of the MMP-9/TIMP-1 ratio in favor of MMP-9 in SAH patients, in particular those with CVS (p<0.001). MMP-3 and TIMP-3 were significantly lower in SAH patients throughout day 4 and day 7, respectively (p<0.05). We did not find an association between MMP-, TIMP levels and neurological outcome after 6 months. Conclusions MMP-3 and -9 are differentially regulated in SAH patients with both enzymes showing peak levels correlating with the development of CVS. The inhibitors TIMP-1 and -3 were low during the acute phase after SAH and increased later on which might suggest a preponderance of pro-inflammatory mechanisms.
Collapse
Affiliation(s)
- Marlene Fischer
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria. mail:
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Inflammation in subarachnoid hemorrhage and delayed deterioration associated with vasospasm: a review. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 115:233-8. [PMID: 22890674 DOI: 10.1007/978-3-7091-1192-5_42] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Delayed deterioration associated with vasospasm (DDAV) after subarachnoid hemorrhage (SAH), (often called vasospasm) continues to be both a difficult entity to treat and a leading cause of morbidity in patients. Until recently, attention was focused on alleviating the vascular spasm. Recent evidence shows that vascular spasm may not account for all the morbidity of DDAV. There is renewed interest in looking for other potential targets for therapy. Inflammation has become a promising area of research for new treatments. This review explores the evidence that inflammation is a driver of DDAV by asking three questions: (1) If inflammation is important in the pathogenesis of the disease, what part or parts of the inflammatory response are involved? (2) When does inflammation occur in SAH? (3) In what compartment of the skull does the inflammation occur, the cerebrospinal fluid and meninges, the cerebral arteries, or the brain itself?
Collapse
|