1
|
Koubek EJ, Ralya AT, Larson TR, McGovern RM, Buhrow SA, Covey JM, Adjei AA, Takebe N, Ames MM, Goetz MP, Reid JM. Population Pharmacokinetics of Z-Endoxifen in Patients With Advanced Solid Tumors. J Clin Pharmacol 2022; 62:1121-1131. [PMID: 35358345 PMCID: PMC9339467 DOI: 10.1002/jcph.2053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to develop and validate a population pharmacokinetic model for Z-endoxifen in patients with advanced solid tumors and to identify clinical variables that influence pharmacokinetic parameters. Z-endoxifen-HCl was administered orally once a day on a 28-day cycle (±3 days) over 11 dose levels ranging from 20 to 360 mg. A total of 1256 Z-endoxifen plasma concentration samples from 80 patients were analyzed using nonlinear mixed-effects modeling to develop a population pharmacokinetic model for Z-endoxifen. A 2-compartment model with oral depot and linear elimination adequately described the data. The estimated apparent total clearance, apparent central volume of distribution, and apparent peripheral volume of distribution were 4.89 L/h, 323 L, and 39.7 L, respectively, with weight-effect exponents of 0.75, 1, and 1, respectively. This model was used to explore the effects of clinical and demographic variables on Z-endoxifen pharmacokinetics. Weight, race on clearance, and aspartate aminotransferase on the absorption rate constant were identified as significant covariates in the final model. This novel population pharmacokinetic model provides insight regarding factors that may affect the pharmacokinetics of Z-endoxifen and may assist in the design of future clinical trials.
Collapse
Affiliation(s)
- Emily J. Koubek
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Thomas R. Larson
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Molecular Pharmacology and Experimental Therapeutics Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | | | - Sarah A. Buhrow
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Alex A. Adjei
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| | - Naoko Takebe
- National Cancer Institute, Bethesda, Maryland, USA
| | - Matthew M. Ames
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew P. Goetz
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joel M. Reid
- Department of Oncology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Pharmacology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Kasteel EEJ, Darney K, Kramer NI, Dorne JLCM, Lautz LS. Human variability in isoform-specific UDP-glucuronosyltransferases: markers of acute and chronic exposure, polymorphisms and uncertainty factors. Arch Toxicol 2020; 94:2637-2661. [PMID: 32415340 PMCID: PMC7395075 DOI: 10.1007/s00204-020-02765-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/22/2020] [Indexed: 01/11/2023]
Abstract
UDP-glucuronosyltransferases (UGTs) are involved in phase II conjugation reactions of xenobiotics and differences in their isoform activities result in interindividual kinetic differences of UGT probe substrates. Here, extensive literature searches were performed to identify probe substrates (14) for various UGT isoforms (UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7 and UGT2B15) and frequencies of human polymorphisms. Chemical-specific pharmacokinetic data were collected in a database to quantify interindividual differences in markers of acute (Cmax) and chronic (area under the curve, clearance) exposure. Using this database, UGT-related uncertainty factors were derived and compared to the default factor (i.e. 3.16) allowing for interindividual differences in kinetics. Overall, results show that pharmacokinetic data are predominantly available for Caucasian populations and scarce for other populations of different geographical ancestry. Furthermore, the relationships between UGT polymorphisms and pharmacokinetic parameters are rarely addressed in the included studies. The data show that UGT-related uncertainty factors were mostly below the default toxicokinetic uncertainty factor of 3.16, with the exception of five probe substrates (1-OH-midazolam, ezetimibe, raltegravir, SN38 and trifluoperazine), with three of these substrates being metabolised by the polymorphic isoform 1A1. Data gaps and future work to integrate UGT-related variability distributions with in vitro data to develop quantitative in vitro-in vivo extrapolations in chemical risk assessment are discussed.
Collapse
Affiliation(s)
- E E J Kasteel
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, 3508 TD, Utrecht, The Netherlands.
| | - K Darney
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| | - N I Kramer
- Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.177, 3508 TD, Utrecht, The Netherlands
| | - J L C M Dorne
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno 1A, 43126, Parma, Italy
| | - L S Lautz
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 14 rue Pierre et Marie Curie, 94701, Maisons-Alfort, France
| |
Collapse
|
3
|
Kutsukake T, Furukawa Y, Ondo K, Gotoh S, Fukami T, Nakajima M. Quantitative Analysis of UDP-Glucuronosyltransferase Ugt1a and Ugt2b mRNA Expression in the Rat Liver and Small Intestine: Sex and Strain Differences. Drug Metab Dispos 2019; 47:38-44. [PMID: 30389729 DOI: 10.1124/dmd.118.083287] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/29/2018] [Indexed: 02/13/2025] Open
Abstract
UDP-glucuronosyltransferases (UGTs) catalyze the glucuronidation of numerous endogenous and exogenous compounds to facilitate their excretion from the body. Because rats are commonly used in nonclinical studies, information regarding UGT species differences between rats and humans would be helpful for understanding human pharmacokinetics. In this study, we determined the absolute mRNA expressions of Ugt isoforms in the liver and small intestine of male and female Sprague-Dawley, Fischer 344, and Wistar rats. The sum of the mRNA levels of Ugt isoforms expressed in the liver was significantly (P < 0.005) higher than that in the small intestine regardless of the strain and sex. Ugt2b mRNA levels represented approximately 80% of total Ugt mRNA levels in the liver, whereas Ugt1a mRNA levels accounted for almost 90% in the small intestine. Ugt2b2 mRNA was specifically expressed in Wistar rat liver, resulting in 2-fold higher expression of total hepatic Ugt mRNA in Wistar rats than that in the other strains. Wistar rats showed prominently higher Ugt2b3 and Ugt2b8 mRNA levels in the small intestine than the other strains. The difference between sexes was remarkable with regard to hepatic Ugt1a10 in any of the strains, although slight differences between sexes were also observed in multiple Ugt isoforms. Taken together, this study revealed sex and strain differences in mRNA levels of rat Ugts. The data shown here would be useful for the selection of rat strains in nonclinical studies.
Collapse
Affiliation(s)
- Takaya Kutsukake
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (T.K., Y.F., K.O., S.G., T.F., M.N.), and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yoichi Furukawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (T.K., Y.F., K.O., S.G., T.F., M.N.), and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Kyoko Ondo
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (T.K., Y.F., K.O., S.G., T.F., M.N.), and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Saki Gotoh
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (T.K., Y.F., K.O., S.G., T.F., M.N.), and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (T.K., Y.F., K.O., S.G., T.F., M.N.), and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (T.K., Y.F., K.O., S.G., T.F., M.N.), and WPI Nano Life Science Institute (T.F., M.N.), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
4
|
Siriwardhana C, Datta S, Datta S. Inter-platform concordance of gene expression data for the prediction of chemical mode of action. Biol Direct 2016; 11:67. [PMID: 27993158 PMCID: PMC5168706 DOI: 10.1186/s13062-016-0167-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/07/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is interesting to study the consistency of outcomes arising from two genomic platforms: Microarray and RNAseq, which are established on fundamentally different technologies. This topic has been frequently discussed from the prospect of comparing differentially expressed genes (DEGs). In this study, we explore the inter-platform concordance between microarray and RNASeq in their ability to classify samples based on genomic information. We use a set of 7 standard multi-class classifiers and an adaptive ensemble classifier developed around them to predict Chemical Modes of Actions (MOA) of data profiled by microarray and RNASeq platforms from Rat Liver samples exposed to a variety of chemical compounds. We study the concordance between microarray and RNASeq data in various forms, based on classifier's performance between two platforms. RESULTS Using an ensemble classifier we observe improved prediction performance compared to a set of standard classifiers. We discover a clear concordance between each individual classifier's performances in two genomic platforms. Additionally, we identify a set of important genes those specifies MOAs, by focusing on their impact on the classification and later we find that some of these top genes have direct associations with the presence of toxic compounds in the liver. CONCLUSION Overall there appears to be fair amount of concordance between the two platforms as far as classification is concerned. We observe widely different classification performances among individual classifiers, which reflect the unreliability of restricting to a single classifier in the case of high dimensional classification problems. REVIEWERS An extended abstract of this research paper was selected for the CAMDA Satellite Meeting to ISMB 2015 by the CAMDA Programme Committee. The full research paper then underwent two rounds of Open Peer Review under a responsible CAMDA Programme Committee member, Lan Hu, PhD (Bio-Rad Laboratories, Digital Biology Center-Cambridge). Open Peer Review was provided by Yiyi Liu and Partha Dey. The Reviewer Comments section shows the full reviews and author responses.
Collapse
Affiliation(s)
- Chathura Siriwardhana
- Office of Biostatistics & Quantitative Health Sciences, University of Hawaii John A. Burns School of Medicine, Honolulu, 96813, HI, USA
| | - Susmita Datta
- Department of Biostatistics, University of Florida, Gainesville, 32603, FL, USA
| | - Somnath Datta
- Department of Biostatistics, University of Florida, Gainesville, 32603, FL, USA.
| |
Collapse
|
5
|
Dluzen DF, Sutliff AK, Chen G, Watson CJW, Ishmael FT, Lazarus P. Regulation of UGT2B Expression and Activity by miR-216b-5p in Liver Cancer Cell Lines. J Pharmacol Exp Ther 2016; 359:182-93. [PMID: 27474751 PMCID: PMC5034702 DOI: 10.1124/jpet.116.235044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/18/2016] [Indexed: 01/06/2023] Open
Abstract
The UDP-glucuronosyltransferase (UGT) 2B enzymes are important in the detoxification of a variety of endogenous and exogenous compounds, including many hormones, drugs, and carcinogens. Identifying novel mechanisms governing their expression is important in understanding patient-specific response to drugs and cancer risk factors. In silico prediction algorithm programs were used to screen for microRNAs (miRNAs) as potential regulators of UGT2B enzymes, with miR-216b-5p identified as a potential candidate. Luciferase data suggested the presence of a functional miR-216b-5p binding motif within the 3' untranslated regions of UGTs 2B7, 2B4, and 2B10. Overexpression of miR-216b-5p mimics significantly repressed UGT2B7 (P < 0.001) and UGT2B10 (P = 0.0018) mRNA levels in HuH-7 cells and UGT2B4 (P < 0.001) and UGT2B10 (P = 0.018) mRNA in Hep3B cells. UGT2B7 protein levels were repressed in both HuH-7 and Hep3B cells in the presence of increasing miR-216b-5p concentrations, corresponding with significant (P < 0.001 and P = 0.011, respectively) decreases in glucuronidation activity against the UGT2B7-specific substrate epirubicin. Inhibition of endogenous miR-216b-5p levels significantly increased UGT2B7 mRNA levels in HuH-7 (P = 0.021) and Hep3B (P = 0.0068) cells, and increased epirubicin glucuronidation by 85% (P = 0.057) and 50% (P = 0.012) for HuH-7 and Hep3B cells, respectively. UGT2B4 activity against codeine and UGT2B10 activity against nicotine were significantly decreased in both HuH-7 and Hep3B cells (P < 0.001 and P = 0.0048, and P = 0.017 and P = 0.043, respectively) after overexpression of miR-216b-5p mimic. This is the first evidence that miRNAs regulate UGT 2B7, 2B4, and 2B10 expression, and that miR-216b-5p regulation of UGT2B proteins may be important in regulating the metabolism of UGT2B substrates.
Collapse
Affiliation(s)
- Douglas F Dluzen
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland (D.F.D.); Department of Pulmonary Medicine, Penn State University College of Medicine, Hershey, Pennsylvania (F.T.I.); and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (A.K.S., G.C., C.W., P.L.)
| | - Aimee K Sutliff
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland (D.F.D.); Department of Pulmonary Medicine, Penn State University College of Medicine, Hershey, Pennsylvania (F.T.I.); and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (A.K.S., G.C., C.W., P.L.)
| | - Gang Chen
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland (D.F.D.); Department of Pulmonary Medicine, Penn State University College of Medicine, Hershey, Pennsylvania (F.T.I.); and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (A.K.S., G.C., C.W., P.L.)
| | - Christy J W Watson
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland (D.F.D.); Department of Pulmonary Medicine, Penn State University College of Medicine, Hershey, Pennsylvania (F.T.I.); and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (A.K.S., G.C., C.W., P.L.)
| | - Faoud T Ishmael
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland (D.F.D.); Department of Pulmonary Medicine, Penn State University College of Medicine, Hershey, Pennsylvania (F.T.I.); and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (A.K.S., G.C., C.W., P.L.)
| | - Philip Lazarus
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland (D.F.D.); Department of Pulmonary Medicine, Penn State University College of Medicine, Hershey, Pennsylvania (F.T.I.); and Department of Pharmaceutical Sciences, Washington State University College of Pharmacy, Spokane, Washington (A.K.S., G.C., C.W., P.L.)
| |
Collapse
|
6
|
Francke S, Mamidi RNVS, Solanki B, Scheers E, Jadwin A, Favis R, Devineni D. In vitro metabolism of canagliflozin in human liver, kidney, intestine microsomes, and recombinant uridine diphosphate glucuronosyltransferases (UGT) and the effect of genetic variability of UGT enzymes on the pharmacokinetics of canagliflozin in humans. J Clin Pharmacol 2015; 55:1061-72. [PMID: 25827774 DOI: 10.1002/jcph.506] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
O-glucuronidation is the major metabolic elimination pathway for canagliflozin. The objective was to identify enzymes and tissues involved in the formation of 2 major glucuronidated metabolites (M7 and M5) of canagliflozin and subsequently to assess the impact of genetic variations in these uridine diphosphate glucuronosyltransferases (UGTs) on in vivo pharmacokinetics in humans. In vitro incubations with recombinant UGTs revealed involvement of UGT1A9 and UGT2B4 in the formation of M7 and M5, respectively. Although M7 and M5 were formed in liver microsomes, only M7 was formed in kidney microsomes. Participants from 7 phase 1 studies were pooled for pharmacogenomic analyses. A total of 134 participants (mean age, 41 years; men, 63%; white, 84%) were included in the analysis. In UGT1A9*3 carriers, exposure of plasma canagliflozin (Cmax,ss , 11%; AUCτ,ss , 45%) increased relative to the wild type. An increase in exposure of plasma canagliflozin (Cmax,ss , 21%; AUCt,ss , 18%) was observed in participants with UGT2B4*2 genotype compared with UGT2B4*2 noncarriers. Metabolites further delineate the role of both enzymes. The pharmacokinetic findings in participants carrying the UGT1A9*3 and UGT2B4*2 allele implicate that UGT1A9 and UGT2B4 are involved in the metabolism of canagliflozin to M7 and M5, respectively.
Collapse
Affiliation(s)
| | | | | | - Ellen Scheers
- Janssen Research & Development, Division of Janssen Pharmaceutica NV, Beerse, Belgium
| | - Andrew Jadwin
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | - Reyna Favis
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | | |
Collapse
|
7
|
Gauthier-Landry L, Bélanger A, Barbier O. Multiple roles for UDP-glucuronosyltransferase (UGT)2B15 and UGT2B17 enzymes in androgen metabolism and prostate cancer evolution. J Steroid Biochem Mol Biol 2015; 145:187-92. [PMID: 24861263 DOI: 10.1016/j.jsbmb.2014.05.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/13/2014] [Accepted: 05/16/2014] [Indexed: 11/20/2022]
Abstract
In the prostate, approximately 50% of androgens are from adrenal steroids, mainly dehydroepiandrosterone (DHEA), its sulfate and androstenedione. These compounds are converted first into testosterone, and then into the active hormone dihydrotestosterone (DHT). After having activated the androgen receptor (AR), DHT is reduced into androstane-3α-DIOL (3α-DIOL) and androsterone (ADT), which are subsequently converted into 2 inactive and easily excretable metabolites: 3α-DIOL-17glucuronide (3α-DIOL-17G) and ADT-3glucuronide (ADT-3G). The formation of these last derivatives through the glucuronidation reaction involves 2 UDP-glucuronosyltransferase (UGT) enzymes, namely UGT2B15 and UGT2B17. The present review article aims at providing a comprehensive view of the physiological and pharmacological importance of these 2 enzymes for the control of androgen homeostasis. We will resume: (i) how UGT2B15 and UGT2B17 contribute to androgen elimination; (ii) how their glucuronidation capacity influences the androgen signaling pathway in prostate cells; (iii) how they contribute to the anti-proliferative properties of AR antagonists in prostate cancer cells; and (iv) how AR and its spliced variants regulate the UGT2B15 and/or UGT2B17 genes expression. Finally, whether the unexploited AR-UGT axis could serve as a prognostic maker or a pharmacological target for novel therapeutics in the treatment of prostate cancer is also discussed. This article is part of a special issue entitled 'Essential role of DHEA'.
Collapse
Affiliation(s)
- Louis Gauthier-Landry
- Laboratory of Molecular Pharmacology, CHU de Québec Research Centre, and the Faculty of Pharmacy, Laval University, Québec, Canada
| | - Alain Bélanger
- CHU de Québec Research Centre, and the Faculty of Medicine, Laval University, Québec, Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, CHU de Québec Research Centre, and the Faculty of Pharmacy, Laval University, Québec, Canada.
| |
Collapse
|
8
|
Hwang MS, Lee SJ, Kim WY, Jeong HE, Shin JG. Genetic variations in UDP-glucuronosyltransferase 2B15 in a Korean population. Drug Metab Pharmacokinet 2013; 29:105-9. [PMID: 23877107 DOI: 10.2133/dmpk.dmpk-13-sc-054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
UDP-glucuronosyltransferase 2B15 (UGT2B15) is involved in the glucoronidation of steroid hormones as well as many drugs. Genetic variations in UGT2B15 have been shown to affect enzyme function and suggested to have a role in human diseases, such as breast and prostate cancers. In the present study, we sequenced genomic DNA from 50 normal Korean subjects to identify single nucleotide polymorphisms (SNPs) in UGT2B15. A total of thirteen genetic variations were found: two in exons, two in introns, seven in the 5'-untranslated region (UTR), and two in the 3'-UTR. The order and frequency distribution of UGT2B15 variations was: -1139T>C (rs9994887), -508G>A (rs1120265), -506T>A (rs1580083), 253T>G (rs1902023) (42%), 23687A>T (rs4148271) (31%), 2635A>T (rs2045100) (28%), -497C>T (14%), -378C>T (14%), 23669C>T (12%), and 23476A>C (rs4148269) (11%), with other minor alleles with a frequency of <10%. Thirteen variations were used to characterize linkage disequilibrium structures at the UGT2B15 locus. Five tag SNPs were identified, and the observed allelic frequencies were compared to those of other ethnic populations. This information describing genetic polymorphisms in UGT2B15 could serve as an important resource for studying individual variations in drug and hormone metabolism in Korean as well as other ethnic populations.
Collapse
Affiliation(s)
- Mi-Sun Hwang
- Department of Pharmacology and Pharmacogenomics Research Center, Inje University College of Medicine, Inje University
| | | | | | | | | |
Collapse
|
9
|
Bigo C, Caron S, Dallaire-Théroux A, Barbier O. Nuclear receptors and endobiotics glucuronidation: the good, the bad, and the UGT. Drug Metab Rev 2013; 45:34-47. [PMID: 23330540 DOI: 10.3109/03602532.2012.751992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The recent progresses in molecular biology and pharmacology approaches allowed the characterization of a series of nuclear receptors (NRs) as efficient regulators of uridine diphosphate glucuronosyltransferase (UGT) genes activity. These regulatory processes ensure an optimized UGT expression in response to specific endo- and/or exogenous stimuli. Many of these NRs are activated by endobiotics that also are substrates for UGTs. Thus, by activating their receptors, these endogenous substances control their own conjugation, leading to the concept that glucuronidation is an important part of feed-forward/feedback mechanisms by which bioactive molecules control their own concentrations. On the other hand, numerous studies have established the pharmacological relevance of NR-UGT regulatory pathways in the response to therapeutic ligands. The present review article aims at providing a comprehensive view of the physiological and pharmacological importance of the NR regulation of the expression and activity of endobiotics-conjugating UGT enzymes. Selected examples will illustrate how the organism profits from the feed-forward/feedback mechanisms involving NR-UGT pathways, but also how such regulatory processes are involved in the initiation and/or progression of several pathological situations. Finally, we will discuss how the present pharmacopeia involves NR-dependent regulation of endobiotics glucuronidation, and whether the unexploited NR-UGT axes could serve as pharmacological targets for novel therapeutics to restore endobiotics homeostasis.
Collapse
Affiliation(s)
- Cyril Bigo
- Laboratory of Molecular Pharmacology, CHUQ Research Center and the Faculty of Pharmacy, Laval University, Québec City, Québec, Canada
| | | | | | | |
Collapse
|
10
|
Chatzistefanidis D, Georgiou I, Kyritsis AP, Markoula S. Functional impact and prevalence of polymorphisms involved in the hepatic glucuronidation of valproic acid. Pharmacogenomics 2012; 13:1055-71. [DOI: 10.2217/pgs.12.78] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metabolism of valproic acid, a widely used drug, is only partially understood. It is mainly metabolized through glucuronidation and acts as a substrate for various UDP-glucuronosyltransferases (UGTs). UGTs metabolizing valproic acid in the liver are UGT1A3, UGT1A4, UGT1A6, UGT1A9 and UGT2B7, with UGT1A6 and UGT2B7 being the most prominent. Polymorphisms in genes expressing these enzymes may have clinical consequences, regarding dosing, blood levels of the drug and adverse reactions. Not all genes are well studied and studies, where they exist, report conflicting results. Prevalence of polymorphisms and various haplotypes is also of great importance, as it may suggest different therapeutic approaches in various populations. Presented here is a review of currently known polymorphisms, their functional impact, when known, and their prevalence in different populations, highlighting the current state of understanding and areas where there is a lack of data and suggesting new perspectives for further research.
Collapse
Affiliation(s)
| | - Ioannis Georgiou
- Medical Genetics & Assisted Reproduction, Medical School, University of Ioannina, Ioannina, Greece
| | | | - Sofia Markoula
- Department of Neurology, Medical School, University of Ioannina, Ioannina, Greece
| |
Collapse
|
11
|
Extensive splicing of transcripts encoding the bile acid-conjugating enzyme UGT2B4 modulates glucuronidation. Pharmacogenet Genomics 2010; 20:195-210. [DOI: 10.1097/fpc.0b013e328336ef1c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Huang H, Wu Q. Cloning and comparative analyses of the zebrafish Ugt repertoire reveal its evolutionary diversity. PLoS One 2010; 5:e9144. [PMID: 20161780 PMCID: PMC2819257 DOI: 10.1371/journal.pone.0009144] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Accepted: 01/24/2010] [Indexed: 11/19/2022] Open
Abstract
UDP-glucuronosyltransferases (Ugts) are a supergene family of phase II drug-metabolizing enzymes that catalyze the conjugation of numerous hydrophobic small molecules with the UDP-glucuronic acid, converting them into hydrophilic molecules. Here, we report the identification and cloning of the complete zebrafish Ugt gene repertoire. We found that the zebrafish genome contains 45 Ugt genes that can be divided into three families: Ugt1, Ugt2, and Ugt5. Both Ugt1 and Ugt2 have two unlinked clusters: a and b. The Ugt1a, Ugt1b, Ugt2a, and Ugt2b clusters each contain variable and constant regions, similar to that of the protocadherin (Pcdh), immunoglobulin (Ig), and T-cell receptor (Tcr) clusters. Cloning the full-length coding sequences confirmed that each of the variable exons is separately spliced to the set of constant exons within each zebrafish Ugt cluster. Comparative analyses showed that both a and b clusters of the zebrafish Ugt1 and Ugt2 genes have orthologs in other teleosts, suggesting that they may be resulted from the "fish-specific" whole-genome duplication event. The Ugt5 genes are a novel family of Ugt genes that exist in teleosts and amphibians. Their entire open reading frames are encoded by single large exons. The zebrafish Ugt1, Ugt2, and Ugt5 genes can generate additional transcript diversity through alternative splicing. Based on phylogenetic analyses, we propose that the ancestral tetrapod and teleost Ugt1 clusters contained multiple Ugt1 paralogs. After speciation, these ancestral Ugt1 clusters underwent lineage-specific gene loss and duplication. The ancestral vertebrate Ugt2 cluster also underwent lineage-specific duplication. The intronless Ugt5 open reading frames may be derived from retrotransposition followed by gene duplication. They have been expanded dramatically in teleosts and have become the most abundant Ugt family in these lineages. These findings have interesting implications regarding the molecular evolution of genes with diversified variable exons in vertebrates.
Collapse
Affiliation(s)
- Haiyan Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| |
Collapse
|
13
|
Guillemette C, Lévesque E, Harvey M, Bellemare J, Menard V. UGT genomic diversity: beyond gene duplication. Drug Metab Rev 2009; 42:24-44. [DOI: 10.3109/03602530903210682] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Hines RN, Koukouritaki SB, Poch MT, Stephens MC. Regulatory Polymorphisms and their Contribution to Interindividual Differences in the Expression of Enzymes Influencing Drug and Toxicant Disposition. Drug Metab Rev 2008; 40:263-301. [DOI: 10.1080/03602530801952682] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Williams JA, Andersson T, Andersson TB, Blanchard R, Behm MO, Cohen N, Edeki T, Franc M, Hillgren KM, Johnson KJ, Katz DA, Milton MN, Murray BP, Polli JW, Ricci D, Shipley LA, Vangala S, Wrighton SA. PhRMA white paper on ADME pharmacogenomics. J Clin Pharmacol 2008; 48:849-89. [PMID: 18524998 DOI: 10.1177/0091270008319329] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Pharmacogenomic (PGx) research on the absorption, distribution, metabolism, and excretion (ADME) properties of drugs has begun to have impact for both drug development and utilization. To provide a cross-industry perspective on the utility of ADME PGx, the Pharmaceutical Research and Manufacturers of America (PhRMA) conducted a survey of major pharmaceutical companies on their PGx practices and applications during 2003-2005. This white paper summarizes and interprets the results of the survey, highlights the contributions and applications of PGx by industrial scientists as reflected by original research publications, and discusses changes in drug labels that improve drug utilization by inclusion of PGx information. In addition, the paper includes a brief review on the clinically relevant genetic variants of drug-metabolizing enzymes and transporters most relevant to the pharmaceutical industry.
Collapse
Affiliation(s)
- J Andrew Williams
- Pfizer Global Research and Development, 10646 Science Center Drive (CB10), San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Saracino MR, Lampe JW. Phytochemical regulation of UDP-glucuronosyltransferases: implications for cancer prevention. Nutr Cancer 2008; 59:121-41. [PMID: 18001207 DOI: 10.1080/01635580701458178] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Uridine 5'-diphospho-glucuronosyltransferases (UGTs) are Phase II biotransformation enzymes that metabolize endogenous and exogenous compounds, some of which have been associated with cancer risk. Many phytochemicals have been shown to induce UGTs in humans, rodents, and cell culture systems. Because UGTs maintain hormone balance and facilitate excretion of potentially carcinogenic compounds, regulation of their expression and activity may affect cancer risk. Phytochemicals regulate transcription factors such as the nuclear factor-erythroid 2-related factor 2 (Nrf2), aryl hydrocarbon, and pregnane X receptors as well as proteins in several signal transduction cascades that converge on Nrf2 to stimulate UGT expression. This induction can be modified by several factors, including phytochemical dose and bioavailability and interindividual variation in enzyme expression. In this review, we summarize the knowledge of dietary modulation of UGTs, particularly by phytochemicals, and discuss the potential mechanisms by which phytochemicals regulate UGT transcription.
Collapse
|
17
|
Lévesque E, Girard H, Journault K, Lépine J, Guillemette C. Regulation of the UGT1A1 bilirubin-conjugating pathway: role of a new splicing event at the UGT1A locus. Hepatology 2007; 45:128-38. [PMID: 17187418 DOI: 10.1002/hep.21464] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED UDP-glucuronosyltransferase 1A1 (UGT1A1) is involved in a wide range of biological and pharmacological processes because of its critical role in the conjugation of a diverse array of endogenous and exogenous compounds. We now describe a new UGT1A1 isoform, referred to as isoform 2 (UGT1A1_i2), encoded by a 1495-bp complementary DNA isolated from human liver and generated by an alternative splicing event involving an additional exon found at the 3' end of the UGT1A locus. The N-terminal portion of the 45-kd UGT1A1_i2 protein is identical to UGT1A1 (55 kd, UGT1A1_i1); however, UGT1A1_i2 contains a unique 10-residue sequence instead of the 99-amino acid C-terminal domain of UGT1A1_i1. RT-PCR and Western blot analyses with a specific antibody against UGT1A1 indicate that isoform 2 is differentially expressed in liver, kidney, colon, and small intestine at levels that reach or exceed, for some tissues, those of isoform 1. Western blots of different cell fractions and immunofluorescence experiments indicate that UGT1A1_i1 and UGT1A1_i2 colocalize in microsomes. Functional enzymatic data indicate that UGT1A1_i2, which lacks transferase activity when stably expressed alone in HEK293 cells, acts as a negative modulator of UGT1A1_i1, decreasing its activity by up to 78%. Coimmunoprecipitation of UGT1A1_i1 and UGT1A1_i2 suggests that this repression may occur via direct protein-protein interactions. CONCLUSION Our results indicate that this newly discovered alternative splicing mechanism at the UGT1A locus amplifies the structural diversity of human UGT proteins and describes the identification of an additional posttranscriptional regulatory mechanism of the glucuronidation pathway.
Collapse
Affiliation(s)
- Eric Lévesque
- Laboratory of Pharmacogenomics, Oncology and Molecular Endocrinology Research Center, CHUL Research Center and Faculty of Pharmacy, Laval University, Québec, Canada
| | | | | | | | | |
Collapse
|
18
|
Gregory PA, Gardner-Stephen DA, Rogers A, Michael MZ, Mackenzie PI. The caudal-related homeodomain protein Cdx2 and hepatocyte nuclear factor 1α cooperatively regulate the UDP-glucuronosyltransferase 2B7 gene promoter. Pharmacogenet Genomics 2006; 16:527-36. [PMID: 16788384 DOI: 10.1097/01.fpc.0000215068.06471.35] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The gastrointestinal tract, contains several UDP-glucuronosyltransferases (UGTs) of the UGT1A and UGT2B subfamilies. UGT2B7 is one particular enzyme expressed throughout the gastrointestinal tract that possesses broad substrate specificity towards orally administered drugs. Because the caudal-related homeodomain protein 2 (Cdx2) regulates many gastrointestinal properties, we sought to determine whether it could regulate the UGT2B7 promoter in the colon-derived cell line Caco-2. Levels of Cdx2 and UGT2B7 were measured in differentiated and non-differentiated Caco-2 cells by the quantitative polymerase chain reaction. The capacity of the UGT2B7 gene promoter to drive expression of the luciferase reporter gene was assessed by transfection into Caco-2 cells, with transcription factor expression plasmids. Mutation of putative transcription factor binding sites and electrophoretic mobility shift assays were used to define important regulatory regions of the UGT2B7 gene promoter. The levels of Cdx2 and UGT2B7 mRNAs were co-ordinately increased in differentiated Caco2 cells compared to non-differentiated cells. Cdx2 activates the UGT2B7 proximal promoter by binding to two adjacent sites. Promoter activation requires Cdx2 binding to both sites wherein these proteins interact to form a putative functional dimer. Dimerization was shown to be dependent on redox state using extracts depleted of dithiothreitol. In addition, Cdx2 was shown to cooperatively activate the UGT2B7 promoter in conjunction with hepatocyte nuclear factor 1alpha (HNF1alpha), a mechanism previously observed to regulate other intestine-specific genes. The present study is the first to define transcription factors involved in the control of intestinal UGT2B expression. The demonstration that Cdx2 and HNF1alpha are important regulators of UGT2B7 expression will aid in defining pathways for coordinate control of drug metabolism in the gastrointestinal tract.
Collapse
Affiliation(s)
- Philip A Gregory
- Department of Clinical Pharmacology, Flinders University School of Medicine, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | | | | | | | | |
Collapse
|
19
|
Abstract
The uridine diphosphoglucuronosyltransferases (UGTs) belong to a superfamily of enzymes that catalyse the glucuronidation of numerous endobiotics and xenobiotics. Several human hepatic and extrahepatic UGT isozymes have been characterized with respect to their substrate specificity, tissue expression and gene structure. Genetic polymorphisms have been identified for almost all the UGT family members. A wide variety of anticancer drugs, dietary chemopreventives and carcinogens are known to be conjugated by members of both UGT1A and UGT2B subfamilies. This review examines in detail each UGT isozyme known to be associated with cancer and carcinogenesis. The cancer-related substrates for several UGTs are summarized, and the functionally relevant genetic polymorphisms of UGTs are reviewed. A number of genotype-phenotype association studies have been carried out to characterize the role of UGT pharmacogenetics in several types of cancer, and these examples are discussed here. In summary, this review focuses on the role of the human UGT genetic polymorphisms in carcinogenesis, chemoprevention and cancer risk.
Collapse
Affiliation(s)
- S Nagar
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
20
|
Saito K, Moriya H, Sawaguchi T, Hayakawa T, Nakahara S, Goto A, Arimura Y, Imai K, Kurosawa N, Owada E, Miyamoto A. Haplotype analysis of UDP-glucuronocyltransferase 2B7 gene (UGT2B7) polymorphisms in healthy Japanese subjects. Clin Biochem 2006; 39:303-8. [PMID: 16466707 DOI: 10.1016/j.clinbiochem.2006.01.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2005] [Revised: 12/03/2005] [Accepted: 01/02/2006] [Indexed: 10/25/2022]
Abstract
OBJECTIVES UDP-glucuronocyltransferase 2B7 (UGT2B7) catalyzes glucuronidation of various types of endogenous compounds and drugs, but the genetic basis of interindividual variation in the metabolism of these substances has not yet been sufficiently elucidated. In addition, information about single nucleotide polymorphisms (SNPs) and haplotypes of the UGT2B7 gene that encode the enzyme in the Japanese population is still far from sufficient. DESIGN AND METHODS We paid special attention to and performed an investigation on -327A > G, -161T > C, -138G > A, and -125T > C in the proximal promoter region, which is regarded as being important for the transcription of the UGT2B7 gene, and also on 211G > A and 802C > T, i.e., non-synonymous SNPs of exon 1 and exon 2 that encode the substrate binding domain. Their genotypes were determined by PCR-direct sequencing. RESULTS As a result of genotyping, the minor allele frequencies in 160 Japanese individuals were found to be as follows: -327SNP A allele, 0.244; -161SNP T allele, 0.244; -138SNP A allele, 0; -125SNP C allele, 0.078; 211SNP T allele, 0.148 and 802SNP T allele, 0.244. By computational haplotype analysis, it was found that these regions formed a linkage disequilibrium block, and the presence of five haplotypes was demonstrated. CONCLUSIONS These results suggest that the haplotype structure in the Japanese population is different from that of other ethnic groups.
Collapse
Affiliation(s)
- Katsuhiko Saito
- Division of Pharmaceutical Health Care and Sciences, Sapporo Medical University, Chuo-ku, Sapporo 060-8543, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lin GF, Guo WC, Chen JG, Qin YQ, Golka K, Xiang CQ, Ma QW, Lu DR, Shen JH. An Association of UDP-Glucuronosyltransferase 2B7 C802T (His268Tyr) Polymorphism with Bladder Cancer in Benzidine-Exposed Workers in China. Toxicol Sci 2005; 85:502-6. [PMID: 15615884 DOI: 10.1093/toxsci/kfi068] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
UDP-Glucuronyltransferase 2B7 (UGT2B7) is involved in benzidine metabolism, as demonstrated by in vitro experiments with liver slices. To evaluate the possible association of UGT2B7 gene polymorphism with bladder cancer risk for benzidine-exposed subjects, diagnosed bladder cancer cases (n = 36) who were members of a cohort of benzidine-exposed workers in the Chinese dyestuff industry were investigated. UGT2B7 polymorphism at locus C802T (His268Tyr) was detected using a PCR-RFLP based procedure. Nondiseased cohort members (156 men, 95 women) were taken as work-related control, and unexposed healthy individuals (113 men, 105 women) were taken as community control. The data showed that the polymorphism at locus UGT2B7 C802T in a general Chinese population significantly differs from that in a Caucasian population (p = 0.00018), displaying a distinctly lower frequency of T/T genotypes (9.2 vs. 25.3%), while no significant difference to a Japanese population could be detected (p = 0.17). A higher prevalence of T/T genotype carriers was found in the cancer cases, compared with unexposed healthy controls (25 vs. 9%, odds ratio [OR] 3.30, 95% confidence interval [95% CI] 1.37-7.98, p = 0.006). A higher presentation of T allele carriers in the patients group was also confirmed (46 vs. 33%, OR 1.73, 95% CI 1.05-2.87, p = 0.03). A higher portion of the T/T genotype was also observed in bladder cancer patients compared with nondiseased members of the same benzidine-exposed cohort, although some of them displayed different degrees of cellular alterations in their exfoliated urothelial cells. This study points for the first time to an association between a homozygous mutant genotype of human UDP-glucuronosyltransferase 2B7 catalyzing the biotransformation of benzidine and an elevated bladder cancer risk for formerly benzidine-exposed workers of the dyestuff industry.
Collapse
Affiliation(s)
- Guo-Fang Lin
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wilson W, Pardo-Manuel de Villena F, Lyn-Cook BD, Chatterjee PK, Bell TA, Detwiler DA, Gilmore RC, Valladeras IC, Wright CC, Threadgill DW, Grant DJ. Characterization of a common deletion polymorphism of the UGT2B17 gene linked to UGT2B15. Genomics 2004; 84:707-14. [PMID: 15475248 DOI: 10.1016/j.ygeno.2004.06.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Accepted: 06/23/2004] [Indexed: 10/26/2022]
Abstract
Members of the human UDP-glucuronosyltransferase 2B family are located in a cluster on chromosome 4q13 and code for enzymes whose gene products are responsible for the normal catabolism of steroid hormones. Two members of this family, UGT2B15 and UGT2B17, share over 95% sequence identity. However, UGT2B17 exhibits broader substrate specificity due to a single amino acid difference. Using gene-specific primers to explore the genomic organization of these two genes, it was determined that UGT2B17 is absent in some human DNA samples. The gene-specific primers demonstrated the presence or absence of a 150 kb genomic interval spanning the entire UGT2B17 gene, revealing that UGT2B17 is present in the human genome as a deletion polymorphism linked to UGT2B15. Furthermore, it is shown that the UGT2B17 deletion polymorphism shows Mendelian segregation and allele frequencies that differ between African Americans and Caucasians.
Collapse
Affiliation(s)
- Willie Wilson
- Cancer Research Program, JLC-Biomedical/Biotechnology Research Institute, North Carolina Central University, 1801 Fayetteville Street, Durham, NC 27707, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Guillemette C. Pharmacogenomics of human UDP-glucuronosyltransferase enzymes. THE PHARMACOGENOMICS JOURNAL 2004; 3:136-58. [PMID: 12815363 DOI: 10.1038/sj.tpj.6500171] [Citation(s) in RCA: 286] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UDP-glucuronosyltransferase (UGT) enzymes comprise a superfamily of key proteins that catalyze the glucuronidation reaction on a wide range of structurally diverse endogenous and exogenous chemicals. Glucuronidation is one of the major phase II drug-metabolizing reactions that contributes to drug biotransformation. This biochemical process is also involved in the protection against environmental toxicants, carcinogens, dietary toxins and participates in the homeostasis of numerous endogenous molecules, including bilirubin, steroid hormones and biliary acids. Over the years, significant progress was made in the field of glucuronidation, especially with regard to the identification of human UGTs, study of their tissue distribution and substrate specificities. More recently, the degree of allelic diversity has also been revealed for several human UGT genes. Some polymorphic UGTs have demonstrated a significant pharmacological impact in addition to being relevant to drug-induced adverse reactions and cancer susceptibility. This review focuses on human UGTs, the description of the nature of polymorphic variations and their functional impact. The pharmacogenomic implication of polymorphic UGTs is presented, more specifically the role of UGT polymorphisms in modifying cancer risk and their impact on individual risk to drug-induced toxicities.
Collapse
Affiliation(s)
- C Guillemette
- Oncology and Molecular Endocrinology Research Center, Laval University Medical Center (CHUL) and Faculty of Pharmacy, Laval University, Quebec, Canada.
| |
Collapse
|
24
|
Wells PG, Mackenzie PI, Chowdhury JR, Guillemette C, Gregory PA, Ishii Y, Hansen AJ, Kessler FK, Kim PM, Chowdhury NR, Ritter JK. Glucuronidation and the UDP-glucuronosyltransferases in health and disease. Drug Metab Dispos 2004; 32:281-90. [PMID: 14977861 DOI: 10.1124/dmd.32.3.281] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article is an updated report of a symposium held at the June 2000 annual meeting of the American Society for Pharmacology and Experimental Therapeutics in Boston. The symposium was sponsored by the ASPET Divisions for Drug Metabolism and Molecular Pharmacology. The report covers research from the authors' laboratories on the structure and regulation of UDP-glucuronosyltransferase (UGT) genes, glucuronidation of xenobiotics and endobiotics, the toxicological relevance of UGTs, the role of UGT polymorphisms in cancer susceptibility, and gene therapy for UGT deficiencies.
Collapse
Affiliation(s)
- Peter G Wells
- Faculty of Pharmacy and Department of Pharmacology, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Burchell B. Genetic variation of human UDP-glucuronosyltransferase: implications in disease and drug glucuronidation. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 3:37-52. [PMID: 12562215 DOI: 10.2165/00129785-200303010-00006] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The uridine diphosphate (UDP)-glucuronosyltransferases (UGTs) are key enzymes in human detoxication of xeno- and endobiotics. Potentially toxic endogenous compounds such as bilirubin, or exogenous compounds such as drugs, pesticides, and carcinogens, are generally transformed into water-soluble glucuronides for excretion in bile and urine. The UGTs are encoded by a multigene family in humans. A relatively small number of human enzymes catalyze the glucuronidation of thousands of compounds. Genetic variations and single nucleotide polymorphisms (SNPs) within the UGT genes are remarkably common, and lead to genetic polymorphisms. The multiplicity of transferases, some exhibiting overlapping substrate specificity, may provide functional compensation for genetic deficit in some cases. Genetic variation may cause different phenotypes by affecting expression levels or activities of individual UGTs. This inter-individual variation in UGTs has resulted in functional deficit affecting endogenous metabolism and leading to jaundice and other diseases. Disruption of the normal metabolic physiology, by the reduction of bile acid excretion or steroid glucuronidation, may lead to cholestasis and organ dysfunction. Deficient glucuronidation of drugs and xenobiotics have an important pharmacological impact, which may lead to drug-induced adverse reactions, and even cancer. Additional novel polymorphisms in this gene family are yet to be revealed and studied, but will have a profound effect on the development of new drugs and therapies.
Collapse
Affiliation(s)
- Brian Burchell
- Department of Molecular and Cellular Pathology, Ninewells Medical School, University of Dundee, Dundee, Scotland.
| |
Collapse
|
26
|
|
27
|
Barbier O, Torra IP, Sirvent A, Claudel T, Blanquart C, Duran-Sandoval D, Kuipers F, Kosykh V, Fruchart JC, Staels B. FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology 2003; 124:1926-40. [PMID: 12806625 DOI: 10.1016/s0016-5085(03)00388-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Bile acids are essential for bile formation and intestinal absorption of lipids and fat-soluble vitamins. However, the intrinsic toxicity of hydrophobic bile acids demands a tight control of their intracellular concentrations. Bile acids are ligands for the farnesoid X receptor (FXR) that regulates the expression of genes controlling bile acid synthesis and transport. The human uridine 5'-diphosphate-glucuronosyltransferase 2B4 (UGT2B4) converts hydrophobic bile acids into more hydrophilic glucuronide derivatives. In this study, we identify UGT2B4 as an FXR target gene. METHODS Human hepatocytes or hepatoblastoma HepG2 cells were treated with chenodeoxycholic acid or the synthetic FXR agonist GW4064, and the levels of UGT2B4 messenger RNA, protein, and activity were determined by using real-time polymerase chain reaction, Western blot, and glucuronidation assays. RESULTS Treatment of hepatocytes and HepG2 cells with FXR agonists resulted in an increase of UGT2B4 messenger RNA, protein, and activity. A bile acid response element in the UGT2B4 promoter (B4-BARE) to which FXR, but not retinoid X receptor, binds, was identified by site-directed mutagenesis, electromobility shift, and chromatin immunoprecipitation assays. Retinoid X receptor activation abolished the induction of UGT2B4 expression and inhibited binding of FXR to the B4-BARE, suggesting that retinoid X receptor modulates FXR target gene activation. Overexpression of UGT2B4 in HepG2 cells resulted in the attenuation of bile acid induction of the FXR target gene small heterodimeric partner. CONCLUSIONS These data suggest that UGT2B4 gene induction by bile acids contributes to a feed-forward reduction of bile acid toxicity and a decrease of the activity of these biological FXR activators.
Collapse
Affiliation(s)
- Olivier Barbier
- U545 INSERM, Department of Atherosclerosis, Faculty of Pharmacy, Lille Pasteur Institute and University of Lille II, 1 Rue du Pr Calmette, BP 245, 59019 Lille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hirota T, Ieiri I, Takane H, Sano H, Kawamoto K, Aono H, Yamasaki A, Takeuchi H, Masada M, Shimizu E, Higuchi S, Otsubo K. Sequence variability and candidate gene analysis in two cancer patients with complex clinical outcomes during morphine therapy. Drug Metab Dispos 2003; 31:677-80. [PMID: 12695358 DOI: 10.1124/dmd.31.5.677] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this case report, we present genetic differences in two morphine-related gene sequences, UDP-glucuronosyltransferase 2B7 (UGT2B7) and mu opioid receptors (MOR1), in two cancer patients whose clinical responses to morphine were very different [i.e., sensitive (patient 1) and low responder (patient 2)]. In addition, allelic variants in the UGT2B7 gene were analyzed in 46 Japanese individuals. Amplified DNA fragments for the two genes of interest were screened using single strand conformation polymorphism and then sequenced. In the UGT2B7 gene, 12 single nucleotide polymorphisms (SNPs) were newly identified with an allelic frequency ranging from 0.022 to 0.978. Six SNPs in the promoter region (A-1302G, T-1295C, T-1111C, G-899A, A-327G, and T-125C) and two coding SNPs (UGT2B7*2 in exon 2 and C1059G in exon 4) appeared to be consistently linked. Remarkable differences in the nucleotide sequence of UGT2B7 were observed between the two patients; in contrast to patient 1 who had "reference" alleles at almost SNP positions, but a rare ATTGAT*2(AT)C haplotype as homozygosity, patient 2 was a homozygous carrier for the predominant GCCAGC*1(TC)G sequence. Serum morphine and two glucuronide concentrations in patient 2 suggest that the predominant GCCAGC*1G sequence was not associated with a "poor metabolizer" phenotype. In the MOR1 gene, patient 1 had no SNPs, whereas patient 2 was a heterozygous carrier for both the G-1784A and A118G alleles. The present study describes substantial differences in genotype patterns of two genes of interest between the two patients. The results necessitate larger trials to confirm these observations in larger case control studies.
Collapse
Affiliation(s)
- Takeshi Hirota
- Department of Clinical Pharmacokinetics, Division of Pharmaceutical Sciences, Graduate School, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Petry F, Kotthaus A, Hirsch-Ernst KI. Cloning of human and rat ABCA5/Abca5 and detection of a human splice variant. Biochem Biophys Res Commun 2003; 300:343-50. [PMID: 12504089 DOI: 10.1016/s0006-291x(02)02827-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We presently report the cloning of cDNA sequences encoding the novel rat ATP-binding cassette (ABC) transporter Abca5 and the orthologous human transporter, recently designated as ABCA5. Furthermore, the existence of a novel non-translated exon of the ABCA5 gene, previously assigned to an ABCA gene cluster in the chromosomal region 17q24.2-3, is demonstrated. Abca5 and ABCA5 cDNAs are predicted to give rise to proteins of 1642 amino acids which exhibit the typical domain arrangement of ABC full transporters and share 90% identity within the amino acid sequences. A cDNA representing an ABCA5 mRNA splice variant was cloned which would result in a truncated protein equivalent to an ABC half transporter. Northern blot analyses revealed expression of ABCA5 or Abca5 mRNA in several tissues, but particularly high Abca5 mRNA expression was observed in rat testis. Up-regulation of Abca5 mRNA expression during culture of primary rat hepatocytes suggests that hepatocyte cultures should provide a basis for investigation of Abca5 gene regulation and elucidation of Abca5 function.
Collapse
Affiliation(s)
- Frauke Petry
- Institute of Pharmacology and Toxicology, Department of Toxicology, University of Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| | | | | |
Collapse
|
30
|
Court MH, Duan SX, Guillemette C, Journault K, Krishnaswamy S, Von Moltke LL, Greenblatt DJ. Stereoselective conjugation of oxazepam by human UDP-glucuronosyltransferases (UGTs): S-oxazepam is glucuronidated by UGT2B15, while R-oxazepam is glucuronidated by UGT2B7 and UGT1A9. Drug Metab Dispos 2002; 30:1257-65. [PMID: 12386133 DOI: 10.1124/dmd.30.11.1257] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
(R,S)-Oxazepam is a 1,4-benzodiazepine anxiolytic drug that is metabolized primarily by hepatic glucuronidation. In previous studies, S-oxazepam (but not R-oxazepam) was shown to be polymorphically glucuronidated in humans. The aim of the present study was to identify UDP-glucuronosyltransferase (UGT) isoforms mediating R- and S-oxazepam glucuronidation in human liver, with the long term objective of elucidating the molecular genetic basis for this drug metabolism polymorphism. All available recombinant UGT isoforms were screened for R- and S-oxazepam glucuronidation activities. Enzyme kinetic parameters were then determined in representative human liver microsomes (HLMs) and in UGTs that showed significant activity. Of 12 different UGTs evaluated, only UGT2B15 showed significant S-oxazepam glucuronidation. Furthermore, the apparent K(m) for UGT2B15 (29-35 microM) was similar to values determined for HLMs (43-60 microM). In contrast, R-oxazepam was glucuronidated by UGT1A9 and UGT2B7. Although apparent K(m) values for HLMs (256-303 microM) were most similar to UGT2B7 (333 microM) rather than UGT1A9 (12 microM), intrinsic clearance values for UGT1A9 were 10 times higher than for UGT2B7. A common genetic variation results in aspartate (UGT2B15*1) or tyrosine (UGT2B15*2) at position 85 of the UGT2B15 protein. Microsomes from human embryonic kidney (HEK)-293 cells overexpressing UGT2B15*1 showed 5 times higher S-oxazepam glucuronidation activity than did UGT2B15*2 microsomes. Similar results were obtained for other substrates, including eugenol, naringenin, 4-methylumbelliferone, and androstane-3alpha-diol. In conclusion, S-oxazepam is stereoselectively glucuronidated by UGT2B15, whereas R-oxazepam is glucuronidated by multiple UGT isoforms. Allelic variation associated with the UGT2B15 gene may explain polymorphic S-oxazepam glucuronidation in humans.
Collapse
Affiliation(s)
- Michael H Court
- Comparative and Molecular Pharmacogenetics Laboratory, Department of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Gagné JF, Montminy V, Belanger P, Journault K, Gaucher G, Guillemette C. Common human UGT1A polymorphisms and the altered metabolism of irinotecan active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38). Mol Pharmacol 2002; 62:608-17. [PMID: 12181437 DOI: 10.1124/mol.62.3.608] [Citation(s) in RCA: 291] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
7-Ethyl-10-hydroxycamptothecin (SN-38) is the pharmacologically active metabolite of irinotecan, in addition to being responsible for severe toxicity. Glucuronidation is the main metabolic pathway of SN-38 and has been shown to protect against irinotecan-induced gastrointestinal toxicity. The purpose of this study was to determine whether common polymorphic UDP-glucuronosyltransferase (UGT) affects SN-38 glucuronidation. First, kinetic characterization of SN-38-glucuronide (SN-38-G) formation was assessed for all known human UGT1A and UGT2B overexpressed in human embryonic kidney 293 cells. To assess the relative activity of UGT isoenzymes for SN-38, rates of formation of SN-38-G were monitored by liquid chromatography/mass spectrometry analysis and normalized by level of UGT cellular expression. Determination of intrinsic clearances predicts that hepatic UGT1A1 and UGT1A9 and the extrahepatic UGT1A7 are major components in SN-38-G formation, whereas a minor role is suggested for UGT1A6, UGT1A8, and UGT1A10. In support of the involvement of UGT1A9, a strong coefficient of correlation was observed in the glucuronidation of SN-38 and a substrate, mainly glucuronidate, by UGT1A9 (flavopiridol) by human liver microsomes (coefficient of correlation, 0.905; p = 0.002). In vitro functional experiments revealed a negative impact of the UGT1A1 allelic variants. Residual activities of 49, 7, 8, and 11% were observed for UGT1A1*6 (G(71)R), UGT1A1*27 (P(229)Q), UGT1A1*35 (L(233)R), and UGT1A1*7 (Y(486)D), respectively. Common variants of UGT1A7, UGT1A7*3 (N(129)K;R(131)K;W(208)R), and UGT1A7*4 (W(208)R), displayed residual activities of 41 and 28% compared with the UGT1A7*1 allele. Taken together, these data provide the evidence that molecular determinants of irinotecan response may include the UGT1A polymorphisms studied herein and common genetic variants of the hepatic UGT1A9 isoenzyme yet to be described.
Collapse
|