1
|
Karimi-Haghighi S, Mahmoudi M, Sayehmiri F, Mozafari R, Haghparast A. Endocannabinoid system as a therapeutic target for psychostimulants relapse: A systematic review of preclinical studies. Eur J Pharmacol 2023; 951:175669. [PMID: 36965745 DOI: 10.1016/j.ejphar.2023.175669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
The mechanism behind the reinstament of psychostimulant, as a major obstacle in addiction treatment is not fully understood. Controversial data are available in the literature concerning the role of the endocannabinoid (eCB) system in regulating the relapse to psychostimulant addiction in preclinical studies. The current systematic review aims to evaluate eCB modulators' effect in the reinstatement of commonly abused psychostimulants, including cocaine, amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine. By searching the PubMed, Web of Science, and Scopus databases, studies were selected. Then the studies, quality was evaluated by the SYRCLE risk of bias tool. The results have still been limited to preclinical studies. Thirty-nine articles that employed self-administration and CPP as the most prevalent animal models of addiction were selected. This data indicates that cannabinoid receptor 1 antagonists and some cannabinoid receptor 2 agonists could suppress the reinstatement of cocaine and methamphetamine addiction in a dose-dependent manner. However, only AM251 was efficient to block the reinstatement of 3,4-methylenedioxymethamphetamine. In conclusion, cannabinoid receptor 1 antagonists and some cannabinoid receptor 2 agonists may have curative potential in the relapse of psychostimulant abuse. However, time, dose, and route of administration are crucial factors in their inhibitory impacts.
Collapse
Affiliation(s)
- Saeideh Karimi-Haghighi
- Community Based Psychiatric Care Research Center, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Mahmoudi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sayehmiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Mozafari
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Xu W, Li H, Wang L, Zhang J, Liu C, Wan X, Liu X, Hu Y, Fang Q, Xiao Y, Bu Q, Wang H, Tian J, Zhao Y, Cen X. Endocannabinoid signaling regulates the reinforcing and psychostimulant effects of ketamine in mice. Nat Commun 2020; 11:5962. [PMID: 33235205 PMCID: PMC7686380 DOI: 10.1038/s41467-020-19780-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/27/2020] [Indexed: 02/05/2023] Open
Abstract
The abuse potential of ketamine limits its clinical application, but the precise mechanism remains largely unclear. Here we discovered that ketamine significantly remodels the endocannabinoid-related lipidome and activates 2-arachidonoylglycerol (2-AG) signaling in the dorsal striatum (caudate nucleus and putamen, CPu) of mice. Elevated 2-AG in the CPu is essential for the psychostimulant and reinforcing effects of ketamine, whereas blockade of the cannabinoid CB1 receptor, a predominant 2-AG receptor, attenuates ketamine-induced remodeling of neuronal dendrite structure and neurobehaviors. Ketamine represses the transcription of the monoacylglycerol lipase (MAGL) gene by promoting the expression of PRDM5, a negative transcription factor of the MAGL gene, leading to increased 2-AG production. Genetic overexpression of MAGL or silencing of PRDM5 expression in the CPu robustly reduces 2-AG production and ketamine effects. Collectively, endocannabinoid signaling plays a critical role in mediating the psychostimulant and reinforcing properties of ketamine.
Collapse
Affiliation(s)
- Wei Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Jiamei Zhang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Chunqi Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Xuemei Wan
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Xiaochong Liu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Yiming Hu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Qiyao Fang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Yuanyuan Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Hongbo Wang
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 264005, Yantai, People's Republic of China
| | - Jingwei Tian
- Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 264005, Yantai, People's Republic of China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 610041, Chengdu, People's Republic of China.
| |
Collapse
|
3
|
Discovery of new lead pyrimidines derivatives as potential cannabinoid CB1 receptor antagonistic through molecular modeling and pharmacophore approach. Med Chem Res 2014. [DOI: 10.1007/s00044-013-0808-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
4
|
Fišar Z. Cannabinoids and monoamine neurotransmission with focus on monoamine oxidase. Prog Neuropsychopharmacol Biol Psychiatry 2012; 38:68-77. [PMID: 22234284 DOI: 10.1016/j.pnpbp.2011.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/11/2011] [Accepted: 12/21/2011] [Indexed: 12/19/2022]
Abstract
Progress in understanding the mechanisms of action of cannabinoids was made after discovery of cannabinoid receptors and finding their endogenous ligands. New findings are obtained using both endogenous cannabinoids and plant or synthetic cannabinoids. Activation of cannabinoid receptors on synaptic terminals results in regulation of ion channels, neurotransmitter release and synaptic plasticity. Neuromodulation of synapses by cannabinoids is proving to have a wide range of functional effects, making them potential targets as medical preparations in a variety of illnesses, including some neurodegenerative and mental disorders. Brain monoamines are involved in many of the same processes affected by neuropsychiatric disorders and by different psychotropic drugs, including cannabinoids. Basic information is summarized in the paper about mechanisms of action of cannabinoids on monoaminergic systems, with a view to inhibition of monoamine oxidase.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| |
Collapse
|
5
|
Latest advances in novel cannabinoid CB(2) ligands for drug abuse and their therapeutic potential. Future Med Chem 2012; 4:187-204. [PMID: 22300098 DOI: 10.4155/fmc.11.179] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The field of cannabinoid (CB) drug research is experiencing a challenge as the CB(1) antagonist Rimonabant, launched in 2006 as an anorectic/anti-obesity drug, was withdrawn from the European market due to the complications of suicide and depression as side effects. There is interest in developing CB(2) drugs without CB(1) psychotropic side effects for drug-abuse treatment and therapeutic medication. The CB(1) receptor was discovered predominantly in the brain, whereas the CB(2) is mainly expressed in peripheral cells and tissues, and is involved in immune signal transduction. Conversely, the CB(2) receptor was recently detected in the CNS, for example, in the microglial cells and the neurons. While the CB(2) neurons activity remains controversial, the CB(2) receptor is an attractive therapeutic target for neuropathic pain, immune system, cancer and osteoporosis without psychoactivity. This review addresses CB drug abuse and therapeutic potential with a focus on the most recent advances on new CB(2) ligands from the literature as well as patents.
Collapse
|
6
|
Papudippu M, Shu H, Izenwasser S, Wade D, Gulasey G, Fournet S, Stevens ED, Lomenzo SA, Trudell ML. Regioselective synthesis and cannabinoid receptor binding affinity of N-alkylated 4,5-diaryl-1,2,3-triazoles. Med Chem Res 2012. [DOI: 10.1007/s00044-012-9991-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Zhang Y, Gilliam A, Maitra R, Damaj MI, Tajuba JM, Seltzman HH, Thomas BF. Synthesis and biological evaluation of bivalent ligands for the cannabinoid 1 receptor. J Med Chem 2010; 53:7048-60. [PMID: 20845959 DOI: 10.1021/jm1006676] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dimerization or oligomerization of many G-protein-coupled receptors (GPCRs), including the cannabinoid 1 (CB1) receptor, is now widely accepted and may have significant implications for medications development targeting these receptor complexes. A library of bivalent ligands composed of two identical CB1 antagonist pharmacophores derived from SR141716 linked by spacers of various lengths were developed. The affinities of these bivalent ligands at CB1 and CB2 receptors were determined using radiolabeled binding assays. Their functional activities were measured using GTP-γ-S accumulation and intracellular calcium mobilization assays. The results suggest that the nature of the linker and its length are crucial factors for optimum interactions of these ligands at CB1 receptor binding sites. Finally, selected bivalent ligands (5d and 7b) were able to attenuate the antinociceptive effects of the cannabinoid agonist CP55,940 (21) in a rodent tail-flick assay. These novel compounds may serve as probes that will enable further characterization of CB1 receptor dimerization and oligomerization and its functional significance and may prove useful in the development of new therapeutic approaches to G-protein-coupled receptor mediated disorders.
Collapse
Affiliation(s)
- Yanan Zhang
- Research Triangle Institute, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | | | | | |
Collapse
|
8
|
Javors MA, Sanchez JJ, McMahon LR. Quantification of rimonabant (SR 141716A) in monkey plasma using HPLC with UV detection. J Chromatogr Sci 2010; 48:491-5. [PMID: 20822666 DOI: 10.1093/chromsci/48.6.491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Using an isocratic high-performance liquid chromatography (HPLC) system and UV detection, a simple and precise analytical procedure was developed to quantify levels of the CB(1) receptor antagonist rimonabant in the plasma of rhesus monkeys. Rimonabant was extracted from plasma samples into 5% isopropanol in hexane. After separation, the isopropanol-hexane fractions were dried to residue, redissolved in mobile phase, and then injected into the HPLC. The HPLC system included an acetonitrile-phosphate buffer (62:38, v/v) mobile phase (pH 6.7), flow rate of 1.5 mL/min, C(18) column (4.6 mm i.d. x 150 mm length, 5 microm), and UV detection at 280 nm. Retention times for rimonabant and doxepin (internal standard) were 9.9 and 2.4 min, respectively. The regression of the spiked calibrator curve was linear from 60 to 4000 ng/mL (r(2) = 0.996). The lower limit of quantification was 60 ng/mL, and recovery was 83.6%. Rimonabant was stable in stock solutions and monkey plasma across a range of temperatures and concentrations. To demonstrate utility, plasma rimonabant was measured in six rhesus monkeys at 60 and 240 min after intramuscular administration of 1 mg/kg rimonabant. Rimonabant levels ranged from 175 to 1290 ng/mL. The analytical assay described here provides a simple and accurate procedure for multiple within-subject measurements of the CB(1) antagonist rimonabant.
Collapse
Affiliation(s)
- Martin A Javors
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | |
Collapse
|
9
|
Fong TM, Addy C, Erondu N, Heymsfield SB. CB1 receptor inverse agonist pharmacotherapy for metabolic disorders. Drug Dev Res 2009. [DOI: 10.1002/ddr.20335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Beardsley PM. Evaluation of taranabant (MK-0364) for its self-administration in rhesus monkeys and for its discriminative stimulus effects in rats. Drug Dev Res 2009. [DOI: 10.1002/ddr.20336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Murray JE, Wells NR, Lyford GD, Bevins RA. Investigation of endocannabinoid modulation of conditioned responding evoked by a nicotine CS and the Pavlovian stimulus effects of CP 55,940 in adult male rats. Psychopharmacology (Berl) 2009; 205:655-65. [PMID: 19495728 DOI: 10.1007/s00213-009-1572-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 05/13/2009] [Indexed: 10/20/2022]
Abstract
RATIONALE The cannabinoid CB(1) receptor antagonist/inverse agonist rimonabant (SR 141716) has been shown to block reinforcing and rewarding effects of nicotine. Research has not investigated whether the cannabinoid system is involved in the interoceptive stimulus effects of nicotine functioning as a conditional stimulus (CS). OBJECTIVE We examined the effects of rimonabant and the CB(1/2) receptor agonist, CP 55,940, on responding evoked by a nicotine CS in rats. Additionally, we determined whether CP 55,940 functioned as a CS or a Pavlovian positive drug feature MATERIALS AND METHODS Pavlovian discrimination training involved intermixed nicotine (0.2 mg base/kg) and saline sessions with intermittent access to water only on nicotine. Antagonism tests with rimonabant (0.1-3 mg/kg) and substitution tests with CP 55,940 (0.003-0.1 mg/kg) followed. An effective dose of CP 55,940 was tested against the nicotine generalization curve. A separate group received CS training with CP 55,940 (0.01 mg/kg). Two other groups were trained using CP 55,940 (0.01 or 0.03 mg/kg) as a positive drug feature in which a brief light CS signaled access to water only on CP 55,940 sessions. RESULTS Rimonabant blocked nicotine-evoked responding. CP 55,940 partially substituted for nicotine and enhanced responding to lower nicotine doses. Overall, CP 55,940 did not acquire control of conditioned responding in either Pavlovian drug discrimination task. CONCLUSIONS The cannabinoid system was involved in the CS effects of nicotine. This finding is counter to the operant drug discrimination research with nicotine as a discriminative stimulus, warranting further research into this possible dissociation.
Collapse
Affiliation(s)
- Jennifer E Murray
- Department of Psychology, University of Nebraska--Lincoln, Lincoln, NE 68588-0308, USA
| | | | | | | |
Collapse
|
12
|
Xi ZX, Gardner EL. Hypothesis-driven medication discovery for the treatment of psychostimulant addiction. ACTA ACUST UNITED AC 2009; 1:303-27. [PMID: 19430578 DOI: 10.2174/1874473710801030303] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Psychostimulant abuse is a serious social and health problem, for which no effective treatments currently exist. A number of review articles have described predominantly 'clinic'-based pharmacotherapies for the treatment of psychostimulant addiction, but none have yet been shown to be definitively effective for use in humans. In the present article, we review various 'hypothesis'- or 'mechanism'-based pharmacological agents that have been studied at the preclinical level and evaluate their potential use in the treatment of psychostimulant addiction in humans. These compounds target brain neurotransmitter or neuromodulator systems, including dopamine (DA), gamma-aminobutyric acid (GABA), endocannabinoid, glutamate, opioid and serotonin, which have been shown to be critically involved in drug reward and addiction. For drugs in each category, we first briefly review the role of each neurotransmitter system in psychostimulant actions, and then discuss the mechanistic rationale for each drug's potential anti-addiction efficacy, major findings with each drug in animal models of psychostimulant addiction, abuse liability and potential problems, and future research directions. We conclude that hypothesis-based medication development strategies could significantly promote medication discovery for the effective treatment of psychostimulant addiction.
Collapse
Affiliation(s)
- Zheng-Xiong Xi
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | | |
Collapse
|
13
|
Giuffrida A, McMahon LR. In vivo pharmacology of endocannabinoids and their metabolic inhibitors: therapeutic implications in Parkinson's disease and abuse liability. Prostaglandins Other Lipid Mediat 2009; 91:90-103. [PMID: 19523530 DOI: 10.1016/j.prostaglandins.2009.05.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/19/2009] [Accepted: 05/26/2009] [Indexed: 01/03/2023]
Abstract
This review focuses on the behavioral pharmacology of endogenous cannabinoids (endocannabinoids) and indirect-acting cannabinoid agonists that elevate endocannabinoid tone by inhibiting the activity of metabolic enzymes. Similarities and differences between prototype cannabinoid agonists, endocannabinoids and inhibitors of endocannabinoid metabolism are discussed in the context of endocannabinoid pharmacokinetics in vivo. The distribution and function of cannabinoid and non-CB(1)/CB(2) receptors are also covered, with emphasis on their role in disorders characterized by dopamine dysfunction, such as drug abuse and Parkinson's disease. Finally, evidence is presented to suggest that FAAH inhibitors lack the abuse liability associated with CB(1) agonists, although they may modify the addictive properties of other drugs, such as alcohol.
Collapse
Affiliation(s)
- Andrea Giuffrida
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | | |
Collapse
|
14
|
Beardsley PM, Thomas BF, McMahon LR. Cannabinoid CB1 receptor antagonists as potential pharmacotherapies for drug abuse disorders. Int Rev Psychiatry 2009; 21:134-42. [PMID: 19367507 DOI: 10.1080/09540260902782786] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Since the discovery of the cannabinoid CB1 receptor (CB1R) in 1988, and subsequently of the CB2 receptor (CB2R) in 1993, there has been an exponential growth of research investigating the functions of the endocannabinoid system. The roles of CB1Rs have been of particular interest to psychiatry because of their selective presence within the CNS and because of their association with brain-reward circuits involving mesocorticolimbic dopamine systems. One potential role that has become of considerable focus is the ability of CB1Rs to modulate the effects of the drugs of abuse. Many drugs of abuse elevate dopamine levels, and the ability of CB1R antagonists or inverse agonists to modulate these elevations has suggested their potential application as pharmacotherapies for treating drug abuse disorders. With the identification of the selective CB1R antagonist, rimonabant, in 1994, and subsequently of other CB1R antagonists, there has been a rapid expansion of research investigating their ability to modulate the effects of the drugs of abuse. This review highlights some of the preclinical and clinical studies that have examined the effects of CB1R antagonists under conditions potentially predictive of their therapeutic efficacy as treatments for drug abuse disorders.
Collapse
Affiliation(s)
- Patrick M Beardsley
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298-0613, USA.
| | | | | |
Collapse
|
15
|
Shu H, Izenwasser S, Wade D, Stevens ED, Trudell ML. Synthesis and CB1 cannabinoid receptor affinity of 4-alkoxycarbonyl-1,5-diaryl-1,2,3-triazoles. Bioorg Med Chem Lett 2009; 19:891-3. [PMID: 19097888 PMCID: PMC2631625 DOI: 10.1016/j.bmcl.2008.11.110] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 11/24/2008] [Accepted: 11/26/2008] [Indexed: 11/19/2022]
Abstract
A series of 4-alkoxycarbonyl-1,5-diaryl-1,2,3-triazoles were synthesized regioselectively using click chemistry and evaluated at CB1 cannabinoid receptors. The n-propyl ester 11 (K(i)=4.6 nM) and phenyl ester 14 (K(i)=11 nM) exhibited the most potent affinity of the series.
Collapse
Affiliation(s)
- Hong Shu
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | | | | | | | | |
Collapse
|
16
|
Elkashef A, Vocci F, Hanson G, White J, Wickes W, Tiihonen J. Pharmacotherapy of methamphetamine addiction: an update. Subst Abus 2008; 29:31-49. [PMID: 19042205 DOI: 10.1080/08897070802218554] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Methamphetamine dependence is a serious public health problem worldwide for which there are no approved pharmacological treatments. Psychotherapy is still the mainstay of treatment; however, relapse rates are high. The search for effective pharmacological treatment has intensified in the last decade. This review will highlight progress in pharmacological interventions to treat methamphetamine dependence as well as explore new pharmacological targets. Published data from clinical trials for stimulant addiction were searched using PubMed and summarized, as well as highlights from a recent symposium on methamphetamine pharmacotherapy presented at the ISAM 2006 meeting, including interim analysis data from an ongoing D-amphetamine study in Australia. Early pilot data are encouraging for administering D-amphetamine and methylphenidate as treatment for heavy amphetamine users. Abilify at 15 mg/day dose increased amphetamine use in an outpatient pilot study. Sertraline, ondansetron, baclofen, tyrosine, and imipramine were ineffective in proof-of-concept studies. Development of pharmacotherapy for methamphetamine dependence is still in an early stage. Data suggesting D-amphetamine and methylphenidate as effective pharmacotherapy for methamphetamine addiction will need to be confirmed by larger trials. Preclinical data suggest that use of GVG, CB1 antagonist, and lobeline are also promising therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed Elkashef
- Clinical Medical Branch, Division of Pharmacotherapies and Medical Consequences of Drug Abuse, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Chen X, Williamson VS, An SS, Hettema JM, Aggen SH, Neale MC, Kendler KS. Cannabinoid receptor 1 gene association with nicotine dependence. ACTA ACUST UNITED AC 2008; 65:816-24. [PMID: 18606954 DOI: 10.1001/archpsyc.65.7.816] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
CONTEXT The endogenous cannabinoid system has been implicated in drug addiction in animal models. The cannabinoid receptor 1 (CNR1) gene is 1 of the 2 receptors expressed in the brain. It has been reported to be associated with alcoholism and multiple drug abuse and dependence. OBJECTIVE To test the hypothesis that the CNR1 gene is associated with nicotine dependence. DESIGN Genotype-phenotype association study. Ten single-nucleotide polymorphisms were genotyped in the CNR1 gene in 2 independent samples. For the first sample (n = 688), a 3-group case-control design was used to test allele association with smoking initiation and nicotine dependence. For the second sample (n = 961), association was assessed with scores from the Fagerström Test for Nicotine Dependence (FTND). Settings Population samples selected from the Mid-Atlantic Twin Registry. PARTICIPANTS White patients aged 18 to 65 years who met the criteria of inclusion. MAIN OUTCOME MEASURES Fagerström Tolerance Questionnaire and FTND scores. RESULTS Significant single-marker and haplotype associations were found in both samples, and the associations were female specific. Haplotype 1-1-2 of markers rs2023239-rs12720071-rs806368 was associated with nicotine dependence and FTND score in the 2 samples (P < .001 and P = .009, respectively). CONCLUSION Variants and haplotypes in the CNR1 gene may alter the risk for nicotine dependence, and the associations are likely sex specific.
Collapse
Affiliation(s)
- Xiangning Chen
- Virginia Institute for Psychiatric and Behavioral Genetics and Department of Psychiatry, Virginia Commonwealth University, 800 Leigh St, Ste 1-110, Richmond, VA 23298, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
van Diepen H, Schlicker E, Michel MC. Prejunctional and peripheral effects of the cannabinoid CB1 receptor inverse agonist rimonabant (SR 141716). Naunyn Schmiedebergs Arch Pharmacol 2008; 378:345-69. [DOI: 10.1007/s00210-008-0327-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 06/23/2008] [Indexed: 02/06/2023]
|
19
|
Kelsey JE, Calabro S. Rimonabant blocks the expression but not the development of locomotor sensitization to nicotine in rats. Psychopharmacology (Berl) 2008; 198:461-6. [PMID: 17805516 DOI: 10.1007/s00213-007-0913-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 08/06/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE Cannabinoid, especially CB(1,) receptors have been implicated in the development and expression of a variety of behaviors produced by addictive drugs. OBJECTIVES The intent was to determine if coadministration of the selective CB(1) receptor antagonist, rimonabant (SR141716A), would block the development or expression of locomotor sensitization to repeated injections of nicotine. MATERIALS AND METHODS Male Long-Evans rats were injected with either 2 mg/kg rimonabant or its vehicle 30 min before an injection of 0.4 mg/kg nicotine or saline and immediately placed in activity chambers for 1 h on each of six sessions on alternating days. Before the two subsequent challenge sessions, all rats were injected with the vehicle and 0.4 mg/kg nicotine combination and then with the 2 mg/kg rimonabant and 0.4 mg/kg nicotine combination, respectively. RESULTS Repeated injections of nicotine produced a progressive increase in locomotion that was blocked by coadministration of rimonabant. However, the subsequent nicotine challenge increased locomotion in both nicotine-pretreated groups equally more than in the saline-pretreated groups. Coadministration of rimonabant along with nicotine on the second challenge decreased the locomotion of the nicotine-pretreated rats to equal that of the saline-pretreated rats. Rimonabant had no effect on the saline-pretreated rats. CONCLUSION These data suggest that rimonabant blocks the expression but not the development of locomotor sensitization to nicotine.
Collapse
Affiliation(s)
- John E Kelsey
- Department of Psychology and Program in Neuroscience, Bates College, Lewiston, ME 04240, USA.
| | | |
Collapse
|
20
|
Xi ZX, Spiller K, Pak AC, Gilbert J, Dillon C, Li X, Peng XQ, Gardner EL. Cannabinoid CB1 receptor antagonists attenuate cocaine's rewarding effects: experiments with self-administration and brain-stimulation reward in rats. Neuropsychopharmacology 2008; 33:1735-1745. [PMID: 17728698 DOI: 10.1038/sj.npp.1301552] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies suggest that cannabinoid CB1 receptors do not appear to be involved in cocaine's rewarding effects, as assessed by the use of SR141716A, a prototypic CB1 receptor antagonist and CB1-knockout mice. In the present study, we found that blockade of CB1 receptors by AM 251 (1-10 mg/kg), a novel CB1 receptor antagonist, dose-dependently lowered (by 30-70%) the break point for cocaine self-administration under a progressive-ratio (PR) reinforcement schedule in rats. The same doses of SR141716 (freebase form) maximally lowered the break point by 35%, which did not reach statistical significance. Neither AM 251 nor SR141716 altered cocaine self-administration under a fixed-ratio (FR2) reinforcement schedule. AM 251 (0.1-3 mg/kg) also significantly and dose-dependently inhibited (by 25-90%) cocaine-enhanced brain stimulation reward (BSR), while SR141716 attenuated cocaine's BSR-enhancing effect only at 3 mg/kg (by 40%). When the dose was increased to 10 or 20 mg/kg, both AM 251 and SR141716 became less effective, with AM 251 only partially inhibiting cocaine-enhanced BSR and PR cocaine self-administration, and SR141716 having no effect. AM 251 alone, at all doses tested, had no effect on BSR, while high doses of SR141716 alone significantly inhibited BSR. These data suggest that blockade of CB1 receptors by relatively low doses of AM 251 dose-dependently inhibits cocaine's rewarding effects, whereas SR141716 is largely ineffective, as assessed by both PR cocaine self-administration and BSR. Thus, AM 251 or other more potent CB1 receptor antagonists deserve further study as potentially effective anti-cocaine medications.
Collapse
Affiliation(s)
- Zheng-Xiong Xi
- Neuropsychopharmacology Section, Chemical Biology Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, DHHS, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Rossi C, Pini LA, Cupini ML, Calabresi P, Sarchielli P. Endocannabinoids in platelets of chronic migraine patients and medication-overuse headache patients: relation with serotonin levels. Eur J Clin Pharmacol 2007; 64:1-8. [DOI: 10.1007/s00228-007-0391-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Accepted: 09/24/2007] [Indexed: 12/22/2022]
|
22
|
Lemos JI, Takahashi RN, Morato GS. Effects of SR141716 and WIN 55,212-2 on tolerance to ethanol in rats using the acute and rapid procedures. Psychopharmacology (Berl) 2007; 194:139-49. [PMID: 17546513 DOI: 10.1007/s00213-007-0804-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Accepted: 04/12/2007] [Indexed: 01/04/2023]
Abstract
RATIONALE Our previous findings have shown rapid cross-tolerance between ethanol and Delta(9)-tetrahydrocannabinol and that intraperitoneal (i.p.) injection of cannabinoid receptor type 1 (CB1R) antagonist SR141716 (SR) does not interfere with tolerance to either of these drugs in mice. OBJECTIVES This study investigates the effects of SR, alone or in combination with the CB receptor agonist WIN 55,212-2 (WIN), on the development of acute and rapid tolerance to the incoordinating effect of ethanol in rats. MATERIALS AND METHODS Male Wistar rats received SR, through i.p. (0.5-2.0 mg/kg) or intracerebroventricular (i.c.v.) injections (0.5-4.0 microg), alone or together with WIN (1.0 microg, i.c.v.), in combination with ethanol (2.7 g/kg, i.p.). Another group received WIN (1.0 microg, i.c.v.) in combination with ethanol (2.3 g/kg), and the rats were tested for motor coordination. Rapid tolerance was assessed 24 h later by administering ethanol to all animals and retesting them under the same dose regimen. Acute tolerance was evaluated for 75 min after ethanol (3.0 g/kg, i.p.) in animals treated with SR or WIN (i.c.v.). RESULTS The reduced motor impairment on day 2 (i.e., rapid tolerance) was blocked by SR (i.p. and i.c.v.). WIN (1.0 microg, i.c.v.) facilitated rapid tolerance and also prevented the blockade of rapid tolerance by SR (1.0 microg, i.c.v.). In the acute tolerance procedure, SR did not affect the motor incoordination induced by ethanol. CONCLUSIONS The results suggest that the endocannabinoid system may contribute to the development of rapid tolerance to ethanol.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Benzoxazines/administration & dosage
- Benzoxazines/pharmacology
- Central Nervous System Depressants/administration & dosage
- Central Nervous System Depressants/pharmacology
- Dose-Response Relationship, Drug
- Drug Interactions
- Drug Tolerance
- Ethanol/administration & dosage
- Ethanol/pharmacology
- Injections, Intraperitoneal
- Injections, Intraventricular
- Male
- Morpholines/administration & dosage
- Morpholines/pharmacology
- Motor Activity/drug effects
- Naphthalenes/administration & dosage
- Naphthalenes/pharmacology
- Piperidines/administration & dosage
- Piperidines/pharmacology
- Pyrazoles/administration & dosage
- Pyrazoles/pharmacology
- Rats
- Rats, Wistar
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Rimonabant
- Time Factors
Collapse
Affiliation(s)
- Jose Inácio Lemos
- Departamento de Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CCB, 88049-900, Florianopolis, SC, Brazil.
| | | | | |
Collapse
|
23
|
Xie S, Furjanic MA, Ferrara JJ, McAndrew NR, Ardino EL, Ngondara A, Bernstein Y, Thomas KJ, Kim E, Walker JM, Nagar S, Ward SJ, Raffa RB. The endocannabinoid system and rimonabant: a new drug with a novel mechanism of action involving cannabinoid CB1 receptor antagonism--or inverse agonism--as potential obesity treatment and other therapeutic use. J Clin Pharm Ther 2007; 32:209-31. [PMID: 17489873 DOI: 10.1111/j.1365-2710.2007.00817.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
There is considerable evidence that the endocannabinoid (endogenous cannabinoid) system plays a significant role in appetitive drive and associated behaviours. It is therefore reasonable to hypothesize that the attenuation of the activity of this system would have therapeutic benefit in treating disorders that might have a component of excess appetitive drive or over-activity of the endocannabinoid system, such as obesity, ethanol and other drug abuse, and a variety of central nervous system and other disorders. Towards this end, antagonists of cannabinoid receptors have been designed through rational drug discovery efforts. Devoid of the abuse concerns that confound and impede the use of cannabinoid receptor agonists for legitimate medical purposes, investigation of the use of cannabinoid receptor antagonists as possible pharmacotherapeutic agents is currently being actively investigated. The compound furthest along this pathway is rimonabant, a selective CB(1) (cannabinoid receptor subtype 1) antagonist, or inverse agonist, approved in the European Union and under regulatory review in the United States for the treatment of obesity. This article summarizes the basic science of the endocannabinoid system and the therapeutic potential of cannabinoid receptor antagonists, with emphasis on the treatment of obesity.
Collapse
Affiliation(s)
- S Xie
- Temple University School of Pharmacy, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Elkashef A, Biswas J, Acri JB, Vocci F. Biotechnology and the treatment of addictive disorders: new opportunities. BioDrugs 2007; 21:259-67. [PMID: 17628123 DOI: 10.2165/00063030-200721040-00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Addiction is a chronic relapsing illness with onset typically occurring in the early teenage years, followed by cycles of drug use and abstinence. The disease is mitigated by complex interactions between genes and environment. Viewed as such, the treatment of addiction could span the whole lifetime of the patient and, ideally, should be tailored to the illness cycle. The search for effective treatments has intensified recently due to our better understanding of the underlying neurobiologic mechanisms contributing to drug use and relapse. The three main types of treatment are behavioral, pharmacologic and, more recently, immunologic therapies. Vaccines and monoclonal antibodies are being developed mainly for stimulant use disorders and nicotine addiction. In addition, new molecular targets identified by preclinical research have shown promise and are awaiting proof-of-concept studies in humans. The main focus of this review is on the development of immunotherapy for stimulants and nicotine addiction as a model highlighting the current status of the science and potential emerging discoveries and development.
Collapse
Affiliation(s)
- Ahmed Elkashef
- Division of Pharmacotherapies and Medical Consequences of Drug Abuse (DPMC), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Bethesda, Maryland 20892-9551, USA.
| | | | | | | |
Collapse
|
25
|
Mackie K. From Active Ingredients to the Discovery of the Targets: The Cannabinoid Receptors. Chem Biodivers 2007; 4:1693-706. [PMID: 17712815 DOI: 10.1002/cbdv.200790148] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ken Mackie
- Indiana University, 1101 East Tenth Street, Bloomington, IN 47405, USA
| |
Collapse
|
26
|
Jones JD, Carney ST, Vrana KE, Norford DC, Howlett AC. Cannabinoid receptor-mediated translocation of NO-sensitive guanylyl cyclase and production of cyclic GMP in neuronal cells. Neuropharmacology 2007; 54:23-30. [PMID: 17707868 PMCID: PMC3170565 DOI: 10.1016/j.neuropharm.2007.06.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/16/2007] [Accepted: 06/25/2007] [Indexed: 11/25/2022]
Abstract
Cannabinoid agonists regulate NO and cyclic AMP production in N18TG2 neuroblastoma cells, leading to the hypothesis that neuronal cyclic GMP production could be regulated by CB(1) cannabinoid receptors. NO (nitric oxide)-sensitive guanylyl cyclase (GC) is a heterodimeric cytosolic protein that mediates the down-stream effects of NO. Genes of proteins in the cyclic GMP pathway (alpha(1), alpha(2), and beta(1) subunits of NO-sensitive GC and PKG1, but not PKG2) were expressed in N18TG2 cells, as was the CB(1) but not the CB(2) cannabinoid receptor. Stimulation of N18TG2 cells by cannabinoid agonists CP55940 and WIN55212-2 increased cyclic GMP levels in an ODQ-sensitive manner. GC-beta(1) in membrane fractions was increased after 5 or 20 min stimulation, and was significantly depleted in the cytosol by 1h. The cytosolic pool of GC-beta(1) was replenished after 48 h of continued cannabinoid drug treatment. Translocation of GC-beta(1) from the cytosol was blocked by the CB(1) antagonist rimonabant (SR141716) and by the Gi/o inactivator pertussis toxin, indicating that the CB(1) receptor and Gi/o proteins are required for translocation. Long-term treatment with rimonabant or pertussis toxin reduced the amount of GC-beta(1) in the cytosolic pool. We conclude that CB(1) receptors stimulate cyclic GMP production and that intracellular translocation of GC from cytosol to the membranes is intrinsic to the mechanism and may be a tonically active or endocannabinoid-regulated process.
Collapse
Affiliation(s)
- Jenelle D. Jones
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, U.S.A
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27517, U.S.A
| | - Skyla T. Carney
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, U.S.A
| | - Kent E. Vrana
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27517, U.S.A
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, U.S.A
| | - Derek C. Norford
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, U.S.A
| | - Allyn C. Howlett
- Neuroscience of Drug Abuse Research Program, Julius L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, U.S.A
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27517, U.S.A
- Corresponding Author. Tel.: +1 336 716 8545; fax +1 336 716 8501, (A.C. Howlett), Wake Forest University Health Sciences, Medical Center Blvd., Winston-Salem, NC 27157 U.S.A
| |
Collapse
|
27
|
Miller DK, Rodvelt KR, Constales C, Putnam WC. Analogs of SR-141716A (Rimonabant) alter d-amphetamine-evoked [3H] dopamine overflow from preloaded striatal slices and amphetamine-induced hyperactivity. Life Sci 2007; 81:63-71. [PMID: 17532007 DOI: 10.1016/j.lfs.2007.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 03/28/2007] [Accepted: 04/18/2007] [Indexed: 11/16/2022]
Abstract
The CB(1) cannabinoid receptor antagonist SR-141716A (Rimonabant) markedly diminishes the behavioral effects of opiates and nicotine and has been an important tool to ascertain the role of cannabinoid receptors in drug addiction. The present goal was to determine the less-explored interaction of SR-141716A and d-amphetamine in neurochemical and behavioral assays. Additionally, the effect of the substituents and substitution patterns on the phenyl ring located at the 5 position of SR-141716A (4-chlorophenyl), and of the CB(1)/CB(2) cannabinoid receptor agonist WIN-55,212-2, was determined. SR-141716A, AM-251 (4-iodophenyl) and NIDA-41020 (4-methoxyphenyl) did not alter amphetamine-evoked [(3)H]overflow from rat striatal slices preloaded with [(3)H]dopamine. MRI-8273-30-1 (4-fluorophenyl; 0.1-10 microM) attenuated amphetamine (3 microM)-evoked [(3)H]overflow, and MRI-8273-59 (3,4-dichlorphenyl; 0.01-10 microM) augmented amphetamine (0.3-3 microM)-evoked [(3)H]overflow. WIN-55,212-2 was without effect. In a locomotor activity experiment, SR-141716A and MRI-8273-30-1 did not alter amphetamine-induced hyperactivity. However, MRI-8273-59 (1-3 mg/kg) dose-dependently attenuated amphetamine (1 mg/kg)-induced hyperactivity. The present results suggest that SR-141716A is less efficacious to alter amphetamine effects than its reported efficacy to diminish the effects of opiates and nicotine. Modification of the 5-phenyl position of SR-141716A affords compounds that do interact with amphetamine in vitro and in vivo.
Collapse
Affiliation(s)
- Dennis K Miller
- Department of Psychological Sciences and Interdepartmental Neuroscience Program, University of Missouri, Columbia, MO 65202, USA.
| | | | | | | |
Collapse
|
28
|
Bifulco M, Grimaldi C, Gazzerro P, Pisanti S, Santoro A. Rimonabant: just an antiobesity drug? Current evidence on its pleiotropic effects. Mol Pharmacol 2007; 71:1445-56. [PMID: 17327463 DOI: 10.1124/mol.106.033118] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The advent of the highly selective cannabinoid receptor (CB1) antagonist, rimonabant (SR141716; Acomplia) can revolutionize the ability of the clinicians to manage obesity. Large-scale clinical trials have demonstrated that rimonabant therapy can reduce obesity. Although, the precise mechanisms of action of rimonabant have to be further dissected, it is emerging, from both preclinical and clinical research, that not only is rimonabant an antiobesity drug, but also its pleiotropic functions affect a broad range of diseases, from obesity-related comorbidities to drug dependence and cancer. Here we review recent data from the literature and discuss the full pharmacological potential of this drug.
Collapse
Affiliation(s)
- Maurizio Bifulco
- Department of Pharmaceutical Sciences, University of Salerno, Fisciano, Salerno, Italy.
| | | | | | | | | |
Collapse
|
29
|
McMahon LR, Koek W. Differences in the relative potency of SR 141716A and AM 251 as antagonists of various in vivo effects of cannabinoid agonists in C57BL/6J mice. Eur J Pharmacol 2007; 569:70-6. [PMID: 17553486 PMCID: PMC2043376 DOI: 10.1016/j.ejphar.2007.04.054] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 04/11/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
Although the cannabinoid CB(1) antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR 141716A) blocks many of the in vivo effects of cannabinoids, the antagonist activity of SR 141716A is limited under some conditions. The general aims of this study were to: 1) examine whether the limited antagonist activity of SR 141716A generalizes to the cannabinoid CB(1) antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM 251); and 2) examine mechanisms by which cannabinoids produce hypothermia, catalepsy, and hypoactivity in C57BL/6J mice. SR 141716A and AM 251 were administered alone and in combination with the cannabinoid agonists triangle up(9)-tetrahydrocannabinol (triangle up(9)-THC) and R-(+)-[2,3-dihydro-5-methyl-3-[(morpholinyl)-methyl]pyrrolol-[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone (WIN 55212-2). triangle up(9)-THC and WIN 55212-2 produced catalepsy, hypothermia, and hypoactivity with similar potency; WIN 55212-2 produced greater hypothermia than triangle up(9)-THC, otherwise differences in maximal effect were not detected in the other assays. When administered alone, the antagonists did not produce catalepsy or alter body temperature and they decreased locomotor activity. SR 1417167A and AM 251 blocked catalepsy and hypothermia, and partially attenuated hypoactivity, produced by triangle up(9)-THC and WIN 55212-2. While the antagonists were equipotent in blocking agonist-induced hypothermia, SR 141716A was 6-fold more potent than AM 251 in blocking agonist-induced catalepsy. The results demonstrate that SR 141716A and AM 251 have strikingly similar behavioral activity, i.e., they block some and not other in vivo effects of cannabinoid agonists, and further demonstrate differences in the maximum effect of cannabinoid agonists that might be related to differences in agonist efficacy. While the results strongly suggest that cannabinoid CB(1) receptors mediate the hypothermic and cataleptic effects of cannabinoids, differences in the relative potency of antagonists suggest that mechanisms responsible for these effects are not identical.
Collapse
Affiliation(s)
- Lance R McMahon
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | |
Collapse
|
30
|
Fowler CJ. The cannabinoid system and its pharmacological manipulation--a review, with emphasis upon the uptake and hydrolysis of anandamide. Fundam Clin Pharmacol 2007; 20:549-62. [PMID: 17109648 DOI: 10.1111/j.1472-8206.2006.00442.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although cannabis has been used both recreationally and for medicinal purposes since ancient times, it was not until the 1990s that the receptors responsible for many of the actions of Delta(9)-tetrahydrocannabinol, the main psychoactive ingredient of cannabis, were cloned. Since then, our knowledge of the endogenous cannabinoid system, its physiology, pharmacology and therapeutic potential have expanded enormously. In the present review, the cannabinoid system is described, with particular emphasis on the mechanisms of removal and metabolism of the endocannabinoid signalling molecule anandamide. The current literature shows that cells can accumulate anandamide, and that this process can be disrupted pharmacologically, but that the nature of the mechanism(s) involved remains a matter of some debate. The main enzyme for the hydrolysis of anandamide, fatty acid amide hydrolase, is well characterized, and molecules selectively inhibiting this enzyme have potential therapeutic utility in a number of areas, in particular for the treatment of pain conditions.
Collapse
Affiliation(s)
- Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE901 87 Umeå, Sweden.
| |
Collapse
|
31
|
Rodvelt KR, Bumgarner DM, Putnam WC, Miller DK. WIN-55,212-2 and SR-141716A alter nicotine-induced changes in locomotor activity, but do not alter nicotine-evoked [3H]dopamine release. Life Sci 2007; 80:337-44. [PMID: 17067637 DOI: 10.1016/j.lfs.2006.09.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 09/16/2006] [Accepted: 09/18/2006] [Indexed: 12/11/2022]
Abstract
Nicotine, the main psychoactive ingredient in tobacco, plays a key role in the development of cigarette smoking addiction. The endocannabinoid system has been demonstrated to have an important role in the motivational and reinforcing effects of drugs. The present study used behavioral and neurochemical techniques to study the interaction of cannabinoid receptors and nicotine pharmacology. In a locomotor activity experiment in rats, the CB(1)/CB(2) cannabinoid receptor agonist WIN-55,212-2 (0.28-2.8 mg/kg) attenuated nicotine (0.4 mg/kg)-induced hyperactivity, but did not alter nicotine (1.0 mg/kg)-induced hypoactivity. In contrast, the selective CB(1) cannabinoid receptor antagonist SR-141716A (1.0 mg/kg) diminished nicotine-induced hypoactivity, but did not alter nicotine-induced hyperactivity. In a neurochemical experiment, rat striatal slices preloaded with [(3)H]dopamine were superfused with WIN-55,212-2 or SR-141716A. A high concentration (100 microM) of WIN-55,212-2 evoked [(3)H]overflow, but this effect was not blocked by the cannabinoid receptor antagonist AM-251. SR-141716A did not evoke [(3)H]overflow, and neither WIN-55,212-2 nor SR-141716A altered nicotine-evoked [(3)H]overflow. Overall, these results indicate a behavioral interaction between cannabinoid receptors and nicotine pharmacology. Likely, WIN-55,212-2 and SR-141716A block nicotine-induced changes in behavior through an indirect mechanism, such as alteration in endocannabinoid regulation of motor circuits, rather than directly through blockade of nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Kelli R Rodvelt
- Department of Psychological Sciences, University of Missouri, Columbia MO, USA
| | | | | | | |
Collapse
|
32
|
Fattore L, Spano MS, Deiana S, Melis V, Cossu G, Fadda P, Fratta W. An endocannabinoid mechanism in relapse to drug seeking: A review of animal studies and clinical perspectives. ACTA ACUST UNITED AC 2007; 53:1-16. [DOI: 10.1016/j.brainresrev.2006.05.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 05/08/2006] [Accepted: 05/08/2006] [Indexed: 01/28/2023]
|
33
|
Martini L, Waldhoer M, Pusch M, Kharazia V, Fong J, Lee JH, Freissmuth C, Whistler JL. Ligand-induced down-regulation of the cannabinoid 1 receptor is mediated by the G-protein-coupled receptor-associated sorting protein GASP1. FASEB J 2006; 21:802-11. [PMID: 17197383 DOI: 10.1096/fj.06-7132com] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cannabinoid 1 receptor (CB1R) is one of the most abundant seven transmembrane (7TM) spanning/G-protein-coupled receptors in the central nervous system and plays an important role in pain transmission, feeding, and the rewarding effects of cannabis. Tolerance to cannabinoids has been widely observed after long-term use, with concomitant receptor desensitization and/or down-regulation depending on the brain region studied. Several CB1R agonists promote receptor internalization after activation, but the postendocytic sorting of the receptor has not been studied in detail. Utilizing human embryonic kidney (HEK293) cells stably expressing the CB1R and primary cultured neurons expressing endogenous CB1R, we show that treatment with cannabinoid agonists results in CB1R degradation after endocytosis and that the G-protein-coupled receptor-associated sorting protein GASP1 plays a major role in the postendocytic sorting process. Thus, these results may identify a molecular mechanism underlying tolerance and receptor down-regulation after long-term use of cannabinoids.
Collapse
Affiliation(s)
- Lene Martini
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|