1
|
Cupo L, Dominguez-Cancino KA, Nazif-Munoz JI, Chakravarty MM. Prenatal cannabis exposure in the clinic and laboratory: What do we know and where do we need to go? DRUG AND ALCOHOL DEPENDENCE REPORTS 2024; 13:100282. [PMID: 39430603 PMCID: PMC11490891 DOI: 10.1016/j.dadr.2024.100282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/22/2024]
Abstract
Coincident with the legalisation of cannabis in many nations, rates of cannabis use during pregnancy have increased. Like prior investigations on smoking and alcohol, understanding how prenatal cannabis exposure (PCE) impacts offspring outcomes across the lifespan will be critical for informing choices for pregnant people, clinicians, and policy makers alike. A thorough characterization of the life-long impacts is especially urgent for supporting all of these stakeholders in the decision-making process. While studies in humans bring forth the most direct information, it can be difficult to parse the impact of PCE from confounding variables. Laboratory studies in animal models can provide experimental designs that allow for causal inferences to be drawn, however there can be challenges in designing experiments with external validity in mirroring real-world exposure, as well as challenges translating results from the laboratory back to the clinic. In this literature review, we first highlight what is known about patterns of cannabis use during pregnancy. We then seek to lay out updates to the current understanding of the impact of PCE on offspring development informed by both human and nonhuman animal experiments. Finally we highlight opportunities for information exchange among the laboratory, clinic, and policy, identifying gaps to be filled by future research.
Collapse
Affiliation(s)
- Lani Cupo
- McGill University, Department of Psychiatry, Canada
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Research Centre, Canada
| | | | | | - M Mallar Chakravarty
- McGill University, Department of Psychiatry, Canada
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Centre, Douglas Research Centre, Canada
| |
Collapse
|
2
|
Carlson E, Teboul E, Canale C, Coleman H, Angeliu C, Garbarini K, Markowski VP. Perinatal Tetrahydrocannabinol Compromises Maternal Care and Increases Litter Attrition in the Long-Evans Rat. TOXICS 2024; 12:311. [PMID: 38787090 PMCID: PMC11126083 DOI: 10.3390/toxics12050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
The marijuana legalization trend in the U.S. will likely lead to increased use by younger adults during gestation and postpartum. The current study examined the hypothesis that delta-9-tetrahydrocannabinol (THC) would disrupt voluntary maternal care behaviors and negatively impact offspring development. Rat dams were gavaged with 0, 2, 5, or 10 mg/kg THC from the 1st day of gestation through the 21st postnatal day. Somatic growth and developmental milestones were measured in the offspring, and maternal pup retrieval tests were conducted on postnatal days 1, 3, and 5. THC did not affect body growth but produced transient delays in the righting reflex and eye opening in offspring. However, there was significant pup mortality due to impaired maternal care. Dams in all THC groups took significantly longer to retrieve their pups to the nest and often failed to retrieve any pups. Serum levels of THC and metabolites measured at this time were comparable to those in breastfeeding women who are chronic users. Benchmark doses associated with a 10% reduction of pup retrieval or increased pup mortality were 0.383 (BMDL 0.228) and 0.794 (BMDL 0.442) mg/kg THC, respectively. The current findings indicate that maternal care is an important and heretofore overlooked index of THC behavioral toxicity and should be included in future assessments of THC's health risks.
Collapse
Affiliation(s)
- Emma Carlson
- Department of Psychology, State University of New York at Geneseo, One College Circle, Geneseo, NY 14454, USA; (E.C.); (C.C.); (H.C.); (C.A.); (K.G.)
| | - Eric Teboul
- Departments of Neurosurgery and Neuroscience, Brown University & Rhode Island Hospital, Providence, RI 02912, USA;
| | - Charlene Canale
- Department of Psychology, State University of New York at Geneseo, One College Circle, Geneseo, NY 14454, USA; (E.C.); (C.C.); (H.C.); (C.A.); (K.G.)
| | - Harper Coleman
- Department of Psychology, State University of New York at Geneseo, One College Circle, Geneseo, NY 14454, USA; (E.C.); (C.C.); (H.C.); (C.A.); (K.G.)
| | - Christina Angeliu
- Department of Psychology, State University of New York at Geneseo, One College Circle, Geneseo, NY 14454, USA; (E.C.); (C.C.); (H.C.); (C.A.); (K.G.)
| | - Karissa Garbarini
- Department of Psychology, State University of New York at Geneseo, One College Circle, Geneseo, NY 14454, USA; (E.C.); (C.C.); (H.C.); (C.A.); (K.G.)
| | - Vincent P. Markowski
- Department of Psychology, State University of New York at Geneseo, One College Circle, Geneseo, NY 14454, USA; (E.C.); (C.C.); (H.C.); (C.A.); (K.G.)
| |
Collapse
|
3
|
Talavera-Barber MM, Morehead E, Ziegler K, Hockett C, Elliott AJ. Prenatal cannabinoid exposure and early language development. Front Pediatr 2023; 11:1290707. [PMID: 38078314 PMCID: PMC10702953 DOI: 10.3389/fped.2023.1290707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/31/2023] [Indexed: 02/12/2024] Open
Abstract
Introduction The effect of prenatal cannabis exposure (PCE) on childhood neurodevelopment remains poorly understood. There is a paucity of studies describing the neurodevelopment impact of PCE in infancy. The Mullen Scale of Early Learning (MSEL) is a cognitive screening tool that can be used from birth to 68 months and includes language and motor domains. Here we aim to explore the association between PCE during pregnancy and neurodevelopmental outcomes at 12 months of age. Methods Participants were pregnant persons/infant pairs enrolled in The Safe Passage Study, a large prospective cohort study. Inclusion criteria included data available on PCE with associated MSEL scores at 12 months of age. Exposed participants were defined as early exposure (1st trimester only) or late exposure (2nd or 3rd trimester) and were randomly matched with unexposed participants. Multiple linear regression models were performed to test associations between prenatal cannabis exposure and the five Mullen subscales: gross motor, fine motor, expressive language, receptive language, and visual reception. Results Sixty-nine exposed and 138 randomly matched unexposed infants were included in the analyses. Mothers of children with PCE were younger with the mean age 23.7 years for early exposure (n = 51) and 22.8 years for late exposure (n = 18). Maternal characteristics with prenatal cannabis use include a high-school education, American Indian or Alaska Native descent, lower socioeconomic status and co-use of tobacco. There were no gestational age or sex difference among the groups. Expressive (95% CI: 2.54-12.76; p = 0.0036,) and receptive language scores (95% CI: 0.39-8.72; p = 0.0322) were significantly increased between late-exposed infants compared to unexposed infants following adjustment for covariates. Gross motor scores (95% CI: 1.75-13; p = 0.0105) were also significantly increased for early-exposed infants with no difference in visual reception scores. Conclusion Preclinical studies have shown abnormal brain connectivity in offspring exposed to cannabis affecting emotional regulation, hyperactivity, and language development. Results from this study link PCE to altered early language development within the first year of life. Exposed infants demonstrated increased expressive and receptive language scores at 12 months of age, which can translate to better performance in school. However, further research is needed to determine the implications of these results later in childhood.
Collapse
Affiliation(s)
- Maria M. Talavera-Barber
- Avera Research Institute, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - Evlyn Morehead
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Katherine Ziegler
- Avera Research Institute, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - Christine Hockett
- Avera Research Institute, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| | - Amy J. Elliott
- Avera Research Institute, Sioux Falls, SD, United States
- Department of Pediatrics, University of South Dakota Sanford School of Medicine, Sioux Falls, SD, United States
| |
Collapse
|
4
|
Iyer P, Niknam Y, Campbell M, Moran F, Kaufman F, Kim A, Sandy M, Zeise L. Animal evidence considered in determination of cannabis smoke and
Δ
9
‐tetrahydrocannabinol (
Δ
9
‐THC
) as causing reproductive toxicity (developmental endpoint); part
II
. Neurodevelopmental effects. Birth Defects Res 2022; 114:1155-1168. [DOI: 10.1002/bdr2.2084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Poorni Iyer
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Yassaman Niknam
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Marlissa Campbell
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Francisco Moran
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Farla Kaufman
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Allegra Kim
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Martha Sandy
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment (OEHHA) Sacramento California USA
| |
Collapse
|
5
|
Mourh J, Rowe H. Marijuana and Breastfeeding: Applicability of the Current Literature to Clinical Practice. Breastfeed Med 2017; 12:582-596. [PMID: 28872348 DOI: 10.1089/bfm.2017.0020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
With recent legalization of marijuana in numerous U.S. states, the risk of marijuana exposure via breast milk is a rising concern. This review analyzes the available human and animal literature regarding maternal use of marijuana during lactation. The findings can be categorized into four areas of analysis: effects of marijuana on the mother, transfer into milk, transfer to the offspring, and effects on the offspring. Human and animal data have reported decreased prolactin levels as well as potential maternal psychological changes. Animal and human studies have reported transfer into milk; levels were detected in animal offspring, and metabolites were excreted by both human and animal offspring. Further, animal data have predominately displayed motor, neurobehavioral, and developmental effects, whereas human data suggested possible psychomotor outcomes; however, some studies reported no effect. Despite these results, many human studies were marred by limitations, including small sample sizes and confounding variables. Also, the applicability of animal data to the human population is questionable and the true risk of adverse effects is not entirely known. There are large gaps in the literature that need to be addressed; in particular, studies need to focus on evaluating the short- and long-term consequences of maternal marijuana use for the infant and the potential for different risks based on the frequency of maternal use. Until further evidence becomes available, practitioners need to weigh the benefits of breastfeeding for mother and child, with the potential influence of marijuana on infant development when determining the infant's most suitable form of nutrition.
Collapse
Affiliation(s)
- Jasminder Mourh
- 1 Lower Mainland Pharmacy Services , Fraser Health Authority, Surrey, Canada
| | - Hilary Rowe
- 2 Neonatal and Pediatric Pharmacy, Surrey Memorial Hospital, Fraser Health Authority, Surrey, Canada
| |
Collapse
|
6
|
Ramírez-López MT, Vázquez M, Lomazzo E, Hofmann C, Blanco RN, Alén F, Antón M, Decara J, Arco R, Orio L, Suárez J, Lutz B, Gómez de Heras R, Bindila L, Rodríguez de Fonseca F. A moderate diet restriction during pregnancy alters the levels of endocannabinoids and endocannabinoid-related lipids in the hypothalamus, hippocampus and olfactory bulb of rat offspring in a sex-specific manner. PLoS One 2017; 12:e0174307. [PMID: 28346523 PMCID: PMC5367805 DOI: 10.1371/journal.pone.0174307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/07/2017] [Indexed: 01/09/2023] Open
Abstract
Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid-related lipid signaling alterations might be involved in the long-term and sexual dimorphism effects commonly observed after undernutrition and low birth weight.
Collapse
Affiliation(s)
- María Teresa Ramírez-López
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Mariam Vázquez
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Rosario Noemi Blanco
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - María Antón
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Decara
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Rocío Arco
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Laura Orio
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Suárez
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología. IBIMA. Facultad de Ciencias, Universidad de Malaga. Campus de Teatinos s/n, Malaga, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Raquel Gómez de Heras
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- * E-mail: (FRF); (RGH)
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- * E-mail: (FRF); (RGH)
| |
Collapse
|
7
|
Ramírez-López MT, Vázquez M, Bindila L, Lomazzo E, Hofmann C, Blanco RN, Alén F, Antón M, Decara J, Arco R, Ouro D, Orio L, Suárez J, Lutz B, Gómez de Heras R, Rodríguez de Fonseca F. Maternal Caloric Restriction Implemented during the Preconceptional and Pregnancy Period Alters Hypothalamic and Hippocampal Endocannabinoid Levels at Birth and Induces Overweight and Increased Adiposity at Adulthood in Male Rat Offspring. Front Behav Neurosci 2016; 10:208. [PMID: 27847471 PMCID: PMC5088205 DOI: 10.3389/fnbeh.2016.00208] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/17/2016] [Indexed: 12/18/2022] Open
Abstract
Exposure to inadequate nutritional conditions in critical windows of development has been associated to disturbances on metabolism and behavior in the offspring later in life. The role of the endocannabinoid system, a known regulator of energy expenditure and adaptive behaviors, in the modulation of these processes is unknown. In the present study, we investigated the impact of exposing rat dams to diet restriction (20% less calories than standard diet) during pre-gestational and gestational periods on: (a) neonatal outcomes; (b) endocannabinoid content in hypothalamus, hippocampus and olfactory bulb at birth; (c) metabolism-related parameters; and (d) behavior in adult male offspring. We found that calorie-restricted dams tended to have a reduced litter size, although the offspring showed normal weight at birth. Pups from calorie-restricted dams also exhibited a strong decrease in the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), arachidonic acid (AA) and palmitoylethanolamide (PEA) in the hypothalamus at birth. Additionally, pups from diet-restricted dams displayed reduced levels of AEA in the hippocampus without significant differences in the olfactory bulb. Moreover, offspring exhibited increased weight gain, body weight and adiposity in adulthood as well as increased anxiety-related responses. We propose that endocannabinoid signaling is altered by a maternal caloric restriction implemented during the preconceptional and pregnancy periods, which might lead to modifications of the hypothalamic and hippocampal circuits, potentially contributing to the long-term effects found in the adult offspring.
Collapse
Affiliation(s)
| | - Mariam Vázquez
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Rosarío Noemí Blanco
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - María Antón
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Decara
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Rocío Arco
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Daniel Ouro
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Laura Orio
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga Málaga, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz Mainz, Germany
| | - Raquel Gómez de Heras
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de MadridMadrid, Spain; Instituto de Investigación Biomédica de Málaga (IBIMA), Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de MálagaMálaga, Spain
| |
Collapse
|
8
|
Guidelines for the Management of Pregnant Women With Substance Use Disorders. PSYCHOSOMATICS 2016; 57:115-30. [DOI: 10.1016/j.psym.2015.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 11/21/2022]
|
9
|
Metz TD, Stickrath EH. Marijuana use in pregnancy and lactation: a review of the evidence. Am J Obstet Gynecol 2015; 213:761-78. [PMID: 25986032 DOI: 10.1016/j.ajog.2015.05.025] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/05/2015] [Accepted: 05/13/2015] [Indexed: 11/28/2022]
Abstract
With the legalization of recreational marijuana in many states, we anticipate more women will be using and self-reporting marijuana use in pregnancy. Marijuana is the most common illicit drug used in pregnancy, with a prevalence of use ranging from 3% to 30% in various populations. Marijuana freely crosses the placenta and is found in breast milk. It may have adverse effects on both perinatal outcomes and fetal neurodevelopment. Specifically, marijuana may be associated with fetal growth restriction, stillbirth, and preterm birth. However, data are far from uniform regarding adverse perinatal outcomes. Existing studies are plagued by confounding by tobacco and other drug exposures as well as sociodemographic factors. In addition, there is a lack of quantification of marijuana exposure by the trimester of use and a lack of corroboration of maternal self-report with biological sampling, which contributes to the heterogeneity of study results. There is an emerging body of evidence indicating that marijuana may cause problems with neurological development, resulting in hyperactivity, poor cognitive function, and changes in dopaminergic receptors. In addition, contemporary marijuana products have higher quantities of delta-9-tetrahydrocannabinol than in the 1980s when much of the marijuana research was completed. The effects on the pregnancy and fetus may therefore be different than those previously seen. Further research is needed to provide evidence-based counseling of women regarding the anticipated outcomes of marijuana use in pregnancy. In the meantime, women should be advised not to use marijuana in pregnancy or while lactating.
Collapse
Affiliation(s)
- Torri D Metz
- Denver Health Medical Center, Department of Obstetrics and Gynecology, Denver, CO; University of Colorado School of Medicine, Aurora, CO.
| | - Elaine H Stickrath
- Denver Health Medical Center, Department of Obstetrics and Gynecology, Denver, CO; University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
10
|
Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, Hyytiä P, Dawe GS. Mechanisms of Action and Persistent Neuroplasticity by Drugs of Abuse. Pharmacol Rev 2015; 67:872-1004. [PMID: 26403687 DOI: 10.1124/pr.115.010967] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Adaptation of the nervous system to different chemical and physiologic conditions is important for the homeostasis of brain processes and for learning and remembering appropriate responses to challenges. Although processes such as tolerance and dependence to various drugs of abuse have been known for a long time, it was recently discovered that even a single pharmacologically relevant dose of various drugs of abuse induces neuroplasticity in selected neuronal populations, such as the dopamine neurons of the ventral tegmental area, which persist long after the drug has been excreted. Prolonged (self-) administration of drugs induces gene expression, neurochemical, neurophysiological, and structural changes in many brain cell populations. These region-specific changes correlate with addiction, drug intake, and conditioned drugs effects, such as cue- or stress-induced reinstatement of drug seeking. In rodents, adolescent drug exposure often causes significantly more behavioral changes later in adulthood than a corresponding exposure in adults. Clinically the most impairing and devastating effects on the brain are produced by alcohol during fetal development. In adult recreational drug users or in medicated patients, it has been difficult to find persistent functional or behavioral changes, suggesting that heavy exposure to drugs of abuse is needed for neurotoxicity and for persistent emotional and cognitive alterations. This review describes recent advances in this important area of research, which harbors the aim of translating this knowledge to better treatments for addictions and related neuropsychiatric illnesses.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Bjørnar den Hollander
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Usman Farooq
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Elena Vashchinkina
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - David J Nutt
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| | - Gavin S Dawe
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Finland (E.R.K., B.d.H., E.V., P.H.); Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore, and SINAPSE, Singapore Institute for Neurotechnology, Singapore (E.R.K., R.R., G.S.D.); Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut (U.F.); and Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London. United Kingdom (D.J.N.)
| |
Collapse
|
11
|
Viveros MP, Llorente R, Suarez J, Llorente-Berzal A, López-Gallardo M, de Fonseca FR. The endocannabinoid system in critical neurodevelopmental periods: sex differences and neuropsychiatric implications. J Psychopharmacol 2012; 26:164-76. [PMID: 21669929 DOI: 10.1177/0269881111408956] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This review focuses on the endocannabinoid system as a crucial player during critical periods of brain development, and how its disturbance either by early life stressful events or cannabis consumption may lead to important neuropsychiatric signs and symptoms. First we discuss the advantages and limitations of animal models within the framework of neuropsychiatric research and the crucial role of genetic and environmental factors for the establishment of vulnerable phenotypes. We are becoming aware of important sex differences that have emerged in relation to the psychobiology of cannabinoids. We will discuss sexual dimorphisms observed within the endogenous cannabinoid system, as well as those observed with exogenously administered cannabinoids. We start with how the expression of cannabinoid CB(1) receptors is regulated throughout development. Then, we discuss recent results showing how an experimental model of early maternal deprivation, which induces long-term neuropsychiatric symptoms, interacts in a sex-dependent manner with the brain endocannabinoid system during development. This is followed by a discussion of differential vulnerability to the pathological sequelae stemming from cannabinoid exposure during adolescence. Next we talk about sex differences in the interactions between cannabinoids and other drugs of abuse. Finally, we discuss the potential implications that organizational and activational actions of gonadal steroids may have in establishing and maintaining sex dependence in the neurobiological actions of cannabinoids and their interaction with stress.
Collapse
Affiliation(s)
- M P Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
12
|
Shabani M, Hosseinmardi N, Haghani M, Shaibani V, Janahmadi M. Maternal exposure to the CB1 cannabinoid agonist WIN 55212-2 produces robust changes in motor function and intrinsic electrophysiological properties of cerebellar Purkinje neurons in rat offspring. Neuroscience 2010; 172:139-52. [PMID: 20969930 DOI: 10.1016/j.neuroscience.2010.10.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/07/2010] [Accepted: 10/09/2010] [Indexed: 01/18/2023]
Abstract
The cerebellum, which controls coordinated and rapid movements, is a potential target for the deleterious effects of drugs of abuse including cannabis (i.e. marijuana, cannabinoids). Prenatal exposure to cannabinoids has been documented to cause abnormalities in motor and cognitive development, but the exact mechanism of this effect at the cellular level has not been fully elucidated. Previous studies indicate that cannabinoids are capable of modulating synaptic neurotransmission. In addition to altering synaptic activity, cannabinoid exposure may also change intrinsic neuronal properties. In the present study several different approaches including behavioral assays, extracellular field potential recordings and whole-cell patch clamp recordings, were used to address whether maternal exposure to the CB1 cannabinoid receptor agonist WIN 55-212-2 (WIN) affects the intrinsic electrophysiological properties of Purkinje neurons. WIN treatment of pregnant rats produced a significant decrease in the rearing frequency, total distance moved and mobility of the offspring, but significantly increased the time of the righting reflex, the grooming frequency and immobility. Neuromotor function, as assessed in the grip test and balance beam test, was also significantly impaired in prenatally WIN-treated group. Prenatal exposure to WIN increased the amplitude of population spikes (PS) recorded from the cerebellar Purkinje cell layer of offspring following synaptic blockage. WIN treatment of pregnant rats also profoundly affected the intrinsic properties of Purkinje neurons in offspring. This treatment increased the firing regularity, firing frequency, amplitude of afterhyperpolarization (AHP), the peak amplitude of action potential and the first spike latency, but decreased significantly the time to peak and duration of action potentials, the instantaneous firing frequency, the rate of rebound action potential and the voltage "sag" ratio. These results raise the possibility that maternal exposure to cannabinoids may profoundly affect the intrinsic membrane properties of cerebellar Purkinje neurons of offspring by altering the membrane excitability through modulation of intrinsic ion channels.
Collapse
Affiliation(s)
- M Shabani
- Neuroscience Research Centre and Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Islamic Republic of Iran
| | | | | | | | | |
Collapse
|
13
|
Schneider M. Cannabis use in pregnancy and early life and its consequences: animal models. Eur Arch Psychiatry Clin Neurosci 2009; 259:383-93. [PMID: 19572160 DOI: 10.1007/s00406-009-0026-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/05/2009] [Indexed: 01/08/2023]
Abstract
Cannabinoid receptors and their endogenous ligands have been detected from the earliest stages of embryonic development. The endocannabinoid system appears to play essential roles in these early stages for neuronal development and cell survival, although its detailed involvement in fundamental developmental processes such as proliferation, migration and differentiation has not yet been completely understood. Therefore, it is not surprising that manipulations of the endocannabinoid system by cannabinoid exposure during early developmental stages can result in long-lasting neurobehavioural consequences. The present review will summarize the possible residual behavioural effects of cannabinoid administration during pre- and perinatal as well as early postnatal development, derived from animal studies.
Collapse
Affiliation(s)
- Miriam Schneider
- Department of Psychopharmacology, Central Institute of Mental Health (ZI), J5, 68159 Mannheim, Germany.
| |
Collapse
|
14
|
Cha YM, Jones KH, Kuhn CM, Wilson WA, Swartzwelder HS. Sex differences in the effects of delta9-tetrahydrocannabinol on spatial learning in adolescent and adult rats. Behav Pharmacol 2007; 18:563-9. [PMID: 17762524 DOI: 10.1097/fbp.0b013e3282ee7b7e] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Like other recreational drugs, cannabinoids may produce different effects in men and women. In this study we measured the effects of delta9-tetrahydrocannabinol (THC) on spatial learning in two groups that are underrepresented in drug research--females and adolescents. In the first experiment, adolescent (postnatal day 30) and adult (postnatal day 70) rats of both sexes were treated subchronically with 5.0 mg/kg THC or vehicle for five consecutive days. Thirty minutes after each daily injection, they were tested on the spatial version of the Morris water maze task. In the second experiment, a separate group of adolescent and adult rats of both sexes was treated with 5.0 mg/kg THC or vehicle daily for 21 days and tested, 4 weeks later, on the spatial version of the water maze. Subchronic THC impaired spatial learning, and this effect was dependent upon both the age and sex of the animals tested. Prior exposure to chronic THC, however, did not cause any long-lasting spatial learning deficits. On the basis of our previous studies in male rats the third experiment assessed the dose-response relationship for the effects of THC on spatial learning and memory in female animals. We found that subchronic THC treatment (2.5, 5.0, or 10.0 mg/kg, intraperitoneally) disrupted learning in both adolescents and adults, but with greater effects at higher doses in adolescents compared with adults. The developmental sensitivity to subchronic THC confirms previous work carried out in our laboratory, and the sex-dependent effects highlight the importance of including females in drug abuse and addiction research.
Collapse
Affiliation(s)
- Young May Cha
- Department of Psychiatry, Duke University Medical Center, Durham, North Carolina, USA
| | | | | | | | | |
Collapse
|
15
|
Lamota L, Bermudez-Silva FJ, Marco EM, Llorente R, Gallego A, Rodríguez de Fonseca F, Viveros MP. Effects of adolescent nicotine and SR 147778 (Surinabant) administration on food intake, somatic growth and metabolic parameters in rats. Neuropharmacology 2007; 54:194-205. [PMID: 17720206 DOI: 10.1016/j.neuropharm.2007.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 07/11/2007] [Accepted: 07/11/2007] [Indexed: 11/22/2022]
Abstract
Tobacco smoking and obesity are worldwide important health problems with a growing impact in adolescent and young adults. One of the consequences of nicotine withdrawal is an increase in body weight that can act as a risk factor to relapse. Experimental therapies with a cannabinoid receptor antagonist have been recently proposed for both cigarette smoking and complicated overweight. In the present study, we aimed to investigate metabolic and hormonal effects of chronic nicotine treatment (during treatment and in abstinence) in an animal model of adolescence as well as to address the pharmacological effects of the novel selective CB1 cannabinoid receptor antagonist, SR 147778 (Surinabant). Adolescence (postnatal days 37-44) and/or post-adolescence (postnatal days 45-59) administration of Surinabant reduced body weight gain, as well as plasma glucose levels and triglycerides. The drug also reduced insulin and leptin secretion, and increased adiponectin and corticosterone levels. The effects showed sexual dimorphisms and, in general, were more pronounced in females. Chronic exposure to nicotine (0.8 mg/kg), from postnatal days 30-44 did not result in overt effects on food intake or body weight gain. However, it altered certain responses to the administration of Surinabant, both when the two drugs were given simultaneously and when Surinabant was administered during the post-adolescence period, along nicotine withdrawal. The present results indicate that the endogenous cannabinoid system is active as a metabolic modulator during adolescence and that nicotine exposure can induce long-lasting effects on metabolic regulation, altering cannabinoid modulation of energy expenditure and metabolism.
Collapse
Affiliation(s)
- Laura Lamota
- Departamento de Fisiologia (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Castelli MP, Paola Piras A, D'Agostino A, Pibiri F, Perra S, Gessa GL, Maccarrone M, Pistis M. Dysregulation of the endogenous cannabinoid system in adult rats prenatally treated with the cannabinoid agonist WIN 55,212-2. Eur J Pharmacol 2007; 573:11-9. [PMID: 17644084 DOI: 10.1016/j.ejphar.2007.06.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 06/21/2007] [Accepted: 06/26/2007] [Indexed: 12/20/2022]
Abstract
Cannabis is widely abused by women at reproductive age and during pregnancy. Animal studies showed a particular vulnerability of the developing brain to prenatal chronic cannabinoid administration. We determined whether prenatal exposure to WIN 55,212-2, a potent cannabinoid receptor agonist, affected (1) density, affinity and/or function of cannabinoid CB(1) receptors, (2) endogenous levels of the endocannabinoid anandamide, (3) activities of the major anandamide synthesising and hydrolysing enzymes, N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH), respectively, in brain areas of adult male offspring rats. Furthermore, the effect of prenatal WIN 55,212-2 on spontaneous motility was analyzed. Pregnant rats were treated daily with WIN 55,212-2 (0.5 mg/kg, gestation day 5-20) or vehicle. [(3)H]CP 55,940 and WIN 55,212-2-stimulated [(35)S] GTPgammaS binding were carried out in cerebellum, cerebral cortex, hippocampus, striatum and limbic areas of male adult offspring. Levels of anandamide, FAAH and NAPE-PLD activity were also determined. EC(50) values for WIN 55,212-2-stimulated [(35)S]GTPgammaS binding were significantly different in hippocampus (-26%) and striatum (+27%) in WIN 55,212-2-treated rats. Cannabinoid CB(1) receptor density and affinity were not affected in any analyzed region. In the striatum, increased anandamide levels were associated with reduced FAAH and enhanced NAPE-PLD activities. Opposite changes in anandamide levels and enzymatic activities were detected in limbic areas of WIN 55,212-2-treated rats. Ambulatory activity between WIN 55,212-2- and vehicle-treated adult offspring did not vary. Our results show that prenatal exposure to cannabinoid agonist induces a long-term alteration of endocannabinoid system in brain areas involved in learning-memory, motor activity and emotional behavior.
Collapse
Affiliation(s)
- M Paola Castelli
- Bernard B. Brodie Department of Neuroscience, University of Cagliari, 09042 Monserrato, Italy.
| | | | | | | | | | | | | | | |
Collapse
|