1
|
Ouyang S, Peng X, Huang W, Bai J, Wang H, Jin Y, Jiao H, Wei M, Ge X, Song F, Qu Y. Association among biomarkers, phenotypes, and motor milestones in Chinese patients with 5q spinal muscular atrophy types 1-3. Front Neurol 2024; 15:1382410. [PMID: 39286802 PMCID: PMC11404040 DOI: 10.3389/fneur.2024.1382410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
Background Biomarkers can be used to assess the severity of spinal muscular atrophy (5q SMA; SMA). Despite their potential, the relationship between biomarkers and clinical outcomes in SMA remains underexplored. This study aimed to assess the association among biomarkers, phenotypes, and motor milestones in Chinese patients diagnosed with SMA. Methods We collected retrospective clinical and follow-up data of disease-modifying therapy (DMT)-naïve patients with SMA at our center from 2019 to 2021. Four biomarkers were included: survival motor neuron 2 (SMN2) copies, neuronal apoptosis inhibitory protein (NAIP) copies, full-length SMN2 (fl-SMN2), and F-actin bundling protein plastin 3 (PLS3) transcript levels. Data were analyzed and stratified according to SMA subtype. Results Of the 123 patients, 30 were diagnosed with Type 1 (24.3%), 56 with Type 2 (45.5%), and 37 with Type 3 (30.1%). The mortality rate for Type 1 was 50%, with median survival times of 2 and 8 months for types 1a and 1b, respectively. All four biomarkers were correlated with disease severity. Notably, fl-SMN2 transcript levels increased with SMN2 copies and were higher in Type 2b than those in Type 2a (p = 0.028). Motor milestone deterioration was correlated with SMN2 copies, NAIP copies, and fl-SMN2 levels, while PLS3 levels were correlated with standing and walking function. Discussion Our findings suggest that SMN2 copies contribute to survival and that fl-SMN2 may serve as a valuable biomarker for phenotypic variability in SMA Type 2 subtypes. These insights can guide future research and clinical management of SMA.
Collapse
Affiliation(s)
- Shijia Ouyang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Xiaoyin Peng
- Department of Neurology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Wenchen Huang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Jinli Bai
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hong Wang
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Yuwei Jin
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Hui Jiao
- Department of Neurology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Maoti Wei
- Center of Clinical Epidemiology, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Xiushan Ge
- Department of Neurology, Children's Hospital Affiliated to Capital Institute Pediatrics, Beijing, China
| | - Fang Song
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| | - Yujin Qu
- Department of Medical Genetics, Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
2
|
Smeriglio P, Langard P, Querin G, Biferi MG. The Identification of Novel Biomarkers Is Required to Improve Adult SMA Patient Stratification, Diagnosis and Treatment. J Pers Med 2020; 10:jpm10030075. [PMID: 32751151 PMCID: PMC7564782 DOI: 10.3390/jpm10030075] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal muscular atrophy (SMA) is currently classified into five different subtypes, from the most severe (type 0) to the mildest (type 4) depending on age at onset, best motor function achieved, and copy number of the SMN2 gene. The two recent approved treatments for SMA patients revolutionized their life quality and perspectives. However, upon treatment with Nusinersen, the most widely administered therapy up to date, a high degree of variability in therapeutic response was observed in adult SMA patients. These data, together with the lack of natural history information and the wide spectrum of disease phenotypes, suggest that further efforts are needed to develop precision medicine approaches for all SMA patients. Here, we compile the current methods for functional evaluation of adult SMA patients treated with Nusinersen. We also present an overview of the known molecular changes underpinning disease heterogeneity. We finally highlight the need for novel techniques, i.e., -omics approaches, to capture phenotypic differences and to understand the biological signature in order to revise the disease classification and device personalized treatments.
Collapse
Affiliation(s)
- Piera Smeriglio
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Correspondence: (P.S.); (M.G.B.)
| | - Paul Langard
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
| | - Giorgia Querin
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Association Institut de Myologie, Plateforme Essais Cliniques Adultes, 75013 Paris, France
- APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Maria Grazia Biferi
- Centre of Research in Myology, Institute of Myology, Sorbonne Université, INSERM, 75013 Paris, France; (P.L.); (G.Q.)
- Correspondence: (P.S.); (M.G.B.)
| |
Collapse
|
3
|
Hassan HA, Zaki MS, Issa MY, El-Bagoury NM, Essawi ML. Genetic pattern of SMN1, SMN2, and NAIP genes in prognosis of SMA patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2020. [DOI: 10.1186/s43042-019-0044-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Spinal muscular atrophy (SMA) is the most common autosomal recessive disorder in humans after cystic fibrosis. It is classified into five clinical grades based on age of onset and severity of the disease. Although SMN1 was identified as the SMA disease-determining gene, modifier genes mapped to 5q13 were affirmed to play a crucial role in determination of disease severity and used as a target for SMA therapy. In this study, we determined SMN2 copy number and NAIP deletion status in SMA Egyptian patients with different clinical phenotypes and had homozygous deletion of SMN1. We aimed at finding a prognostic genetic pattern including SMN1, SMN2, and NAIP gene genotypes to determine the clinical SMA type of the patient to help in genetic counseling and prenatal diagnosis.
Results
Copy number variations (CNVs) of exon 7 of SMN2 gene were significantly decreased with the increase in disease severity. Homozygous deletion of exon 5 of NAIP was detected in 60% (12/20) of type I SMA and in 73% (8/11) of type III SMA cases. Combining the data of the SMN2 and NAIP genes showed 8 genotypes. Patients with D2 genotype (0 copies of NAIP and 2 copies of SMN2) were likely to have type I SMA. Type II SMA patients mostly had no homozygous deletion of NAIP and 2 copies of SMN2. However, patients with N3 genotype (> 1 copy of NAIP and 3 copies of SMN2) and patients with D3 genotype (0 copies of NAIP and > 3 copies of SMN2) had type III SMA.
Conclusion
SMN2 and NAIP are the most important modifier genes whose copy numbers can affect the severity of SMA. We concluded that the combination of modifier genes to provide prognostic genetic pattern for phenotype determination is preferable than using CNVs of exon 7 of SMN2 gene only. CNVs of exon 7 of SMN2 are of high importance to predict patients’ response to genetic therapy. On the other hand, deletion of exon5 of NAIP gene alone is not a sufficient predictor of SMA severity.
Collapse
|
4
|
Lunn M, Hanna M, Howard R, Parton M, Rahman S, Reilly M, Sidle K, Turner C. Nerve and Muscle Disease. Neurology 2016. [DOI: 10.1002/9781118486160.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
| | | | | | | | | | | | - Katie Sidle
- National Hospital for Neurology & Neurosurgery
| | | |
Collapse
|
5
|
Nölle A, Zeug A, van Bergeijk J, Tönges L, Gerhard R, Brinkmann H, Al Rayes S, Hensel N, Schill Y, Apkhazava D, Jablonka S, O'mer J, Srivastav RK, Baasner A, Lingor P, Wirth B, Ponimaskin E, Niedenthal R, Grothe C, Claus P. The spinal muscular atrophy disease protein SMN is linked to the Rho-kinase pathway via profilin. Hum Mol Genet 2011; 20:4865-78. [PMID: 21920940 DOI: 10.1093/hmg/ddr425] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Spinal muscular atrophy (SMA), a frequent neurodegenerative disease, is caused by reduced levels of functional survival of motoneuron (SMN) protein. SMN is involved in multiple pathways, including RNA metabolism and splicing as well as motoneuron development and function. Here we provide evidence for a major contribution of the Rho-kinase (ROCK) pathway in SMA pathogenesis. Using an in vivo protein interaction system based on SUMOylation of proteins, we found that SMN is directly interacting with profilin2a. Profilin2a binds to a stretch of proline residues in SMN, which is heavily impaired by a novel SMN2 missense mutation (S230L) derived from a SMA patient. In different SMA models, we identified differential phosphorylation of the ROCK-downstream targets cofilin, myosin-light chain phosphatase and profilin2a. We suggest that hyper-phosphorylation of profilin2a is the molecular link between SMN and the ROCK pathway repressing neurite outgrowth in neuronal cells. Finally, we found a neuron-specific increase in the F-/G-actin ratio that further support the role of actin dynamics in SMA pathogenesis.
Collapse
Affiliation(s)
- Anna Nölle
- Institute for Neuroanatomy, Hannover Medical School, Hannover 30623, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Survival motor neuron (SMN) protein in the spinal anterior horn cells of patients with sporadic amyotrophic lateral sclerosis. Brain Res 2011; 1372:152-9. [DOI: 10.1016/j.brainres.2010.11.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/18/2010] [Accepted: 11/19/2010] [Indexed: 11/21/2022]
|
7
|
AlSaman A, Tomoum H. Infantile spinal muscular atrophy with respiratory distress type 1: a case report. J Child Neurol 2010; 25:764-9. [PMID: 20197267 DOI: 10.1177/0883073809344121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The condition, currently known as spinal muscular atrophy with respiratory distress type 1, is an unusual variant of spinal muscular atrophy type 1 that is characterized by early respiratory failure due to diaphragmatic paralysis. The defective gene, the immunoglobulin mu-binding protein 2 (IGHMBP2 gene), of this autosomal recessive disorder is located on chromosome 11q13 and encodes immunoglobulin mu-binding protein 2. The natural history and phenotypic spectrum of the disease are still not clear. The authors present the first genetically proven case of spinal muscular atrophy with respiratory distress type 1 to be reported from Saudi Arabia. The parents are first cousins and the causative gene sequencing revealed mutation in exon 7 reported for the first time in a homozygous form. The clinical scenario of the case is discussed. The findings in the muscle magnetic resonance imaging (MRI) are presented.
Collapse
Affiliation(s)
- Abdulaziz AlSaman
- Department of Pediatric Neurology, King Fahad Medical City, Riyadh 11525, Kingdom of Saudi Arabia.
| | | |
Collapse
|
8
|
van Bergeijk J, Rydel-Könecke K, Grothe C, Claus P. The spinal muscular atrophy gene product regulates neurite outgrowth: importance of the C terminus. FASEB J 2007; 21:1492-502. [PMID: 17317728 DOI: 10.1096/fj.06-7136com] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spinal muscular atrophy is a neurodegenerative disease accompanied by a loss of motoneurons. Either mutations or deletions in the survival of motoneuron (SMN) gene are responsible for this defect. SMN is an assembly protein for RNA-protein complexes in the nucleus and is also found in axons of neurons. However, it is unclear which dysfunctions of SMN are important for disease progression. In this study we analyzed the contributions of different SMN regions for localization and neuronal differentiation associated with outgrowth of neurites. Suppression of endogenous SMN protein levels significantly decreased the growth of neurites. Down-regulation of the interacting protein gemin2 had the opposite effect. Surprisingly, selective overexpression of the SMN C-terminal domain promoted neurite outgrowth similar to full-length protein and could rescue the SMN knock-down effects. The knock-down led to a significant change in the G-/F-actin ratio, indicating a role for SMN in actin dynamics. Therefore, our data suggest a functional role for SMN in microfilament metabolism in axons of motoneurons.
Collapse
Affiliation(s)
- Jeroen van Bergeijk
- Department of Neuroanatomy, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | | | | | | |
Collapse
|
9
|
Talbot K, Davies KE. Chapter 7 Spinal muscular atrophies and hereditary motor neuropathies. HANDBOOK OF CLINICAL NEUROLOGY 2007; 82:141-153. [PMID: 18808892 DOI: 10.1016/s0072-9752(07)80010-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Kevin Talbot
- Department of Human Anatomy and Genetics, University of Oxford, UK; Department of Clinical Neurology, University of Oxford, UK
| | | |
Collapse
|
10
|
Corti S, Locatelli F, Papadimitriou D, Donadoni C, Del Bo R, Crimi M, Bordoni A, Fortunato F, Strazzer S, Menozzi G, Salani S, Bresolin N, Comi GP. Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Hum Mol Genet 2005; 15:167-87. [PMID: 16339214 DOI: 10.1093/hmg/ddi446] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is an infantile autosomal-recessive motor neuron disease caused by mutations in the immunoglobulin micro-binding protein 2. We investigated the potential of a spinal cord neural stem cell population isolated on the basis of aldehyde dehydrogenase (ALDH) activity to modify disease progression of nmd mice, an animal model of SMARD1. ALDH(hi)SSC(lo) stem cells are self-renewing and multipotent and when intrathecally transplanted in nmd mice generate motor neurons properly localized in the spinal cord ventral horns. Transplanted nmd animals presented delayed disease progression, sparing of motor neurons and ventral root axons and increased lifespan. To further investigate the molecular events responsible for these differences, microarray and real-time reverse transcription-polymerase chain reaction analyses of wild-type, mutated and transplanted nmd spinal cord were undertaken. We demonstrated a down-regulation of genes involved in excitatory amino acid toxicity and oxidative stress handling, as well as an up-regulation of genes related to the chromatin organization in nmd compared with wild-type mice, suggesting that they may play a role in SMARD1 pathogenesis. Spinal cord of nmd-transplanted mice expressed high transcript levels for genes related to neurogenesis such as doublecortin (DCX), LIS1 and drebrin. The presence of DCX-expressing cells in adult nmd spinal cord suggests that both exogenous and endogenous neurogeneses may contribute to the observed nmd phenotype amelioration.
Collapse
Affiliation(s)
- Stefania Corti
- Dino Ferrari Centre, Department of Neurological Sciences, University of Milan, IRCCS Foundation Ospedale Maggiore Policlinico, Mangiagalli and Regina Elena, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sivakumar K, Kyriakides T, Puls I, Nicholson GA, Funalot B, Antonellis A, Sambuughin N, Christodoulou K, Beggs JL, Zamba-Papanicolaou E, Ionasescu V, Dalakas MC, Green ED, Fischbeck KH, Goldfarb LG. Phenotypic spectrum of disorders associated with glycyl-tRNA synthetase mutations. ACTA ACUST UNITED AC 2005; 128:2304-14. [PMID: 16014653 DOI: 10.1093/brain/awh590] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We describe clinical, electrophysiological, histopathological and molecular features of a unique disease caused by mutations in the glycyl-tRNA synthetase (GARS) gene. Sixty patients from five multigenerational families have been evaluated. The disease is characterized by adolescent onset of weakness, and atrophy of thenar and first dorsal interosseus muscles progressing to involve foot and peroneal muscles in most but not all cases. Mild to moderate sensory deficits develop in a minority of patients. Neurophysiologically confirmed chronic denervation in distal muscles with reduced compound motor action potentials were features consistent with both motor neuronal and axonal pathology. Sural nerve biopsy showed mild to moderate selective loss of small- and medium-sized myelinated and small unmyelinated axons, although sensory nerve action potentials were not significantly decreased. Based on the presence or absence of sensory changes, the disease phenotype was initially defined as distal spinal muscular atrophy type V (dSMA-V) in three families, Charcot-Marie-Tooth disease type 2D (CMT2D) in a single family, and as either dSMA-V or CMT2D in patients of another large family. Linkage to chromosome 7p15 and the presence of disease-associated heterozygous GARS mutations have been identified in patients from each of the five studied families. We conclude that patients with GARS mutations present a clinical continuum of predominantly motor distal neuronopathy/axonopathy with mild to moderate sensory involvement that varies between the families and between members of the same family. Awareness of these overlapping clinical phenotypes associated with mutations in GARS will facilitate identification of this disorder in additional families and direct future research toward better understanding of its pathogenesis.
Collapse
|
12
|
Gringel S, van Bergeijk J, Haastert K, Grothe C, Claus P. Nuclear fibroblast growth factor-2 interacts specifically with splicing factor SF3a66. Biol Chem 2005; 385:1203-8. [PMID: 15653435 DOI: 10.1515/bc.2004.156] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fibroblast growth factor 2 (FGF-2) has a dual role as a classical extracellular signaling protein and as an intracellular factor. Isoforms of FGF-2, resulting from alternatively used start codons on one mRNA species, locate differentially to nuclear compartments. In this study we aimed to analyze functions of intracellular FGF-2 by identification of interacting proteins. We identified the 66-kDa subunit of splicing factor 3a (SF3a66) as a binding partner in a yeast two-hybrid screen and confirmed this interaction by pull-down assays. The splicing factor interacted with the 18-kDa (FGF-2(18)) and with the 23-kDa (FGF-2(23)) isoforms, indicating an interaction with a domain common to both isoforms. Moreover, FGF-2 interacted with the C-terminus of SF3a66, a sequence that has not previously been assigned a functional role. In a functional neurite outgrowth assay, SF3a66 enhanced neurite lengths similar to FGF-2(18). We have previously identified the spliceosomal assembly factor survival of motoneuron (SMN) protein as a protein interacting specifically with the FGF-2(23) isoform [Claus et al., J. Biol. Chem. 278 (2003), 479-485]. The identification of two FGF-2 interacting proteins from the same biochemical pathway suggests a novel intranuclear role of FGF-2.
Collapse
Affiliation(s)
- Susanne Gringel
- Department of Neuroanatomy, Hannover Medical School, D-30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
13
|
Haastert K, Grosskreutz J, Jaeckel M, Laderer C, Bufler J, Grothe C, Claus P. Rat embryonic motoneurons in long-term co-culture with Schwann cells—a system to investigate motoneuron diseases on a cellular level in vitro. J Neurosci Methods 2005; 142:275-84. [PMID: 15698667 DOI: 10.1016/j.jneumeth.2004.09.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 09/08/2004] [Accepted: 09/13/2004] [Indexed: 11/30/2022]
Abstract
Investigations of motoneuron diseases on a cellular and molecular level require long-term cultivation of primary cells. Here we present a new culture system in which matured motoneurons interact with their physiological partners like interneurons, astroglia and peripheral glia cells. This enables motoneuron-maturation for up to 3 weeks, while motoneurons consistently reached large diameters of their somata of 30-45 microm, occasionally more than 80 microm. Dissociated rat embryonic ventral spinal cord cells were enriched for motoneurons by density gradient centrifugation and seeded on a non-confluent mono-layer of highly enriched neonatal rat Schwann cells. Immunocytochemical visualization of neuron specific betaIII-tubulin in all neurons and of motoneuron specific non-phosphorylated neurofilament H/M, respectively, revealed that after 3 days in vitro >70% of all neurons were motoneurons. After 20 days in vitro, a motoneuron fraction of 12% was maintained. Motoneurons were susceptible to transient transfection with green fluorescent protein cDNA when liposomal transfection and an enhancer substance were combined. Synaptic connections enabled formation of spontaneously active neuronal networks which provide a culture model to study glutamate excitotoxicity and calcium deregulation on a molecular level. Both mechanisms are implied in the pathophysiology of amyotrophic lateral sclerosis, a neurodegenerative motoneuron disorder.
Collapse
Affiliation(s)
- Kirsten Haastert
- Department of Neuroanatomy, Center for Systems Neuroscience (ZSN), Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | |
Collapse
|