1
|
Lim SW, Na D, Lee H, Fang X, Cui S, Shin YJ, Lee KI, Lee JY, Yang CW, Chung BH. Modeling of FAN1-Deficient Kidney Disease Using a Human Induced Pluripotent Stem Cell-Derived Kidney Organoid System. Cells 2023; 12:2319. [PMID: 37759541 PMCID: PMC10529520 DOI: 10.3390/cells12182319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/27/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Karyomegalic interstitial nephritis (KIN) is a genetic kidney disease caused by mutations in the FANCD2/FANCI-Associated Nuclease 1 (FAN1) gene on 15q13.3, which results in karyomegaly and fibrosis of kidney cells through the incomplete repair of DNA damage. The aim of this study was to explore the possibility of using a human induced pluripotent stem cell (hiPSC)-derived kidney organoid system for modeling FAN1-deficient kidney disease, also known as KIN. We generated kidney organoids using WTC-11 (wild-type) hiPSCs and FAN1-mutant hiPSCs which include KIN patient-derived hiPSCs and FAN1-edited hiPSCs (WTC-11 FAN1+/-), created using the CRISPR/Cas9 system in WTC-11-hiPSCs. Kidney organoids from each group were treated with 20 nM of mitomycin C (MMC) for 24 or 48 h, and the expression levels of Ki67 and H2A histone family member X (H2A.X) were analyzed to detect DNA damage and assess the viability of cells within the kidney organoids. Both WTC-11-hiPSCs and FAN1-mutant hiPSCs were successfully differentiated into kidney organoids without structural deformities. MMC treatment for 48 h significantly increased the expression of DNA damage markers, while cell viability in both FAN1-mutant kidney organoids was decreased. However, these findings were observed in WTC-11-kidney organoids. These results suggest that FAN1-mutant kidney organoids can recapitulate the phenotype of FAN1-deficient kidney disease.
Collapse
Affiliation(s)
- Sun Woo Lim
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Dohyun Na
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Hanbi Lee
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Xianying Fang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sheng Cui
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoo Jin Shin
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Kang In Lee
- ToolGen, Inc., Seoul 06591, Republic of Korea
| | | | - Chul Woo Yang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Byung Ha Chung
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary’s Hospital, The College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
2
|
SUSPECTED HYPERVITAMINOSIS D IN RED-RUMPED AGOUTI (DASYPROCTA LEPORINA) RECEIVING A COMMERCIAL RODENT DIET. J Zoo Wildl Med 2018. [DOI: 10.1638/2016-0226r2.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
3
|
Lennerz JK, Spence DC, Iskandar SS, Dehner LP, Liapis H. Glomerulocystic kidney: one hundred-year perspective. Arch Pathol Lab Med 2010; 134:583-605. [PMID: 20367310 DOI: 10.5858/134.4.583] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Glomerular cysts, defined as Bowman space dilatation greater than 2 to 3 times normal size, are found in disorders of diverse etiology and with a spectrum of clinical manifestations. The term glomerulocystic kidney (GCK) refers to a kidney with greater than 5% cystic glomeruli. Although usually a disease of the young, GCK also occurs in adults. OBJECTIVE To assess the recent molecular genetics of GCK, review our files, revisit the literature, and perform in silico experiments. DATA SOURCES We retrieved 20 cases from our files and identified more than 230 cases published in the literature under several designations. CONCLUSIONS Although GCK is at least in part a variant of autosomal dominant or recessive polycystic kidney disease (PKD), linkage analysis has excluded PKD-associated gene mutations in many cases of GCK. A subtype of familial GCK, presenting with cystic kidneys, hyperuricemia, and isosthenuria is due to uromodullin mutations. In addition, the familial hypoplastic variant of GCK that is associated with diabetes is caused by mutations in TCF2, the gene encoding hepatocyte nuclear factor-1beta. The term GCK disease (GCKD) should be reserved for the latter molecularly recognized/inherited subtypes of GCK (not to include PKD). Review of our cases, the literature, and our in silico analysis of the overlapping genetic entities integrates established molecular-genetic functions into a proposed model of glomerulocystogenesis; a classification scheme emerged that (1) emphasizes the clinical significance of glomerular cysts, (2) provides a pertinent differential diagnosis, and (3) suggests screening for probable mutations.
Collapse
Affiliation(s)
- Jochen K Lennerz
- Department of Pathology and Immunology, Washington University, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
4
|
Annexin A5 interacts with polycystin-1 and interferes with the polycystin-1 stimulated recruitment of E-cadherin into adherens junctions. J Mol Biol 2007; 369:954-66. [PMID: 17451746 DOI: 10.1016/j.jmb.2007.03.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 03/21/2007] [Accepted: 03/27/2007] [Indexed: 10/23/2022]
Abstract
Polycystin-1 is the gene product of PKD1, the first gene identified to be causative for the condition of autosomal dominant polycystic kidney disease (ADPKD). Mutations in PKD1 are responsible for the majority of ADPKD cases worldwide. Polycystin-1 is a protein of the transient receptor potential channels superfamily, with 11 transmembrane spans and an extracellular N-terminal region of approximately 3109 amino acid residues, harboring multiple putative ligand binding domains. We demonstrate here that annexin A5 (ANXA5), a Ca(2+) and phospholipid binding protein, interacts with the N-terminal leucine-rich repeats of polycystin-1, in vitro and in a cell culture model. This interaction is direct and specific and involves a conserved sequence of the ANXA5 N-terminal domain. Using Madin-Darby canine kidney cells expressing polycystin-1 in an inducible manner we also show that polycystin-1 colocalizes with E-cadherin at cell-cell contacts and accelerates the recruitment of intracellular E-cadherin to reforming junctions. This polycystin-1 stimulated recruitment is significantly delayed by extracellular annexin A5.
Collapse
|
5
|
Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev 2007; 87:165-217. [PMID: 17237345 DOI: 10.1152/physrev.00021.2006] [Citation(s) in RCA: 1056] [Impact Index Per Article: 58.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The transient receptor potential (TRP) superfamily consists of a large number of cation channels that are mostly permeable to both monovalent and divalent cations. The 28 mammalian TRP channels can be subdivided into six main subfamilies: the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and the TRPA (ankyrin) groups. TRP channels are expressed in almost every tissue and cell type and play an important role in the regulation of various cell functions. Currently, significant scientific effort is being devoted to understanding the physiology of TRP channels and their relationship to human diseases. At this point, only a few channelopathies in which defects in TRP genes are the direct cause of cellular dysfunction have been identified. In addition, mapping of TRP genes to susceptible chromosome regions (e.g., translocations, breakpoint intervals, increased frequency of polymorphisms) has been considered suggestive of the involvement of these channels in hereditary diseases. Moreover, strong indications of the involvement of TRP channels in several diseases come from correlations between levels of channel expression and disease symptoms. Finally, TRP channels are involved in some systemic diseases due to their role as targets for irritants, inflammation products, and xenobiotic toxins. The analysis of transgenic models allows further extrapolations of TRP channel deficiency to human physiology and disease. In this review, we provide an overview of the impact of TRP channels on the pathogenesis of several diseases and identify several TRPs for which a causal pathogenic role might be anticipated.
Collapse
Affiliation(s)
- Bernd Nilius
- Department of Physiology, Campus Gasthuisberg, KULeuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
6
|
Wang W, Mei C, Tang B, Zhao H, Xu C, Li Z, Shen X, Fu W, Dai B. Aberrant expression of SPARC and its impact on proliferation and apoptosis in ADPKD cyst-lining epithelia. Nephrol Dial Transplant 2006; 21:1278-88. [PMID: 16421164 DOI: 10.1093/ndt/gfk036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) results from a combination of environmental and genetic factors. Secreted protein acidic and rich in cysteine (SPARC) can be expressed by many different cell types and is associated with development, remodelling, cell turnover and tissue repair. The analysis of SPARC would help evaluate the effect of the unique matricellular glycoprotein on renal disease progression in ADPKD. METHODS The concentration of SPARC was measured with an enzyme-linked immunosorbent assay (ELISA); distribution and expression levels were measured with in situ hybridization, immunohistochemistry, reverse transcription-polymerase chain reaction (RT-PCR) and western blot assays. Apoptosis was assessed by morphological observation and fluorescence-activated cell sorting (FACS) apoptosis index (AI) analysis. Cell cycle phase was examined by FACS analysis. Cell proliferation was studied using bromodeoxyuridine (BrdU) incorporation ELISA. RESULTS The SPARC level in the renal cyst fluid of patients with ADPKD was greater than that in patients with simple renal cyst (SRC), and also greater than that found in the plasma and urine of patients with either ADPKD or SRC and normal subjects. SPARC mRNA and protein levels in polycystic renal tissue were greater than that in normal renal tissue. Additionally, SPARC could inhibit cyst-lining epithelial cell proliferation, bring about cell cycle arrest in the G0/G1 phase and induce apoptosis in vitro. SPARC treatment resulted in decreased mRNA levels of PCNA (proliferating cell nuclear antigen), MCM2 (minichromosome maintenance protein 2), ClnD1 and Bcl-2, but an increased mRNA level of p21(Waf1) in cyst-lining epithelial cells. CONCLUSION Our findings suggest that the increased SPARC expression in ADPKD renal tissue may provide negative feedback in ADPKD patients.
Collapse
Affiliation(s)
- Wenjing Wang
- Division of Nephrology, Center of Kidney Disease, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai 200003, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
This review aims to assist in the categorization of inherited, developmental, and acquired cystic disease of the kidney as well as to provide a pertinent, up-to-date bibliography. The conditions included are autosomal-dominant polycystic kidney disease, autosomal-recessive polycystic kidney disease, unilateral renal cystic disease (localized cystic disease), renal simple cysts, multicystic dysplastic kidney, pluricystic kidney of the multiple malformation syndromes, juvenile nephronophthisis and medullary cystic disease, medullary sponge kidney, primary glomerulocystic kidney disease, and glomerulocystic kidney associated with several systemic disorders mainly of genetic or chromosomal etiology, cystic kidney in tuberous sclerosis, and in von Hippel-Lindau syndrome, cystic nephroma, cystic variant of congenital mesoblastic nephroma, mixed epithelial stromal tumor of the kidney, renal lymphangioma, pyelocalyceal cyst, peripylic cyst and perinephric pseudocyst, acquired renal cystic disease of long-term dialysis, and cystic renal cell carcinoma and sarcoma. Whereas the gross and histologic appearance of some of these conditions may be diagnostic, clinical and sometimes molecular studies may be necessary to define other types.
Collapse
Affiliation(s)
- Michele Bisceglia
- Division of Anatomic Pathology, IRCCS Casa Sollievo della Sofferenza Hospital, I-71013 San Giovanni Rotondo (FG), Italy.
| | | | | | | | | |
Collapse
|
8
|
Hackmann K, Markoff A, Qian F, Bogdanova N, Germino GG, Pennekamp P, Dworniczak B, Horst J, Gerke V. A splice form of polycystin-2, lacking exon 7, does not interact with polycystin-1. Hum Mol Genet 2005; 14:3249-62. [PMID: 16192288 DOI: 10.1093/hmg/ddi356] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polycystin-2 (or polycystic kidney disease gene 2 product, PKD2) and its homologues are calcium-regulated ion channels. Mutations in PKD2 are causative for autosomal dominant polycystic kidney disease. Alternative splicing has been documented for the 'PKD2-like' genes as a naturally occurring event and for PKD2 in pathologic context. Here we studied naturally occurring PKD2/Pkd2 (human/murine) splice forms on the mRNA and protein levels. Systematic scanning of PKD2/Pkd2 cDNAs obtained through RT-PCR from murine tissues and human cell lines revealed alternative splice forms that were sequenced and checked for translation. We identified three major alternative transcripts of PKD2/Pkd2, PKD2/Pkd2Delta6, PKD2/Pkd2Delta7 and PKD2/Pkd2Delta9, and one minor splice form, PKD2/Pkd2Delta12-13, numbered according to deleted exons or parts thereof. A transcript lacking exon 7 (PKD2/Pkd2Delta7) generated significantly altered protein variant. This polycystin-2Delta7 protein appeared stable, when expressed in cell culture and apparently did not interact with polycyctin-1, which should be due to the reversed topology (extracellular) of the interacting C-terminus (intracellular in polycystin-2). Pkd2Delta7 transcript was predominantly expressed in brain and amounted to 3-6.4% of Pkd2 transcripts in the relevant organ. Moreover, both Pkd2 and Pkd2Delta7 were developmentally regulated. Polycystin-2Delta7 adds on to the number of identified polycystin molecules. The predominant expression in brain indicates a function in this organ. The inability to interact with polycystin-1 expands further the PKD1-independent functions of polycystin-2 forms.
Collapse
Affiliation(s)
- Karl Hackmann
- Institut für Humangenetik, Universitätsklinikum Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a serious, life-threatening genetic disease in which extensive epithelial-lined cysts develop in the kidneys and, to a lesser extent, in other organs such as liver, pancreas, and ovaries. In a majority of cases (80-85%), the gene involved is PKD1, which is located on chromosome 16 (16q13.3) and encodes polycystin-1, a large receptor-like integral membrane protein that contains several extracellular motifs indicative of cell-cell and cell-matrix interaction. In the remaining (10-15%) cases, the disease is milder and is caused by mutational changes in another gene (PKD2), which is located at chromosome 4 (4q21-23) and encodes polcystin-2, a transmembrane protein, which acts as a nonspecific calcium-permeable channel. Both polycystins function together in a nonredundant fashion, through a common pathway, and produce cellular responses that regulate proliferation, migration, differentiation, and kidney morphogenesis. Through combined function of polycystins, normal tubular cells are maintained in a state of terminal differentiation, and their proliferation is strictly controlled. Loss of function of either protein due to gene mutations results in the tubular cells reverting to a less differentiated state, which is more prone to proliferation. Patients with ADPKD carry a germ-line mutation in PKD1 or PKD2. A second somatic mutation in some of the tubular cells results in loss of both normal alleles, leading to loss of polycystin function. The affected cells lose the normal terminally differentiated state, revert to less differentiated phenotype, and undergo proliferation, which leads to cyst formation. As the cysts enlarge over many decades, the normal renal parenchyma is progressively destroyed, leading to renal failure. Recently, the crucial role of primary cilia in modulating proliferation, migration, and differentiation of tubular epithelium has been recognized. Most of the tubular cells have one or two primary cilia projecting from the apical surface into the luminal space. The cilia act as mechanoreceptors as they bend with the urinary flow within the tubules. Both polycystins are strategically located within the cilia and act as important mediators of ciliary mechanosensation. Loss of this important function due to mutational changes in PKD1 or PKD2 leads to loss of normal control over cellular proliferation, resulting in cyst formation. Several other ciliary proteins have recently been found to contribute directly to a wide spectrum of human kidney diseases with cystic phenotype, thus underscoring the pivotal role the primary cilia play in maintaining the normal structure and function of the tubular cells and probably other cells in the body.
Collapse
Affiliation(s)
- Lulu Al-Bhalal
- Department of Pathology and Laboratory Medicine, King Khalid University Hospital, Riyadh, Saudi Arabia
| | | |
Collapse
|
10
|
Zhang S, Mei C, Zhang D, Dai B, Tang B, Sun T, Zhao H, Zhou Y, Li L, Wu Y, Wang W, Shen X, Song J. Mutation analysis of autosomal dominant polycystic kidney disease genes in Han Chinese. Nephron Clin Pract 2005; 100:e63-76. [PMID: 15775720 DOI: 10.1159/000084572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2004] [Accepted: 09/03/2004] [Indexed: 01/27/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in two genes, PKD1 and PKD2. The complexity of these genes, particularly PKD1, has complicated genetic screening, though recent advances have provided new opportunities for amplifying these genes. In the Han Chinese population, no complete mutational analysis has previously been conducted across the entire span of PKD1 and PKD2. Here, we used single-strand conformation polymorphism (SSCP) analysis to screen the entire coding sequence of PKD1 and PKD2 in 85 healthy controls and 72 Han Chinese from 24 ADPKD pedigrees. In addition to 11 normal variants, we identified 17 mutations (12 in PKD1 and 5 in PKD2), 15 of which were novel ones (11 for PKD1 and 4 for PKD2). We did not identify any seeming mutational hot spots in PKD1 and PKD2. Notably, we found several disease-associated C-T or G-A mutations that led to charge or hydrophobicity changes in the corresponding amino acids. This suggests that the mutations cause conformational alterations in the PKD1 and PKD2 protein products that may impact the normal protein functions. Our study is the first report of screenable mutations in the full-length PKD1 and PKD2 genes of the Han Chinese, and also offers a benchmark for comparisons between Caucasian and Han ADPKD pedigrees and patients.
Collapse
Affiliation(s)
- Shuzhong Zhang
- Division of Nephrology, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lee JE, Park MH, Park JH. The Gene Expression Profile of Cyst Epithelial Cells in Autosomal Dominant Polycystic Kidney Disease Patients. BMB Rep 2004; 37:612-7. [PMID: 15479626 DOI: 10.5483/bmbrep.2004.37.5.612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic disorder characterized by the formation of fluid-filled cysts in the kidney and progressive renal failure. Other manifestations of ADPKD include the formation of cysts in other organs (liver, pancreas, and spleen), hypertension, cardiac defects, and cerebral aneurysms. The loss of function of the polycystin -1 and -2 results in the formation of epithelium-lined cysts, a process that depends on initial epithelial proliferation. cDNA microarrays powerfully monitor gene expression and have led to the discoveries of pathways regulating complex biological processes. We undertook to profile the gene expression patterns of epithelial cells derived from the cysts of ADPKD patients using the cDNA microarray technique. Candidate genes that were differently expressed in cyst tissues were identified. 19 genes were up-regulated, and 6 down-regulated. Semi-quantitative RT-PCR results were consistent with the microarray findings. To distinguish between normal and epithelial cells, we used the hierarchical method. The results obtained may provide a molecular basis for understanding the biological meaning of cytogenesis.
Collapse
Affiliation(s)
- Jae Eun Lee
- Department of Biological Science, Sookmyung Womens University, Seoul 140-742, Korea
| | | | | |
Collapse
|
12
|
Maurer KJ, Marini RP, Fox JG, Rogers AB. Polycystic kidney syndrome in New Zealand White rabbits resembling human polycystic kidney disease. Kidney Int 2004; 65:482-9. [PMID: 14717918 DOI: 10.1111/j.1523-1755.2004.00401.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cystic kidney diseases are an important cause of morbidity and mortality in humans. Small animal models are needed to more fully explore the complex expression patterns and pathobiology of this group of heritable diseases. METHODS We performed a 15-year retrospective analysis of cases in our laboratory animal diagnostic archives to determine the prevalence of cystic kidney disease in New Zealand White rabbits. RESULTS Out of 203 records with documented renal histopathology, we identified and defined 7 cases of polycystic kidney syndrome (PKS) by 3 morphologic criteria: (1) cysts or microcysts derived from tubules, glomeruli, or both; (2) loose mesenchymal expansion of cortical and/or medullary interstitium; and (3) irregular thickening, thinning, and splitting of basement membranes. PKS was associated with hypercalcemia and hypercreatinemia (P < 0.01), and arterial mineralization resembling Mönckeberg's medial calcific sclerosis. In the liver, mild chronic cholangitis with cholangiodysplasia and fibrosis was common. Anorexia and lethargy were the clinical signs most often reported. CONCLUSION Clinicopathologic characterization of PKS in New Zealand White rabbits revealed similarities to both autosomal-dominant and autosomal-recessive polycystic kidney diseases of humans. Awareness of polycystic kidney syndrome in New Zealand White rabbits will allow investigators to avoid using affected animals in unrelated renal research. Prospective studies are needed to define the underlying cause(s) of polycystic kidney syndrome in New Zealand White rabbits, which may be an important new small animal model of human cystic kidney diseases.
Collapse
Affiliation(s)
- Kirk J Maurer
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | |
Collapse
|
13
|
Yu H, Pretot RF, Burglin TR, Sternberg PW. Distinct roles of transcription factors EGL-46 and DAF-19 in specifying the functionality of a polycystin-expressing sensory neuron necessary for C. elegans male vulva location behavior. Development 2003; 130:5217-27. [PMID: 12954713 DOI: 10.1242/dev.00678] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Caenorhabditis elegans polycystins LOV-1 and PKD-2 are expressed in the male-specific HOB neuron, and are necessary for sensation of the hermaphrodite vulva during mating. We demonstrate that male vulva location behavior and expression of lov-1 and pkd-2 in the ciliated sensory neuron HOB require the activities of transcription factor EGL-46 and to some extent also EGL-44. This EGL-46- regulated program is specific to HOB and is distinct from a general ciliogenic pathway functioning in all ciliated neurons. The ciliogenic pathway regulator DAF-19 affects downstream components of the HOB-specific program indirectly and is independent of EGL-46 activity. The sensory function of HOB requires the combined action of these two distinct regulatory pathways.
Collapse
Affiliation(s)
- Hui Yu
- HHMI and Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | |
Collapse
|
14
|
Smyth BJ, Snyder RW, Balkovetz DF, Lipschutz JH. Recent advances in the cell biology of polycystic kidney disease. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 231:51-89. [PMID: 14713003 DOI: 10.1016/s0074-7696(03)31002-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a significant familial disorder, crossing multiple ethnicities as well as organ systems. The goal of understanding and, ultimately, curing ADPKD has fostered collaborative efforts among many laboratories, mustered on by the opportunity to probe fundamental cellular biology. Here we review what is known about ADPKD including well-accepted data such as the identification of the causative genes and the fact that PKD1 and PKD2 act in the same pathway, fairly well-accepted concepts such as the "two-hit hypothesis," and somewhat confusing information regarding polycystin-1 and -2 localization and protein interactions. Special attention is paid to the recently discovered role of the cilium in polycystic kidney disease and the model it suggests. Studying ADPKD is important, not only as an evaluation of a multisystem disorder that spans a lifetime, but as a testament to the achievements of modern biology and medicine.
Collapse
Affiliation(s)
- Brendan J Smyth
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW During the past 2 years growing evidence has emerged that polycystins (polycystin-1 and polycystin-2) are ion channels or regulators of ion channels. This suggests that autosomal-dominant polycystic kidney disease (ADPKD), which arises from mutations in polycystins, is a form of ion-channel disease (channelopathy). The present review addresses the properties and the mode of action of polycystin channels; it also discusses how polycystin channel signaling may be involved in cyst formation in ADPKD. RECENT FINDINGS The precise functions of polycystin-1 and polycystin-2 are unclear. However, recent work has revealed that polycystin-1 may induce or modulate ion channels, including polycystin-2 channels, and that polycystin-2 functions as a calcium-regulated, calcium-permeable cation channel on the endoplasmic reticulum or on the plasma membrane with polycystin-1. These data suggest that ion-channel signaling mediated by polycystins is important for tubule formation in kidney and that disrupted signaling results in cyst formation. SUMMARY ADPKD is a systemic hereditary disease that is characterized by renal and hepatic cysts, and results in end-stage renal failure in 50% of affected individuals. Most cases (>95%) are caused by genetic mutations in either the PKD1 or the PKD2 gene, or both, which encode polycystin-1 and polycystin-2, respectively. The present review provides a hint of how malfunction of polycystins may give rise to cysts, based on recent observations concerning polycystin channels. Polycystin channel signaling may prove to be an important new target for therapy of ADPKD.
Collapse
Affiliation(s)
- Masahiro Ikeda
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | |
Collapse
|