1
|
Abrey Recalde MJ, Alvarez RS, Alberto F, Mejias MP, Ramos MV, Fernandez Brando RJ, Bruballa AC, Exeni RA, Alconcher L, Ibarra CA, Amaral MM, Palermo MS. Soluble CD40 Ligand and Oxidative Response Are Reciprocally Stimulated during Shiga Toxin-Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2017; 9:toxins9110331. [PMID: 29068360 PMCID: PMC5705951 DOI: 10.3390/toxins9110331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/29/2017] [Accepted: 10/15/2017] [Indexed: 01/01/2023] Open
Abstract
Shiga toxin (Stx), produced by Escherichia coli, is the main pathogenic factor of diarrhea-associated hemolytic uremic syndrome (HUS), which is characterized by the obstruction of renal microvasculature by platelet-fibrin thrombi. It is well known that the oxidative imbalance generated by Stx induces platelet activation, contributing to thrombus formation. Moreover, activated platelets release soluble CD40 ligand (sCD40L), which in turn contributes to oxidative imbalance, triggering the release of reactive oxidative species (ROS) on various cellular types. The aim of this work was to determine if the interaction between the oxidative response and platelet-derived sCD40L, as consequence of Stx-induced endothelium damage, participates in the pathogenic mechanism during HUS. Activated human glomerular endothelial cells (HGEC) by Stx2 induced platelets to adhere to them. Although platelet adhesion did not contribute to endothelial damage, high levels of sCD40L were released to the medium. The release of sCD40L by activated platelets was inhibited by antioxidant treatment. Furthermore, we found increased levels of sCD40L in plasma from HUS patients, which were also able to trigger the respiratory burst in monocytes in a sCD40L-dependent manner. Thus, we concluded that platelet-derived sCD40L and the oxidative response are reciprocally stimulated during Stx2-associated HUS. This process may contribute to the evolution of glomerular occlusion and the microangiopathic lesions.
Collapse
Affiliation(s)
- Maria J Abrey Recalde
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, 1425 Buenos Aires, Argentina.
| | - Romina S Alvarez
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica "Bernardo Houssay", Facultad de Medicina-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina.
| | - Fabiana Alberto
- División Trombosis, Instituto de investigaciones Hematológicas "Mariano R. Castex", Academia Nacional de Medicina, 1425 Buenos Aires, Argentina.
| | - Maria P Mejias
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, 1425 Buenos Aires, Argentina.
| | - Maria V Ramos
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, 1425 Buenos Aires, Argentina.
| | - Romina J Fernandez Brando
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, 1425 Buenos Aires, Argentina.
| | - Andrea C Bruballa
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, 1425 Buenos Aires, Argentina.
| | - Ramon A Exeni
- Departamento de Nefrología, Hospital Municipal del Niño, San Justo, B1754FUD Provincia de Buenos Aires, Argentina.
| | - Laura Alconcher
- Unidad de Nefrourología Infantil. Hospital Interzonal General Dr. José Penna, Bahía Blanca, 8000 Provincia de Buenos Aires, Argentina.
| | - Cristina A Ibarra
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica "Bernardo Houssay", Facultad de Medicina-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina.
| | - María M Amaral
- Laboratorio de Fisiopatogenia, Departamento de Fisiología, Instituto de Fisiología y Biofísica "Bernardo Houssay", Facultad de Medicina-Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina.
| | - Marina S Palermo
- Laboratorio de Patogénesis e Inmunología de Procesos Infecciosos, Instituto de Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas-Academia Nacional de Medicina, 1425 Buenos Aires, Argentina.
| |
Collapse
|
2
|
Abstract
Haemolytic uraemic syndrome (HUS) is defined by the simultaneous occurrence of nonimmune haemolytic anaemia, thrombocytopenia and acute renal failure. This leads to the pathological lesion termed thrombotic microangiopathy, which mainly affects the kidney, as well as other organs. HUS is associated with endothelial cell injury and platelet activation, although the underlying cause may differ. Most cases of HUS are associated with gastrointestinal infection with Shiga toxin-producing enterohaemorrhagic Escherichia coli (EHEC) strains. Atypical HUS (aHUS) is associated with complement dysregulation due to mutations or autoantibodies. In this review, we will describe the causes of HUS. In addition, we will review the clinical, pathological, haematological and biochemical features, epidemiology and pathogenetic mechanisms as well as the biochemical, microbiological, immunological and genetic investigations leading to diagnosis. Understanding the underlying mechanisms of the different subtypes of HUS enables tailoring of appropriate treatment and management. To date, there is no specific treatment for EHEC-associated HUS but patients benefit from supportive care, whereas patients with aHUS are effectively treated with anti-C5 antibody to prevent recurrences, both before and after renal transplantation.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sebastian Loos
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ramesh Tati
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ida Arvidsson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
3
|
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a highly pathogenic bacterial strain capable of causing watery or bloody diarrhea, the latter termed hemorrhagic colitis, and hemolytic-uremic syndrome (HUS). HUS is defined as the simultaneous development of non-immune hemolytic anemia, thrombocytopenia, and acute renal failure. The mechanism by which EHEC bacteria colonize and cause severe colitis, followed by renal failure with activated blood cells, as well as neurological symptoms, involves the interaction of bacterial virulence factors and specific pathogen-associated molecular patterns with host cells as well as the host response. The innate immune host response comprises the release of antimicrobial peptides as well as cytokines and chemokines in addition to activation and/or injury to leukocytes, platelets, and erythrocytes and activation of the complement system. Some of the bacterial interactions with the host may be protective in nature, but, when excessive, contribute to extensive tissue injury, inflammation, and thrombosis, effects that may worsen the clinical outcome of EHEC infection. This article describes aspects of the host response occurring during EHEC infection and their effects on specific organs.
Collapse
|
4
|
Karpman D, Ståhl AL, Arvidsson I, Johansson K, Loos S, Tati R, Békássy Z, Kristoffersson AC, Mossberg M, Kahn R. Complement Interactions with Blood Cells, Endothelial Cells and Microvesicles in Thrombotic and Inflammatory Conditions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 865:19-42. [PMID: 26306441 DOI: 10.1007/978-3-319-18603-0_2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The complement system is activated in the vasculature during thrombotic and inflammatory conditions. Activation may be associated with chronic inflammation on the endothelial surface leading to complement deposition. Complement mutations allow uninhibited complement activation to occur on platelets, neutrophils, monocytes, and aggregates thereof, as well as on red blood cells and endothelial cells. Furthermore, complement activation on the cells leads to the shedding of cell derived-microvesicles that may express complement and tissue factor thus promoting inflammation and thrombosis. Complement deposition on red blood cells triggers hemolysis and the release of red blood cell-derived microvesicles that are prothrombotic. Microvesicles are small membrane vesicles ranging from 0.1 to 1 μm, shed by cells during activation, injury and/or apoptosis that express components of the parent cell. Microvesicles are released during inflammatory and vascular conditions. The repertoire of inflammatory markers on endothelial cell-derived microvesicles shed during inflammation is large and includes complement. These circulating microvesicles may reflect the ongoing inflammatory process but may also contribute to its propagation. This overview will describe complement activation on blood and endothelial cells and the release of microvesicles from these cells during hemolytic uremic syndrome, thrombotic thrombocytopenic purpura and vasculitis, clinical conditions associated with enhanced thrombosis and inflammation.
Collapse
Affiliation(s)
- Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Abstract
The kidneys are the major organs affected in diarrhea-associated hemolytic uremic syndrome (D(+)HUS). The pathophysiology of renal disease in D(+)HUS is largely the result of the interaction between bacterial virulence factors such as Shiga toxin and lipopolysaccharide and host cells in the kidney and in the blood circulation. This chapter describes in detail the current knowledge of how these bacterial toxins may lead to kidney disease and renal failure. The toxin receptors expressed by specific blood and resident renal cell types are also discussed as are the actions of the toxins on these cells.
Collapse
|
6
|
Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatr Nephrol 2010; 25:2231-40. [PMID: 20424866 DOI: 10.1007/s00467-010-1522-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Revised: 03/15/2010] [Accepted: 03/15/2010] [Indexed: 12/24/2022]
Abstract
Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli O157:H7 has become a global threat to public health, as a primary cause of a worldwide spread of hemorrhagic colitis complicated by diarrhea-associated hemolytic uremic syndrome (HUS), a disorder of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure that mainly affects early childhood. Endothelial dysfunction has been recognized as the trigger event in the development of microangiopathic processes. Endothelial cells, mainly those located in the renal microvasculature, are primary targets of the toxic effects of Stx1 and 2. Stxs bound to their specific globotriaosylceramide (Gb3Cer) receptor on the cell surface trigger a cascade of signaling events, involving NF-κB activation, that induce expression of genes encoding for adhesion molecules and chemokines, and culminate in the adhesion of leukocytes to endothelial cells, thereby increasing the endothelial susceptibility to leukocyte-mediated injury. Activated endothelial cells in response to Stxs lose the normal thromboresistance phenotype and become thrombogenic, initiating microvascular thrombus formation. Evidence is emerging that complement activation in response to Stxs favors platelet thrombus formation on endothelial cells, which may play a role in amplifying the inflammation-thrombosis circuit in Stx-associated HUS.
Collapse
|
7
|
Palermo MS, Exeni RA, Fernández GC. Hemolytic uremic syndrome: pathogenesis and update of interventions. Expert Rev Anti Infect Ther 2009; 7:697-707. [PMID: 19681698 DOI: 10.1586/eri.09.49] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The typical form of hemolytic uremic syndrome (HUS) is the major complication of Shiga toxin-producing Escherichia coli infections. HUS is a critical health problem in Argentina since it is the main cause of acute renal failure in children and the second cause of chronic renal failure, accounting for 20% of renal transplants in children and adolescents in Argentina. Despite extensive research in the field, the mainstay of treatment for patients with HUS is supportive therapy, and there are no specific therapies preventing or ameliorating the disease course. In this review, we present the current knowledge about pathogenic mechanisms and discuss traditional and innovative therapeutic approaches, with special focus in Argentinean contribution. The hope that a better understanding of transmission dynamics and pathogenesis of this disease will produce better therapies to prevent the acute mortality and the long-term morbidity of HUS is the driving force for intensified research.
Collapse
Affiliation(s)
- Marina S Palermo
- Lab Inmunologia, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina P. de Melo 3081 (C1425AUM), Ciudad de Buenos Aires, Argentina.
| | | | | |
Collapse
|
8
|
Fernández GC, Gómez SA, Rubel CJ, Bentancor LV, Barrionuevo P, Alduncín M, Grimoldi I, Exeni R, Isturiz MA, Palermo MS. Impaired neutrophils in children with the typical form of hemolytic uremic syndrome. Pediatr Nephrol 2005; 20:1306-14. [PMID: 15940545 DOI: 10.1007/s00467-005-1906-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 02/08/2005] [Accepted: 02/08/2005] [Indexed: 01/08/2023]
Abstract
Experimental and clinical evidence suggest that activated neutrophils (PMN) could contribute to endothelial damage in Hemolytic Uremic Syndrome (D+HUS). Additionally, while PMN-activating cytokines and PMN-derived products have been found in D+HUS sera, we have demonstrated phenotypic alterations in D+HUS PMN compatible with a deactivation state. Here, we investigated whether D+HUS PMN were actually hyporesponsive, and explored some of the mechanisms probably involved in their derangement. Twenty-two D+HUS children were bled in the acute period, and blood samples from healthy, acute uremic and neutrophilic children were obtained as controls. We evaluated degranulation markers in response to cytokines, intracellular granule content, and reactive oxygen species (ROS) generation in circulating D+HUS and control PMN. The influence of D+HUS-derived plasma and the direct effects of Stx in vitro were evaluated on healthy donors' PMN. We found that D+HUS PMN presented reduced degranulatory capacity in response to cytokines and intracellular granule content, and decreased ROS generation. D+HUS plasma or Stx did not affect the phenotype and function of healthy donors' PMN. These results suggest that upon hospitalization D+HUS PMN are functionally impaired and show features of previous degranulation, indicating a preceding process of activation with release of ROS and proteases involved in endothelial damage.
Collapse
Affiliation(s)
- Gabriela C Fernández
- Department of Immunology, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Pacheco de Melo 3081, C1425AUM, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fernández GC, Ramos MV, Gómez SA, Dran GI, Exeni R, Alduncín M, Grimoldi I, Vallejo G, Elías-Costa C, Isturiz MA, Palermo MS. Differential expression of function-related antigens on blood monocytes in children with hemolytic uremic syndrome. J Leukoc Biol 2005; 78:853-61. [PMID: 16046554 DOI: 10.1189/jlb.0505251] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Monocytes (Mo) mediate central functions in inflammation and immunity. Different subpopulations of Mo with distinct phenotype and functional properties have been described. Here, we investigate the phenotype and function of peripheral Mo from children with hemolytic uremic syndrome (HUS). For this purpose, blood samples from patients in the acute period of HUS (HUS AP) were obtained on admission before dialysis and/or transfusion. The Mo phenotypic characterization was performed on whole blood by flow cytometry, and markers associated to biological functions were selected: CD14 accounting for lipopolysaccharide (LPS) responsiveness, CD11b for adhesion, Fc receptor for immunoglobulin G type I (FcgammaRI)/CD64 for phagocytosis and cytotoxicity, and human leukocyte antigen (HLA)-DR for antigen presentation. Some of these functions were also determined. Moreover, the percentage of CD14+ CD16+ Mo was evaluated. We found that the entire HUS AP Mo population exhibited reduced CD14, CD64, and CD11b expression and decreased LPS-induced tumor necrosis factor production and Fcgamma-dependent cytotoxicity. HUS AP showed an increased percentage of CD14+ CD16+ Mo with higher CD16 and lower CD14 levels compared with the same subset from healthy children. Moreover, the CD14++ CD16- Mo subpopulation of HUS AP had a decreased HLA-DR expression, which correlated with severity. In conclusion, the Mo population from HUS AP patients presents phenotypic and functional alterations. The contribution to the pathogenesis and the possible scenarios that led to these changes are discussed.
Collapse
Affiliation(s)
- Gabriela C Fernández
- Division of Immunology of the Institute of Hematological Investigations, Academia Nacional de Medicina, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chan CP, Yuan-Soon H, Wang YJ, Lan WH, Chen LI, Chen YJ, Lin BR, Chang MC, Jeng JH. Inhibition of cyclooxygenase activity, platelet aggregation and thromboxane B2 production by two environmental toxicants: m- and o-cresol. Toxicology 2005; 208:95-104. [PMID: 15664436 DOI: 10.1016/j.tox.2004.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Revised: 11/07/2004] [Accepted: 11/08/2004] [Indexed: 11/15/2022]
Abstract
Cresol is a well-known environmental pollutant, toluene metabolite, uremic toxicant and accidental poisoning product. Formocresol, a preparation of formalin and cresol, is also used as a root canal medicament and for pulpotomy of primary teeth. However, little is known about its effect on cardiovascular system. In this study, m-cresol inhibited the AA-induced platelet aggregation by 43-97% at concentrations ranging from 0.25 to 1 mM. Collagen-induced platelet aggregation was also inhibited by 0.25-1 mM of m-cresol by 47-98%. Accordingly, o-cresol (0.1-0.5 mM) also inhibited the AA-induced platelet aggregation by 46-96% and the collagen-induced platelet aggregation by 35-88% at concentrations of 0.1-1 mM. AA- and collagen-induced platelet thromboxane B(2) (TXB(2)) production was inhibited by even 0.1 mM of m-cresol with 88 and 54% of inhibition, respectively. The o-cresol (0.1 mM) also inhibited the AA- and collagen-induced platelet TXB(2) production with 91 and 97% respectively. Although m- and o-cresol (<1 mM) showed little effect on thrombin-induced platelet aggregation, they effectively inhibited the thrombin-induced platelet TXB(2) production. The m-cresol (2 and 5 mM) inhibited the COX-1 activity by 55-99%, but showed little effect on COX-2 enzyme activity. Moreover, o-cresol (0.5 and 1 mM) inhibited the COX-1 activity by 40-95%. COX-2 enzyme activity was inhibited by 68% at a concentration of 5 mM o-cresol. These results indicate that acute cresol-poisoning, direct root canal medication with formocresol or long-term occupational exposure to cresol and toluene may potentially suppress blood clot formation and lead to tissue hemorrhage via inhibition of platelet aggregation, TXB(2) production and COX enzyme activity.
Collapse
Affiliation(s)
- Chiu-Po Chan
- Department of Dentistry, Chang-Gung Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ghosh SA, Polanowska-Grabowska RK, Fujii J, Obrig T, Gear ARL. Shiga toxin binds to activated platelets. J Thromb Haemost 2004; 2:499-506. [PMID: 15009469 DOI: 10.1111/j.1538-7933.2004.00638.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hemolytic uremic syndrome (HUS) is associated with acute renal failure in children and can be caused by Shiga toxin (Stx)-producing Escherichia coli. Thrombocytopenia and formation of renal thrombi are characteristic of HUS, suggesting that platelet activation is involved in its pathogenesis. However, whether Shiga toxin directly activates platelets is controversial. The present study evaluates if potential platelet sensitization during isolation by different procedures influences platelet interaction with Shiga toxin. Platelets isolated from sodium citrate anticoagulated blood were exposed during washing to EDTA and higher g forces than platelets prepared from acid-citrate-dextrose (ACD) plasma. Platelet binding of Stx was significantly higher in EDTA-washed preparations relative to ACD-derived platelets. Binding of Stx was also increased with ACD-derived platelets when activated with thrombin (1 U mL-1) and exposure of the Gb3 Stx receptor was detected only on platelets subjected to EDTA, higher g forces or thrombin. EDTA-exposed platelets lost their normal discoid shape and were larger. P-selectin (CD62P) exposure was significantly increased in EDTA-washed preparations relative to ACD-derived platelets, suggesting platelet activation. Taken together, these results suggest that direct binding of Stx occurs only on 'activated' platelets rather than on resting platelets. The ability of Stx to interact with previously activated platelets may be an important element in understanding the pathogenesis of HUS.
Collapse
Affiliation(s)
- S A Ghosh
- Department of Biochemistry and Molecular Genetics and Division of Nephrology, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | | | | | | | | |
Collapse
|
12
|
Abstract
The aim of this review is to examine recent advances in experimental and clinical research relevant to the pathogenesis of diarrhea-associated hemolytic uremic syndrome with special reference to histopathologic findings, virulence factors of Shiga toxin-producing Escherichia coli, the host response, and the prothrombotic state. Despite significant advances during the past decade, the exact mechanism by which Shiga toxin-producing E. coli leads to hemolytic uremic syndrome remains unclear. Factors such as Shiga toxin, lipopolysaccharide, the adhesins intimin and E. coli-secreted proteins A, B, and D, the 60-MD plasmid, and enterohemolysin likely contribute to the pathogenesis. Data on the inflammatory response of the host, including leukocytes and inflammatory mediators, are updated. The pathogenesis of the prothrombotic state leading to thrombocytopenia secondary to endothelial cell damage and platelet activation is also discussed. A hypothetical sequence of events from ingestion of the bacteria to the development of full-blown hemolytic uremic syndrome is proposed.
Collapse
Affiliation(s)
- F Proulx
- Department of Pediatrics, Sainte-Justine Hospital, University of Montreal, 3175 Chemin Côte Sainte-Catherine, Montreal, Canada, H3T-1C5.
| | | | | |
Collapse
|
13
|
Karpman D, Papadopoulou D, Nilsson K, Sjögren AC, Mikaelsson C, Lethagen S. Platelet activation by Shiga toxin and circulatory factors as a pathogenetic mechanism in the hemolytic uremic syndrome. Blood 2001; 97:3100-8. [PMID: 11342436 DOI: 10.1182/blood.v97.10.3100] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Thrombocytopenia caused by platelet consumption in thrombi is a major manifestation of hemolytic uremic syndrome (HUS) associated with Shiga toxin (Stx) producing Escherichia coli. Platelets have glycosphingolipid receptors capable of binding Stx, but a direct interaction between the toxin and platelets, leading to platelet activation, has not been reported. In this study, it is shown that Stx1 and its B (binding) subunit (Stx1B), at 10 pg/mL to 10 ng/mL, bound to platelets. Toxin was internalized in platelets within 2 hours. This led to increased platelet aggregation, as demonstrated by confocal microscopy. Preincubation of Stx1B with anti-Stx1 antibody inhibited this reaction. Stx1 induced morphologic changes in platelets seen on scanning electron microscopy. In the presence of platelets and tumor necrosis factor-pretreated human umbilical vein endothelial cells (HUVEC), Stx1 and Stx1B induced the binding of platelets to the endothelial cell membrane and were present at this binding site. Incubation of Stx1 and Stx1B with whole blood increased fibrinogen binding to platelets detected by flow cytometry. Fibrinogen binding was partially inhibited by preincubation with anti-Stx1. Stx1 increased platelet retention measured in a glass bead assay. In addition, plasma from 17 patients with HUS, taken during the acute phase of the disease, increased the retention of normal platelets and normalized after recovery. Taken together, the results of this investigation show that Stx1, Stx1B, and a factor or factors in the plasma of patients with HUS activate platelets. The presence of Stx1 at the binding site of platelets to HUVEC suggests that Stx may be directly involved in the prothrombotic state seen in HUS.
Collapse
Affiliation(s)
- D Karpman
- Department of Pediatrics, Lund University, Lund, Sweden.
| | | | | | | | | | | |
Collapse
|