1
|
Redox and Metabolic Regulation of Intestinal Barrier Function and Associated Disorders. Int J Mol Sci 2022; 23:ijms232214463. [PMID: 36430939 PMCID: PMC9699094 DOI: 10.3390/ijms232214463] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
The intestinal epithelium forms a physical barrier assembled by intercellular junctions, preventing luminal pathogens and toxins from crossing it. The integrity of tight junctions is critical for maintaining intestinal health as the breakdown of tight junction proteins leads to various disorders. Redox reactions are closely associated with energy metabolism. Understanding the regulation of tight junctions by cellular metabolism and redox status in cells may lead to the identification of potential targets for therapeutic interventions. In vitro and in vivo models have been utilized in investigating intestinal barrier dysfunction and in particular the free-living soil nematode, Caenorhabditis elegans, may be an important alternative to mammalian models because of its convenience of culture, transparent body for microscopy, short generation time, invariant cell lineage and tractable genetics.
Collapse
|
2
|
Jarosz ŁS, Ciszewski A, Marek A, Hejdysz M, Nowaczewski S, Grądzki Z, Michalak K, Kwiecień M, Rysiak A. The effect of the multi-strain probiotic preparation EM Bokashi® on selected parameters of the cellular immune response in pigs. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2021.2006611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Łukasz S. Jarosz
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Artur Ciszewski
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Agnieszka Marek
- Sub-Department of Preventive Veterinary and Avian Diseases, Faculty of Veterinary Medicine, Institute of Biological Bases of Animal Diseases, University of Life Sciences in Lublin, Lublin, Poland
| | - Marcin Hejdysz
- Department of Animal Breeding And Product Quality Assessment, Poznań University of Life Sciences, Poznań, Poland
| | - Sebastian Nowaczewski
- Department of Animal Breeding And Product Quality Assessment, Poznań University of Life Sciences, Poznań, Poland
| | - Zbigniew Grądzki
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Katarzyna Michalak
- Department of Epizootiology and Clinic of Infectious Diseases, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Lublin, Poland
| | - Małgorzata Kwiecień
- Faculty of Biology and Animal Breeding, Institute of Animal Nutrition and Bromatology, Department of Animal Nutrition, University of Life Sciences in Lublin, Lublin, Poland
| | - Anna Rysiak
- Department of Botany, Mycology, and Ecology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
3
|
Chamberlain TC, Cheung ST, Yoon JSJ, Ming-Lum A, Gardill BR, Shakibakho S, Dzananovic E, Ban F, Samiea A, Jawanda K, Priatel J, Krystal G, Ong CJ, Cherkasov A, Andersen RJ, McKenna SA, Van Petegem F, Mui ALF. Interleukin-10 and Small Molecule SHIP1 Allosteric Regulators Trigger Anti-inflammatory Effects through SHIP1/STAT3 Complexes. iScience 2020; 23:101433. [PMID: 32823063 PMCID: PMC7452241 DOI: 10.1016/j.isci.2020.101433] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/07/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
The anti-inflammatory actions of interleukin-10 (IL10) are thought to be mediated primarily by the STAT3 transcription factor, but pro-inflammatory cytokines such as interleukin-6 (IL6) also act through STAT3. We now report that IL10, but not IL6 signaling, induces formation of a complex between STAT3 and the inositol polyphosphate-5-phosphatase SHIP1 in macrophages. Both SHIP1 and STAT3 translocate to the nucleus in macrophages. Remarkably, sesquiterpenes of the Pelorol family, which we previously described as allosteric activators of SHIP1 phosphatase activity, could induce SHIP1/STAT3 complex formation in cells and mimic the anti-inflammatory action of IL10 in a mouse model of colitis. Using crystallography and docking studies we identified a drug-binding pocket in SHIP1. Our studies reveal new mechanisms of action for both STAT3 and SHIP1 and provide a rationale for use of allosteric SHIP1-activating compounds, which mimic the beneficial anti-inflammatory actions of IL10. Video Abstract
Loss of normal interleukin-10 (IL10) function results in inflammatory diseases IL10 or SHIP1 agonists induce formation of SHIP1/STAT3 complexes SHIP1 Y190 phosphorylation is required for SHIP1/STAT3 complex formation SHIP1 agonists mimic IL10 anti-inflammatory action in a mouse model of colitis
Collapse
Affiliation(s)
- Thomas C Chamberlain
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Sylvia T Cheung
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Jeff S J Yoon
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Andrew Ming-Lum
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Bernd R Gardill
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Soroush Shakibakho
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Edis Dzananovic
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Fuqiang Ban
- Department of Urological Sciences, University of British Columbia, Vancouver, Canada
| | - Abrar Samiea
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Kamaldeep Jawanda
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada
| | - John Priatel
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Gerald Krystal
- British Columbia Cancer Research Centre, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Christopher J Ong
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Urological Sciences, University of British Columbia, Vancouver, Canada
| | - Artem Cherkasov
- Department of Urological Sciences, University of British Columbia, Vancouver, Canada
| | - Raymond J Andersen
- Department of Chemistry, University of British Columbia, Vancouver, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Alice L-F Mui
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Vancouver, BC V6H 3Z6, Canada; Department of Surgery, University of British Columbia, Vancouver, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
4
|
Lee JW, Lee SM, Chun J, Im JP, Seo SK, Ha N, Il Choi Y, Kim JS. Novel Histone Deacetylase 6 Inhibitor CKD-506 Inhibits NF-κB Signaling in Intestinal Epithelial Cells and Macrophages and Ameliorates Acute and Chronic Murine Colitis. Inflamm Bowel Dis 2020; 26:852-862. [PMID: 31895948 DOI: 10.1093/ibd/izz317] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Selective blocking of HDAC6 has become a promising strategy in treating inflammatory bowel disease. CKD-506 is a novel isoform-selective inhibitor of histone deacetylase 6. The present study was performed to evaluate the effect of CKD-506 on the NF-κB signaling pathway in intestinal epithelial cells (IECs) and macrophages and on murine models of acute and chronic colitis. METHODS RAW264RAW264.7 murine macrophages and COLO 205 human IECs were pretreated with CKD-506 and then stimulated with lipopolysaccharides (LPS). Cytokine expression of TNF-α, interleukin (IL)-6, IL-8, and IL-10 was measured by ELISA. The effect of CKD-506 on NF-κB signaling was evaluated by Western blotting of IκBα phosphorylation/degradation and electrophoretic mobility shift assay. In vivo studies were performed using a dextran sulfate sodium (DSS)-induced acute colitis model, a chronic colitis model in IL-10 knockout mice, and an adoptive transfer model. Colitis was quantified by the disease activity index, colon length, and histopathologic evaluation. RESULTS CKD-506 suppressed the expression of pro-inflammatory cytokines such as IL-6, IL-8, and TNF-α in IECs and macrophages. CKD-506 strongly inhibited IκBα phosphorylation/degradation and the DNA-binding activity of NF-κB. Oral administration of CKD-506 attenuated DSS-induced acute colitis and chronic colitis in IL-10-/- and adoptive transfer models. CKD-506 ameliorated weight loss, disease activity, and histopathologic score in colitis mice and downregulated IκBα phosphorylation and pro-inflammatory cytokine production significantly. CONCLUSIONS CKD-506 blocked NF-κB signaling in IECs and macrophages and ameliorated experimental acute and chronic murine colitis models, which suggests that CKD-506 is a promising candidate for inflammatory bowel disease treatment as a small molecular medicine.
Collapse
Affiliation(s)
- Jung Won Lee
- Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, South Korea
| | - Soung-Min Lee
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Jaeyoung Chun
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Su-Kil Seo
- Department of Microbiology and Immunology, College of Medicine, Inje University, Busan, Republic of Korea
| | - Nina Ha
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Young Il Choi
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, Republic of Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Thai JD, Gregory KE. Bioactive Factors in Human Breast Milk Attenuate Intestinal Inflammation during Early Life. Nutrients 2020; 12:E581. [PMID: 32102231 PMCID: PMC7071406 DOI: 10.3390/nu12020581] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/15/2020] [Accepted: 02/16/2020] [Indexed: 12/14/2022] Open
Abstract
Human breast milk is well known as the ideal source of nutrition during early life, ensuring optimal growth during infancy and early childhood. Breast milk is also the source of many unique and dynamic bioactive components that play a key role in the development of the immune system. These bioactive components include essential microbes, human milk oligosaccharides (HMOs), immunoglobulins, lactoferrin and dietary polyunsaturated fatty acids. These factors all interact with intestinal commensal bacteria and/or immune cells, playing a critical role in establishment of the intestinal microbiome and ultimately influencing intestinal inflammation and gut health during early life. Exposure to breast milk has been associated with a decreased incidence and severity of necrotizing enterocolitis (NEC), a devastating disease characterized by overwhelming intestinal inflammation and high morbidity among preterm infants. For this reason, breast milk is considered a protective factor against NEC and aberrant intestinal inflammation common in preterm infants. In this review, we will describe the key microbial, immunological, and metabolic components of breast milk that have been shown to play a role in the mechanisms of intestinal inflammation and/or NEC prevention.
Collapse
Affiliation(s)
- Julie D. Thai
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Katherine E. Gregory
- Department of Pediatric Newborn Medicine, Department of Nursing, Brigham and Women’s Hospital, Boston, MA 02115, USA;
| |
Collapse
|
6
|
Ring C, Klopfleisch R, Dahlke K, Basic M, Bleich A, Blaut M. Akkermansia muciniphila strain ATCC BAA-835 does not promote short-term intestinal inflammation in gnotobiotic interleukin-10-deficient mice. Gut Microbes 2018; 10:188-203. [PMID: 30252588 PMCID: PMC6546315 DOI: 10.1080/19490976.2018.1511663] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Akkermansia muciniphila is a common member of the intestinal microbiota of healthy human individuals. Its abundance is negatively associated with inflammatory bowel disease and metabolic disorders and the oral administration of A. muciniphila improves the symptoms of metabolic disease in mice. Therefore, A. muciniphila is a promising candidate for the treatment of type-2 diabetes and obesity. However, some studies using animal models of intestinal inflammation reported that A. muciniphila may exacerbate gut inflammation. Because of these contradictory reports the present study aimed to clarify the role of A. muciniphila in the development of intestinal inflammation and the conditions promoting it. For this purpose, the short-term colitogenic potential of A. muciniphila strain ATCC BAA-835 was investigated in colitis-prone, gnotobiotic IL-10-deficient (Il10-/-) mice. Il10-/- mice mono-associated with A. muciniphila showed no signs of intestinal inflammation based on body-weight change, histopathological scoring and inflammatory markers. Additional association of the mice with the colitogenic Escherichia coli strain NC101 led to cecal but not colonic inflammation. However, the severity of the inflammation did not exceed that observed in mice mono-associated with E. coli NC101. Il10-/- mice colonized with a simplified human intestinal microbiota showed increased histopathology, but no increase in inflammatory markers. Furthermore, co-colonization with A. muciniphila did not modify histopathology. The turnover of intestinal mucus was similar in all groups despite the mucus-degrading property of A. muciniphila. Overall, the data do not support a short-term pro-inflammatory effect of A. muciniphila strain ATCC BAA-835 in the Il10-/- mouse model for inflammatory bowel disease.
Collapse
Affiliation(s)
- Christiane Ring
- Department Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany,CONTACT Christiane Ring Department Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, Freie Universitaet Berlin, Berlin, Germany
| | - Katja Dahlke
- Department Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Marijana Basic
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - André Bleich
- Institute for Laboratory Animal Science and Central Animal Facility, Hannover Medical School, Hannover, Germany
| | - Michael Blaut
- Department Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
7
|
Liu YW, Liong MT, Tsai YC. New perspectives of Lactobacillus plantarum as a probiotic: The gut-heart-brain axis. J Microbiol 2018; 56:601-613. [DOI: 10.1007/s12275-018-8079-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/17/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
|
8
|
Dann SM, Le CHY, Hanson EM, Ross MC, Eckmann L. Giardia Infection of the Small Intestine Induces Chronic Colitis in Genetically Susceptible Hosts. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:548-559. [PMID: 29898958 PMCID: PMC7351291 DOI: 10.4049/jimmunol.1700824] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 05/07/2018] [Indexed: 01/01/2023]
Abstract
The lumen-dwelling protozoan Giardia is an important parasitic cause of diarrheal disease worldwide. Infection can persist over extended periods with minimal intestinal inflammation, suggesting that Giardia may attenuate host responses to ensure its survival, although clearance eventually occurs in most cases. IL-10 is an anti-inflammatory regulator critical for intestinal homeostasis and controlling host responses to bacterial exposure, yet its potential role in coordinating antiprotozoal host defense in the intestine is not known. In this study, we found that murine infection with the natural enteric pathogen Giardia muris induced a transient IL-10 response after 2-4 wk at the primary site of infection in the upper small intestine, but parasite colonization and eradication were not affected by the absence of the cytokine in gene-targeted mice. However, IL-10 was critical for controlling infection-associated immunological sequelae in the colon because severe and persistent diarrhea and colitis were observed in IL-10-deficient mice within 1-2 wk postinfection but not in uninfected littermate controls. Inflammation was characterized by epithelial hyperplasia, neutrophil and macrophage expansion, and Th1 induction and could be prevented by blockade of IL-12/IL-23 p40 but not depletion of CD11c+ dendritic cells. Furthermore, the intestinal microbiota underwent characteristic shifts in composition and was required for disease because antibiotics and loss of TLR signaling in MyD88-deficient mice protected against colitis. Together, our data suggest that transient infection by a luminal and seemingly noninflammatory pathogen can trigger sustained colitis in genetically susceptible hosts, which has broader implications for understanding postinfectious syndromes and other chronic intestinal inflammatory conditions.
Collapse
Affiliation(s)
- Sara M Dann
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX 77555
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Christine H Y Le
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093; and
| | - Elaine M Hanson
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093; and
| | - Matthew C Ross
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093; and
| |
Collapse
|
9
|
Overskeid G. Do We Need the Environment to Explain Operant Behavior? Front Psychol 2018; 9:373. [PMID: 29615951 PMCID: PMC5870395 DOI: 10.3389/fpsyg.2018.00373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/06/2018] [Indexed: 12/20/2022] Open
Abstract
By way of operant conditioning, human behavior is continuously shaped and maintained by its consequences - and understanding this process is important to most fields of psychology and neuroscience. The role of the learning organism's environment has long been contentious, however. Much relevant research is being done by people identifying with the Skinnerian tradition, who tend to agree that the causes of behavior can be found exclusively in the environment. The meaning of this proposition is not clear, however. Some authors say the environment is outside the body, others claim it is also inside it. Among those who say the environment is outside the body, many are of the opinion that events inside the body and hence (in their view) not in the environment can also cause behavior, though they claim that events inside the body cannot be causes in the same sense as events taking place outside it. This is confusing, and the present paper argues that the "environment" may neither be a useful nor a necessary concept in the analysis of behavior. Moreover, abolishing the concept could clear the way for a reintegration of Skinnerian psychology into the mainstream.
Collapse
Affiliation(s)
- Geir Overskeid
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
De Moreno De Leblanc A, Chaves S, Perdigón G. Effect of Yoghurt on the Cytokine Profile using a Murine Model of Intestinal Inflammation. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x0900700206] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, are important problems in industrialized countries. The complete aetiology of both diseases is still unknown but likely involves genetic, environmental and immunological factors. The aim of this work is to study the anti-inflammatory mechanisms reported for yoghurt in a colon cancer model in order to evaluate its usefulness in the treatment of intestinal inflammation such as Crohn's disease. A trinitrobenzenesulfonic acid (TNBS)-induced colitis model was used. The influence of yoghurt feeding was studied before and after TNBS inoculation. The effect on the intestinal microbiota and on the host immune response was evaluated. IgA-producing cells and cells positive for specific cytokines (IL-12, IL-17, IFNγ and IL-10) were analyzed. Yoghurt administration diminished the severity of inflammation in the TNBS-inoculated mice. This effect occurred mainly through IL-10, which was increased in the intestinal tissues throughout the study, and by the decrease observed in IL-17 and IL-12 levels. In addition to this immunomodulatory capacity, another mechanism by which yoghurt could exert the anti-inflammatory activity observed in our model would be through beneficial changes in the intestinal microbiota (increases in the bifidobacteria and lactobacilli populations). These changes in the intestinal microbiota could also be considered one of the causes of the intestinal inflammation reduction. These results show that yoghurt administration modulated the immune response, inducing down regulation of the inflammatory cytokines produced by the immune cells involved in the inflammatory process. The protective effect
Collapse
Affiliation(s)
| | - S. Chaves
- Centro de Referenda para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán
- Cátedra de Inmunología, Facultad de Bioquimíca, Química y Farmacia, Universidad Nacional de Tucumán, Argentina
| | - G. Perdigón
- Centro de Referenda para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán
- Cátedra de Inmunología, Facultad de Bioquimíca, Química y Farmacia, Universidad Nacional de Tucumán, Argentina
| |
Collapse
|
11
|
Huang D, Wang Y, Hawthorne WJ, Hu M, Hawkes J, Burns H, Davies S, Gao F, Chew YV, Yi S, O'Connell PJ. Ex vivo-expanded baboon CD39 + regulatory T cells prevent rejection of porcine islet xenografts in NOD-SCID IL-2rγ -/- mice reconstituted with baboon peripheral blood mononuclear cells. Xenotransplantation 2017; 24. [PMID: 28963731 DOI: 10.1111/xen.12344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 07/05/2017] [Accepted: 08/14/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND A high immunosuppressive burden is required for long-term islet xenograft survival in non-human primates even using genetically modified donor pigs. AIMS We aimed to investigate the capacity of baboon regulatory T cells (Treg) to suppress islet xenograft rejection, thereby developing a potential immunoregulatory or tolerance therapy that could be evaluated in NHP models of xenotransplantation. MATERIALS & METHODS Baboon Treg expanded with stimulation by porcine peripheral blood mononuclear cells (PBMC) were characterized by cell phenotyping and suppressive activity assays in vitro. Their function in vivo was evaluated in neonatal porcine islet cell clusters (NICC) transplanted NOD-SCID IL-2rγ-/- (NSG) mice receiving baboon PBMC alone or with expanded autologous Treg. RESULTS The majority of expanded Treg coexpressed Foxp3 and CD39 and were highly suppressive of the baboon anti-pig xenogeneic T cell response in vitro. Reconstitution of mice with baboon PBMC alone resulted in NICC xenograft rejection within 35 days. Cotransfer with baboon PBMC and Treg prolonged islet xenograft survival beyond 100 days, correlating with Treg engraftment, intragraft CD39 and Foxp3 gene expression, and reduced graft infiltrating effector T cells and reduced interferon-γ production. DISCUSSION & CONCLUSION Our data supports the capacity of ex vivo expanded CD39+ baboon Treg to suppress islet xenograft rejection in primatized mice, suggesting it has potential as an adjunctive immunotherapy in preclinical NHP models of xenotransplantation.
Collapse
Affiliation(s)
- Dandan Huang
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Ya Wang
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Wayne J Hawthorne
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Min Hu
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Joanne Hawkes
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Heather Burns
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Sussan Davies
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Feng Gao
- Cell Transplantation and Gene Therapy, 3rd Xiangya Hospital of Central South University, Changsha, China
| | - Yi Vee Chew
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Shounan Yi
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Millennium Institute, University of Sydney, Westmead, NSW, Australia
| |
Collapse
|
12
|
Overskeid G. Why Behave? The Problem of Initiating Causes and the Goals of Prediction and Control. PSYCHOLOGICAL RECORD 2017. [DOI: 10.1007/bf03395553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
del Carmen S, de Moreno de LeBlanc A, LeBlanc J. Development of a potential probiotic yoghurt using selected anti-inflammatory lactic acid bacteria for prevention of colitis and carcinogenesis in mice. J Appl Microbiol 2016; 121:821-30. [DOI: 10.1111/jam.13213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/17/2016] [Accepted: 06/14/2016] [Indexed: 02/06/2023]
Affiliation(s)
- S. del Carmen
- Centro de Referencia para lactobacilos (CERELA-CONICET); San Miguel de Tucumán Tucumán Argentina
| | - A. de Moreno de LeBlanc
- Centro de Referencia para lactobacilos (CERELA-CONICET); San Miguel de Tucumán Tucumán Argentina
| | - J.G. LeBlanc
- Centro de Referencia para lactobacilos (CERELA-CONICET); San Miguel de Tucumán Tucumán Argentina
| |
Collapse
|
14
|
Lu HY, Lin BF. Wild bitter melon alleviates dextran sulphate sodium-induced murine colitis by suppressing inflammatory responses and enhancing intestinal regulatory T cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
15
|
Hagenlocher Y, Hösel A, Bischoff SC, Lorentz A. Cinnamon extract reduces symptoms, inflammatory mediators and mast cell markers in murine IL-10−/− colitis. J Nutr Biochem 2016; 30:85-92. [DOI: 10.1016/j.jnutbio.2015.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/03/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022]
|
16
|
Abstract
Complex mechanisms are pulling the strings to initiate the development of inflammatory bowel disease. Current evidence indicates that an interaction of genetic susceptibilities (polymorphisms), environmental factors, and the host microbiota leads to a dysregulation of the mucosal immune system. In the past decades, the interleukin-10-deficient mouse has served as an excellent model to mirror the multifactorial nature of this disease. Here, we want to review in detail the interplay of the genetic factors, immune aspects, and especially summarize and discuss the role of the microbiota contributing to colitis development in the interleukin-10-deficient mouse model of inflammatory bowel disease as a multihit model.
Collapse
|
17
|
Gómez-Hurtado I, Moratalla A, Moya-Pérez Á, Peiró G, Zapater P, González-Navajas JM, Giménez P, Such J, Sanz Y, Francés R. Role of interleukin 10 in norfloxacin prevention of luminal free endotoxin translocation in mice with cirrhosis. J Hepatol 2014; 61:799-808. [PMID: 24882049 DOI: 10.1016/j.jhep.2014.05.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 05/16/2014] [Accepted: 05/18/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Bacterial endotoxin is present in patients with advanced cirrhosis and can induce an immunogenic response without an overt infection. Norfloxacin is a gram-negative bactericidal drug able to maintain low endotoxin levels and stimulate IL-10 production. We aimed at investigating the role of IL-10 in decreasing endotoxin absorption in cirrhotic mice treated with norfloxacin. METHODS Cirrhosis was induced by carbon tetrachloride or bile duct ligation in wild type and IL10-deficient mice with or without norfloxacin prior to an intragastrical administration of E. coli, K. pneumonia or E. faecalis. Spontaneous and induced bacterial translocation, free endotoxin and cytokine levels were evaluated in mesenteric lymph nodes. Intestinal permeability was followed by fluorimetry and barrier integrity markers were measured in disrupted intestinal samples. The inflammatory-modulating mechanism was characterized in purified intestinal mononuclear cells. RESULTS Norfloxacin reduced spontaneous and induced MLN positive-cultures in wild type and IL-10-deficient animals. However, reduction of free endotoxin levels was associated with norfloxacin in wild type but not in IL-10-deficient mice. Wild type but not IL-10-deficient mice treated with norfloxacin significantly normalized intestinal permeability and improved gut barrier integrity markers. The toll-like receptor 4-mediated pro-inflammatory milieu was modulated by norfloxacin in a concentration-dependent manner in cultured intestinal mononuclear cells of wild type mice but not of IL-10-deficient mice. The restoration of IL-10 levels in IL-10-deficient animals reactivated the norfloxacin effect on inflammatory-modulation, gut barrier permeability, and luminal endotoxin absorption. CONCLUSION Norfloxacin not only reduces gram-negative intestinal flora but also participates in an IL-10-driven modulation of gut barrier permeability, thus reducing luminal free endotoxin absorption in experimental cirrhosis.
Collapse
Affiliation(s)
- Isabel Gómez-Hurtado
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Unidad Hepática, Hospital General Universitario de Alicante, Alicante, Spain
| | - Alba Moratalla
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Unidad Hepática, Hospital General Universitario de Alicante, Alicante, Spain
| | - Ángela Moya-Pérez
- Ecología Microbiana y Nutrición, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Gloria Peiró
- Servicio de Anatomía Patológica, Hospital General Universitario de Alicante, Alicante, Spain
| | - Pedro Zapater
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Unidad de Farmacología Clínica, Hospital General Universitario de Alicante, Alicante, Spain
| | - José M González-Navajas
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Unidad Hepática, Hospital General Universitario de Alicante, Alicante, Spain
| | - Paula Giménez
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - José Such
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Departamento de Medicina Clínica, Facultad de Medicina, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Yolanda Sanz
- Ecología Microbiana y Nutrición, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas (IATA-CSIC), Valencia, Spain
| | - Rubén Francés
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain; Unidad Hepática, Hospital General Universitario de Alicante, Alicante, Spain; Departamento de Medicina Clínica, Facultad de Medicina, Universidad Miguel Hernández, San Juan de Alicante, Spain.
| |
Collapse
|
18
|
Viennois E, Baker MT, Xiao B, Wang L, Laroui H, Merlin D. Longitudinal study of circulating protein biomarkers in inflammatory bowel disease. J Proteomics 2014; 112:166-79. [PMID: 25230104 DOI: 10.1016/j.jprot.2014.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 08/15/2014] [Accepted: 09/05/2014] [Indexed: 12/16/2022]
Abstract
UNLABELLED Inflammatory bowel diseases (IBDs) are chronic and progressive inflammatory disorders of the gastrointestinal tract. In IBD, protein serological biomarkers could be relevant tools for assessing disease activity, performing early-stage diagnosis and managing the treatment. Using the interleukin-10 knockout (IL-10(-/-)) mouse, a model that develops a time-dependent IBD-like disorder that predominates in the colon; we performed longitudinal studies of circulating protein biomarkers in IBD. Circulating protein profiles in serum samples collected from 30-, 93-, to 135-day-old IL-10(-/-) mice were investigated using two-dimensional differential gel electrophoresis and MALDI-TOF/TOF tandem mass spectrometry. A total of 15 different proteins were identified and confirmed by ELISA and Western blot to be differentially accumulated in serum samples from mid- to late-stage IL-10(-/-) mice compared to early non-inflamed IL-10(-/-) mice. The use of another model of colitis and an extra-intestinal inflammation model validated this biomarker panel and demonstrated that comprised some global inflammatory markers, some intestinal inflammation-specific markers and some chronic intestinal inflammation markers. Statistical analyses using misclassification error rate charts validated the use of these identified proteins as powerful biomarkers of colitis. Unlike standard biomarker screening studies, our analyses identified a panel of proteins that allowed the definition of protein signatures that reflect colitis status. BIOLOGICAL SIGNIFICANCE Crohn's disease (CD) and ulcerative colitis (UC) are the most common inflammatory bowel diseases (IBDs) occurring in humans. The major current diagnosis tool is colonoscopy, which is invasive and could lead to false diagnosis. The emergence of serological biomarkers enables the use of new diagnosis tools such as protein signatures for IBD diagnosis/management. Using 2D-DIGE coupled to mass spectrometry, our longitudinal study in a mouse model of colitis identified a signature of protein biomarkers for specific stages of disease.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Veterans Affairs Medical Center, Decatur, GA, USA.
| | - Mark T Baker
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Bo Xiao
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Lixin Wang
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Veterans Affairs Medical Center, Decatur, GA, USA
| | - Hamed Laroui
- Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Chemistry Department, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA; Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
19
|
Tso VK, Sydora BC, Foshaug RR, Churchill TA, Doyle J, Slupsky CM, Fedorak RN. Metabolomic profiles are gender, disease and time specific in the interleukin-10 gene-deficient mouse model of inflammatory bowel disease. PLoS One 2013; 8:e67654. [PMID: 23874435 PMCID: PMC3706546 DOI: 10.1371/journal.pone.0067654] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 05/21/2013] [Indexed: 12/29/2022] Open
Abstract
Metabolomic profiling can be used to study disease-induced changes in inflammatory bowel diseases (IBD). The aim of this study was to investigate the difference in the metabolomic profile of males and females as they developed IBD. Using the IL-10 gene-deficient mouse model of IBD and wild-type mice, urine at age 4, 6, 8, 12, 16, and 20 weeks was collected and analyzed by nuclear magnetic resonance (NMR) spectroscopy. Multivariate data analysis was employed to assess differences in metabolomic profiles that occurred as a consequence of IBD development and severity (at week 20). These changes were contrasted to those that occurred as a consequence of gender. Our results demonstrate that both IL-10 gene-deficient and wild-type mice exhibit gender-related changes in urinary metabolomic profile over time. Some male-female separating metabolites are common to both IL-10 gene-deficient and control wild-type mice and, therefore, appear to be related predominantly to gender maturation. In addition, we were able to identify gender-separating metabolites that are unique for IL-10 gene-deficient and wild-type mice and, therefore, may be indicative of a gender-specific involvement in the development and severity of the intestinal inflammation. The comparison of the gender-separating metabolomic profile from IL-10 gene-deficient mice and wild-type mice during the development of IBD allowed us to identify changes in profile patterns that appear to be imperative in the development of intestinal inflammation, but yet central to gender-related differences in IBD development. The knowledge of metabolomic profile differences by gender and by disease severity has potential clinical implications in the design of both biomarkers of disease as well as the development of optimal therapies.
Collapse
Affiliation(s)
- Victor K. Tso
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Beate C. Sydora
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Rae R. Foshaug
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | - Jason Doyle
- Department of Laboratory Medicine and Pathology, Vernon Jubilee Hospital, Vernon, British Columbia, Canada
| | - Carolyn M. Slupsky
- Department of Nutrition, University of California Davis, Davis, California, United States of America
| | - Richard N. Fedorak
- Centre of Excellence for Gastrointestinal Inflammation and Immunity Research, Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
20
|
Borowiec AM, Sydora BC, Doyle J, Guan LL, Churchill TA, Madsen K, Fedorak RN. Small bowel fibrosis and systemic inflammatory response after ileocolonic anastomosis in IL-10 null mice. J Surg Res 2012; 178:147-54. [DOI: 10.1016/j.jss.2012.01.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 12/24/2011] [Accepted: 01/30/2012] [Indexed: 12/16/2022]
|
21
|
Dai C, Zheng CQ, Meng FJ, Zhou Z, Sang LX, Jiang M. VSL#3 probiotics exerts the anti-inflammatory activity via PI3k/Akt and NF-κB pathway in rat model of DSS-induced colitis. Mol Cell Biochem 2012; 374:1-11. [PMID: 23271629 DOI: 10.1007/s11010-012-1488-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/17/2012] [Indexed: 02/06/2023]
Abstract
VSL#3 probiotics can be effective on induction and maintenance of the remission of clinical ulcerative colitis. However, the mechanisms are not fully understood. The aim of this study was to examine the effects of VSL#3 probiotics on dextran sulfate sodium (DSS)-induced colitis in rats. Acute colitis was induced by administration of DSS 3.5 % for 7 days in rats. Rats in two groups were treated with either 15 mg VSL#3 or placebo via gastric tube once daily after induction of colitis; rats in other two groups were treated with either the wortmannin (1 mg/kg) via intraperitoneal injection or the wortmannin + VSL#3 after induction of colitis. Anti-inflammatory activity was assessed by myeloperoxidase (MPO) activity. Expression of inflammatory related mediators (iNOS, COX-2, NF-κB, Akt, and p-Akt) and cytokines (TNF-α, IL-6, and IL-10) in colonic tissue were assessed. TNF-α, IL-6, and IL-10 serum levels were also measured. Our results demonstrated that VSL#3 and wortmannin have anti-inflammatory properties by the reduced disease activity index and MPO activity. In addition, administration of VSL#3 and wortmannin for 7 days resulted in a decrease of iNOS, COX-2, NF-κB, TNF-α, IL-6, and p-Akt and an increase of IL-10 expression in colonic tissue. At the same time, administration of VSL#3 and wortmannin resulted in a decrease of TNF-α and IL-6 and an increase of IL-10 serum levels. VSL#3 probiotics therapy exerts the anti-inflammatory activity in rat model of DSS-induced colitis by inhibiting PI3K/Akt and NF-κB pathway.
Collapse
Affiliation(s)
- Cong Dai
- Department of Cadre Ward V, First Affiliated Hospital, China Medical University, Shenyang City, Liaoning Province, China
| | | | | | | | | | | |
Collapse
|
22
|
Lu K, Knutson CG, Wishnok JS, Fox JG, Tannenbaum SR. Serum metabolomics in a Helicobacter hepaticus mouse model of inflammatory bowel disease reveal important changes in the microbiome, serum peptides, and intermediary metabolism. J Proteome Res 2012; 11:4916-26. [PMID: 22957933 DOI: 10.1021/pr300429x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing inflammatory disorder of the bowel. The etiology remains unknown, but IBD is immune-driven and multiple factors including genetic, environmental, and microbiological components play a role. Recombinase-activating gene-2-deficient (Rag2(-/-)) mice infected with Helicobacter hepaticus (H. hepaticus) have been developed as an animal model to imitate naturally occurring inflammatory events and associated key features of chronic inflammatory responses in humans. In this study, we have combined mass spectrometry-based metabolomics and peptidomics to analyze serum samples of Rag2(-/-) mice infected with H. hepaticus. Metabolomics profiling revealed that H. hepaticus infection dramatically changed numerous metabolite pathways, including tryptophan metabolism, glycerophospholipids, methionine-homocysteine cycle, citrate cycle, fatty acid metabolism and purine metabolism, with the majority of metabolites being down-regulated. In particular, there were notable effects of gut microflora on the blood metabolites in infected animals. In addition, the peptidomics approach identified a number of peptides, originating from proteins, including fibrinogen, complement C4, and alpha-2-macroglobulin, with diverse biological functions with potentially important implications for the progress of IBD. In summary, the strategy of integrating a relevant animal model and sensitive mass spectrometry-based profiling may offer a new perspective to explore biomarkers and provide mechanistic insights into IBD.
Collapse
Affiliation(s)
- Kun Lu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | | | | | | |
Collapse
|
23
|
Bai S, Siegal GP, Jhala NC. Foxp3 expression patterns in microscopic colitides: a clinicopathologic study of 69 patients. Am J Clin Pathol 2012; 137:931-6. [PMID: 22586052 DOI: 10.1309/ajcpifhparjej69n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Microscopic colitides, including lymphocytic (LC) and collagenous colitis (CC), are well-described pathologic conditions. An altered immune response is implicated in the pathogenesis of both entities. CD8+ T lymphocytes (CTLs) secrete interleukin 2 which stimulates proliferation of regulatory T cells (Tregs), and Tregs, in turn, inhibit CTLs, inducing cytotoxic tissue damage. In Tregs, Foxp3 regulates T-cell-related immune responses. The distribution of Tregs and CTLs in microscopic colitides has remained underexplored. To characterize differences in the distribution pattern of Foxp3 in biopsy specimens from patients with LC and CC, 71 colonic biopsy specimens from 69 consecutive patients were categorized into 1 of 3 diagnoses: no significant histopathologic abnormality (NSHPA), LC, or CC. Further immunohistochemical evaluation of all biopsy specimens was conducted using a panel of markers including CD8 and Foxp3. Our study demonstrated that CTL distribution pattern differences exist among these 2 colitides and that differences in the immunologic recruitment of Foxp3+ Tregs in the colonic mucosa correlate with differences in the spectrum of morphologic changes seen in patients with either LC or CC.
Collapse
Affiliation(s)
- Shuting Bai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Hospital, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
24
|
Sydora BC, Albert EJ, Foshaug RR, Doyle JSG, Churchill TA, Fedorak RN. Intravenous injection of endogenous microbial components abrogates DSS-induced colitis. Dig Dis Sci 2012; 57:345-54. [PMID: 21881971 DOI: 10.1007/s10620-011-1878-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 08/16/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND The etiology of inflammatory bowel diseases (IBD) is largely unknown, but appears to be perpetuated by uncontrolled responses to antigenic components of the endogenous flora. Tolerance to antigenic stimulation can be achieved by exposure to a given antigen in high amounts (high dose tolerance). Colitis induced by feeding of Dextran Sodium Sulfate (DSS) is an often-used animal model mimicking clinical and histological features of human IBD. AIMS We investigated whether treatment with high doses of endogenous bacterial components can affect the response to these antigenic components and thus impact the course of the inflammatory response induced by DSS. METHODS 129/SvEv mice were injected intravenously in the tail vein with lysates prepared from fecal material of conventionally-raised mice. Control mice received a solution of bacterial antigen-free lysates prepared from fecal material of germ-free mice. Seven days later, colitis was induced in these mice by introducing DSS (3.5%) in the drinking water for 5 days. Onset and course of the inflammatory response was monitored by assessment of weight loss. Mice were sacrificed at day 7 post colitis induction and tested for histopathologic injury, intestinal cytokine release, and systemic response to bacterial antigens. RESULTS Intravenous injection with fecal lysates reduced intestinal and antigen-stimulated systemic pro-inflammatory cytokine release and prevented DSS-induced weight loss and intestinal injury. CONCLUSION Pretreatment with high amount of endogenous bacterial components has a profound tolerogenic effect on the systemic and mucosal immune responses resulting in reduced intestinal inflammation and abrogates colitis-induced weight loss.
Collapse
Affiliation(s)
- Beate C Sydora
- Division of Gastroenterology, Department of Medicine, Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Edmonton, AB, T6G 2E1, Canada.
| | | | | | | | | | | |
Collapse
|
25
|
Lepage P, Van de Perre P. The Immune System of Breast Milk: Antimicrobial and Anti-inflammatory Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 743:121-37. [DOI: 10.1007/978-1-4614-2251-8_9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Oral administration of Lactobacillus plantarum K68 ameliorates DSS-induced ulcerative colitis in BALB/c mice via the anti-inflammatory and immunomodulatory activities. Int Immunopharmacol 2011; 11:2159-66. [PMID: 21996541 DOI: 10.1016/j.intimp.2011.09.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 09/13/2011] [Accepted: 09/25/2011] [Indexed: 02/07/2023]
Abstract
Many different kinds of fermented food are consumed daily in Taiwan, such as stinky tofu, suan-tsai, and fu-tsai. We have previously reported the diversity of lactic acid bacteria (LAB) at different stages of fermentation in the production of suan-tsai and fu-tsai. In this study, the anti-inflammatory and immunomodulatory activities of Lactobacillus plantarum K68 (K68) isolated from fu-tsai were evaluated. K68 significantly inhibited the production of tumor necrosis factor-α (TNF-α) and prostaglandin E(2) (PGE(2)) in lipopolysaccharide (LPS)-induced murine macrophage RAW 264.7 cells and stimulated interferon-γ (IFN-γ) production in human peripheral blood mononuclear cells (hPBMCs). Additionally, orally administered K68 ameliorated dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in BALB/c mice. Both the disease activity index (DAI) and histological scores (HIS) showed that the severity of UC was significantly reduced by oral administration of K68. Furthermore, the production of pro inflammatory cytokines TNF-α, interleukin-1β (IL-1β), and interleukin-6 (IL-6) was significantly reduced in K68-administered group. Colonic mRNA expression levels of TNF-α, cyclooxygenase-2 (COX-2), forkhead box P3 (Foxp3), suppressors of cytokine signaling 3 (SOCS3), and toll like receptor 4 (TLR4), were also reduced in the K68-administered group. These results suggest that K68 exhibits anti-inflammatory and immunomodulatory activities that ameliorate DSS-induced experimental colitis.
Collapse
|
27
|
Bimczok D, Grams JM, Stahl RD, Waites KB, Smythies LE, Smith PD. Stromal regulation of human gastric dendritic cells restricts the Th1 response to Helicobacter pylori. Gastroenterology 2011; 141:929-38. [PMID: 21699795 PMCID: PMC3163821 DOI: 10.1053/j.gastro.2011.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 04/22/2011] [Accepted: 06/03/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Mucosal dendritic cells (DCs) play a key role in initiating the T-helper (Th)1 response to Helicobacter pylori. To further elucidate the mucosal response to H pylori, we examined whether gastric stromal factors condition DCs to support tolerance to H pylori, analogous to intestinal stromal factor-driven macrophage tolerance to commensal bacteria. METHODS To model mucosal DC development, we isolated and cultured cell-depleted human stroma/extracellular matrix from fresh gastric and intestinal mucosa to generate stroma-conditioned media. We then analyzed the capacity of stroma-conditioned media-treated monocyte-derived DCs and primary human gastric and intestinal DCs pulsed in vitro with H pylori to induce T-cell proliferation and interferon gamma secretion. RESULTS Stromal factors in gastric mucosa suppressed H pylori-stimulated DC activation and the ability of DCs to drive a Th1 proliferative and cytokine response to H pylori. The ability of gastric stromal factors to down-regulate DC function was similar to that of intestinal stromal factors and was independent of transforming growth factor β, prostaglandin E₂, interleukin (IL)-10, and thymic stromal lymphopoietin. Stroma-conditioned media-induced reduction in DC-stimulated Th1 responses was associated with reduced DC release of IL-12. CONCLUSIONS Gastric stromal factors down-regulate DC responsiveness to H pylori, resulting in a dampened gastric Th1 response. We speculate that stroma-induced down-regulation of DC function contributes to the permissiveness of both gastric and intestinal mucosa to colonization by persistent residential microbes.
Collapse
Affiliation(s)
- Diane Bimczok
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jayleen M. Grams
- Department of Surgery (Gastrointestinal), University of Alabama at Birmingham, Birmingham, AL 35294
| | - Richard D. Stahl
- Department of Surgery (Gastrointestinal), University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ken B. Waites
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Lesley E. Smythies
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL 35294,Corresponding authors: Phillip D. Smith: Address: 1825 University Blvd. SHEL 611, Birmingham AL 35294-2182, Phone: 205-975-9354, Fax: 205-996-9113, ; and Lesley E. Smythies: Address: 1825 University Blvd. SHEL 606, Birmingham AL 35294-2182, Phone: 205-975-9354, Fax: 205-996-9113,
| | - Phillip D. Smith
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL 35294,VA Medical Center, Birmingham, AL 35233,Corresponding authors: Phillip D. Smith: Address: 1825 University Blvd. SHEL 611, Birmingham AL 35294-2182, Phone: 205-975-9354, Fax: 205-996-9113, ; and Lesley E. Smythies: Address: 1825 University Blvd. SHEL 606, Birmingham AL 35294-2182, Phone: 205-975-9354, Fax: 205-996-9113,
| |
Collapse
|
28
|
Shalev I, Schmelzle M, Robson SC, Levy G. Making sense of regulatory T cell suppressive function. Semin Immunol 2011; 23:282-92. [PMID: 21592823 DOI: 10.1016/j.smim.2011.04.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 04/18/2011] [Indexed: 12/22/2022]
Abstract
Several types of regulatory T cells maintain self-tolerance and control excessive immune responses to foreign antigens. The major regulatory T subsets described over the past decade and novel function in transplantation will be covered in this review with a focus on CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells. Multiple mechanisms have been proposed to explain how Treg cells inhibit effector cells but none can completely explain the observed effects in toto. Proposed mechanisms to explain suppressive activity of Treg cells include the generation of inhibitory cytokines, induced death of effector cells by cytokine deprivation or cytolysis, local metabolic perturbation of target cells mediated by changes in extracellular nucleotide/nucleoside fluxes with alterations in intracellular signaling molecules such as cyclic AMP, and finally inhibition of dendritic cell functions. A better understanding of how Treg cells operate at the molecular level could result in novel and safer therapeutic approaches in transplantation and immune-mediated diseases.
Collapse
Affiliation(s)
- Itay Shalev
- Multi-Organ Transplant Program, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Ontario M5G 2N2, Canada
| | | | | | | |
Collapse
|
29
|
Kathrani A, Schmitz S, Priestnall SL, Smith KC, Werling D, Garden OA, Allenspach K. CD11c+ cells are significantly decreased in the duodenum, ileum and colon of dogs with inflammatory bowel disease. J Comp Pathol 2011; 145:359-66. [PMID: 21592490 DOI: 10.1016/j.jcpa.2011.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/21/2011] [Accepted: 03/15/2011] [Indexed: 02/08/2023]
Abstract
CD11c serves as a marker for human and murine dendritic cells (DCs) and cells expressing this marker have been shown to have similar morphological and functional characteristics in the canine immune system. The aim of this study was to quantify CD11c(+) cells in the duodenum, ileum and colon of healthy dogs and dogs with inflammatory bowel disease (IBD). Endoscopic biopsies from the duodenum (n=12 cases), ileum (n=8 cases) and colon (n=12 cases) were obtained from dogs diagnosed with IBD. Intestinal tissue from 10 healthy beagle dogs was used as control. Immunofluorescence microscopy was carried out using an anti-canine CD11c monoclonal antibody. Labelled cells were recorded as cells per 120,000 μm(2). The canine chronic enteropathy clinical activity index (CCECAI) was calculated for all dogs with IBD. In addition, sections from all dogs with IBD were evaluated according to the guidelines of the World Small Animal Veterinary Association Gastrointestinal Standardization Group. The number of CD11c(+) cells in the duodenum, ileum and colon of dogs with IBD was significantly reduced compared with controls (P<0.01, P<0.01 and P<0.05, respectively). There was a significant negative correlation between the number of CD11c(+) cells in the colon of dogs with IBD and the CCECAI (P=0.044, r(2)=-0.558). Chronic inflammation in canine IBD appears to involve an imbalance in the intestinal DC population. Future studies will determine whether reduced expression of CD11c could be a useful marker for the diagnosis and monitoring of canine IBD.
Collapse
Affiliation(s)
- A Kathrani
- Department of Veterinary Clinical Sciences, Royal Veterinary College, University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Sydora BC, McFarlane SM, Doyle JSG, Fedorak RN. Neonatal exposure to fecal antigens reduces intestinal inflammation. Inflamm Bowel Dis 2011; 17:899-906. [PMID: 20824814 DOI: 10.1002/ibd.21453] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 06/09/2010] [Indexed: 12/17/2022]
Abstract
BACKGROUND A role for bacterial antigens in the pathogenesis of inflammatory bowel disease (IBD) has been established in enhanced humoral and cellular immune response to ubiquitous antigens of the enteric flora. However, we have recently shown that bacterial antigens in the absence of live bacteria cannot initiate an intestinal inflammation in IBD-prone interleukin (IL)-10 gene-deficient mice. The objective was to investigate whether neonatal exposure to antigens of their own endogenous flora can tolerize mice to bacterial antigens. METHODS IL-10 gene-deficient neonates were injected intraperitoneally within 72 hours of birth with a sterile solution of bacterial lysates prepared from fecal material of either conventionally raised mice (contains bacterial antigens) or axenic mice (lacks bacterial antigens). The onset of intestinal inflammation was monitored as the appearance of occult blood in the stool in weekly hemoccult analysis. Mice were sacrificed between age 15 and 19 weeks and tested for histopathologic injury, intestinal inflammation, and systemic response to bacterial antigens. RESULTS In mice neonatally exposed to bacterial antigens the onset of intestinal inflammation was delayed and the incidence of histopathologic injury at age 18 weeks was reduced. In addition, mice injected with lysates from conventionally raised mice exhibited decreased release of proinflammatory cytokines (interferon gamma [IFN-γ] and IL-17) in intestinal tissue and demonstrated reduced bacteria-stimulated systemic responses when compared to mice injected with lysates derived from bacteria-free, axenic mice. CONCLUSIONS Neonatal intraperitoneal injection of antigens from the commensal flora causes long-lasting changes in systemic and mucosal immune responses resulting in delayed onset of intestinal inflammation and injury in IBD-prone IL-10 gene-deficient mice.
Collapse
Affiliation(s)
- Beate C Sydora
- Division of Gastroenterology, Department of Medicine, University of Alberta, Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Edmonton, Alberta, Canada.
| | | | | | | |
Collapse
|
31
|
Barnett MPG, McNabb WC, Cookson AL, Zhu S, Davy M, Knoch B, Nones K, Hodgkinson AJ, Roy NC. Changes in colon gene expression associated with increased colon inflammation in interleukin-10 gene-deficient mice inoculated with Enterococcus species. BMC Immunol 2010; 11:39. [PMID: 20630110 PMCID: PMC2912833 DOI: 10.1186/1471-2172-11-39] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Accepted: 07/15/2010] [Indexed: 12/17/2022] Open
Abstract
Background Inappropriate responses to normal intestinal bacteria may be involved in the development of Inflammatory Bowel Diseases (IBD, e.g. Crohn's Disease (CD), Ulcerative Colitis (UC)) and variations in the host genome may mediate this process. IL-10 gene-deficient (Il10-/-) mice develop CD-like colitis mainly in the colon, in part due to inappropriate responses to normal intestinal bacteria including Enterococcus strains, and have therefore been used as an animal model of CD. Comprehensive characterization of changes in cecum gene expression levels associated with inflammation in the Il10-/- mouse model has recently been reported. Our aim was to characterize changes in colonic gene expression levels in Il10-/- and C57BL/6J (C57; control) mice resulting from oral bacterial inoculation with 12 Enterococcus faecalis and faecium (EF) strains isolated from calves or poultry, complex intestinal flora (CIF) collected from healthy control mice, or a mixture of the two (EF·CIF). We investigated two hypotheses: (1) that oral inoculation of Il10-/- mice would result in greater and more consistent intestinal inflammation than that observed in Il10-/- mice not receiving this inoculation, and (2) that this inflammation would be associated with changes in colon gene expression levels similar to those previously observed in human studies, and these mice would therefore be an appropriate model for human CD. Results At 12 weeks of age, total RNA extracted from intact colon was hybridized to Agilent 44 k mouse arrays. Differentially expressed genes were identified using linear models for microarray analysis (Bioconductor), and these genes were clustered using GeneSpring GX and Ingenuity Pathways Analysis software. Intestinal inflammation was increased in Il10-/- mice as a result of inoculation, with the strongest effect being in the EF and EF·CIF groups. Genes differentially expressed in Il10-/- mice as a result of EF or EF·CIF inoculation were associated with the following pathways: inflammatory disease (111 genes differentially expressed), immune response (209 genes), antigen presentation (11 genes, particularly major histocompatability complex Class II), fatty acid metabolism (30 genes) and detoxification (31 genes). Conclusions Our results suggest that colonic inflammation in Il10-/- mice inoculated with solutions containing Enterococcus strains is associated with gene expression changes similar to those of human IBD, specifically CD, and that with the EF·CIF inoculum in particular this is an appropriate model to investigate food-gene interactions relevant to human CD.
Collapse
Affiliation(s)
- Matthew P G Barnett
- Food, Metabolism & Microbiology Section, AgResearch Grasslands, Tennent Drive, Palmerston North 4442, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bibas Bonet M, Meson O, de Moreno de LeBlanc A, Dogi C, Chaves S, Kortsarz A, Grau A, Perdigón G. Prebiotic effect of yacon (Smallanthus sonchifolius) on intestinal mucosa using a mouse model. FOOD AGR IMMUNOL 2010. [DOI: 10.1080/09540100903563589] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
33
|
Ung VYL, Foshaug RR, MacFarlane SM, Churchill TA, Doyle JSG, Sydora BC, Fedorak RN. Oral administration of curcumin emulsified in carboxymethyl cellulose has a potent anti-inflammatory effect in the IL-10 gene-deficient mouse model of IBD. Dig Dis Sci 2010; 55:1272-7. [PMID: 19513843 DOI: 10.1007/s10620-009-0843-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 05/08/2009] [Indexed: 12/13/2022]
Abstract
Curcumin is a tumeric-derived, water-insoluble polyphenol with potential beneficial health effects for humans. It has been shown to have preventive as well as therapeutic effects in chemically induced murine models of colitis. To investigate whether curcumin exerts a similar effect on the spontaneous colitis in interleukin (IL)-10 gene-deficient mice, we gavaged these mice daily for 2 weeks with 200 mg/kg per day curcumin emulsified in carboxymethyl cellulose, a food additive generally used as a viscosity modifier. Mice fed the curcumin/carboxymethyl cellulose mixture and those receiving carboxymethyl cellulose alone demonstrated similar reductions in histological injury score and colon weight/length ratio compared to water-fed controls. However, significant reductions in pro-inflammatory cytokine release in intestinal explant cultures were only seen in mice treated with the curcumin mixture. Our data demonstrate that in IL-10 gene-deficient mice, both oral curcumin and carboxymethyl cellulose, appear to have modifying effects on colitis. However, curcumin has additional anti-inflammatory effects mediated through a reduced production of potent pro-inflammatory mucosal cytokines.
Collapse
Affiliation(s)
- Victoria Y L Ung
- Department of Medicine, Division of Gastroenterology, Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Zeidler Ledcor Building, Edmonton, AB T6G 2X8, Canada
| | | | | | | | | | | | | |
Collapse
|
34
|
Paturi G, Phillips M, Kailasapathy K. Comparison of functional assay and microarray analysis for determination of Lactobacillus acidophilus LAFTI L10 induced gut immune responses in mice. Food Res Int 2010. [DOI: 10.1016/j.foodres.2009.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Sydora BC, MacFarlane SM, Lupicki M, Dmytrash AL, Dieleman LA, Fedorak RN. An imbalance in mucosal cytokine profile causes transient intestinal inflammation following an animal's first exposure to faecal bacteria and antigens. Clin Exp Immunol 2010; 161:187-96. [PMID: 20345974 DOI: 10.1111/j.1365-2249.2010.04140.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Intestinal microflora play a critical role in the initiation and perpetuation of chronic inflammatory bowel diseases. In genetically susceptible hosts, bacterial colonization results in rapid-onset chronic intestinal inflammation. Nevertheless, the intestinal and systemic immune response to faecal bacteria and antigen exposure into a sterile intestinal lumen of a post-weaned animal with a mature immune system are not understood clearly. This study examined the effects of faecal bacteria and antigen exposure on the intestinal mucosal and systemic immune system in healthy axenic mice. Axenic wild-type mice were inoculated orally with a crude faecal slurry solution derived from conventionally raised mice and were analysed prior to and then at days 3, 7, 14 and 28 post-treatment. Ingestion of faecal slurry resulted in a transient, early onset of proinflammatory interferon (IFN)-gamma, tumour necrosis factor (TNF)-alpha and interleukin (IL)-17 response that was maximal at day 3. In contrast, the transient release of the anti-inflammatory cytokines IL-10 and IL-4 occurred later and was maximal at day 7. Both responses subsided by day 14. This early cytokine imbalance was associated with a brief rise in colonic and caecal histopathological injury score at day 7. The bacterial antigen-specific systemic response was found to follow the intestinal immune response with a maximal release of both pro- and anti-inflammatory cytokines at day 7. Thus, first exposure of healthy axenic wild-type mice to normal faecal flora and antigens results in an early proinflammatory cytokine response and transient colonic inflammation that then resolves in conjunction with a subsequent anti-inflammatory cytokine profile.
Collapse
Affiliation(s)
- B C Sydora
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | | | |
Collapse
|
36
|
Yang GY, Taboada S, Liao J. Inflammatory bowel disease: a model of chronic inflammation-induced cancer. Methods Mol Biol 2009; 511:193-233. [PMID: 19347299 DOI: 10.1007/978-1-59745-447-6_9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic inflammation is a well-recognized risk factor for the development of human cancer. Inflammatory bowel disease (IBD), including ulcerative colitis and Crohn's disease, is a typical longstanding inflammatory disease of the colon with increased risk for the development of colorectal carcinoma. Several molecular events involved in chronic inflammatory process may contribute to multistage progression of human cancer development, including the overproduction of reactive oxygen and nitrogen species, overproduction/activation of key arachidonic acid metabolites and cytokines/growth factors, and immunity system dysfunction. Multiple animal models of IBD have been established, and in general, these models can be mainly categorized into chemically induced, genetically engineered (transgenic or gene knock-out), spontaneous, and adoptive transferring animal models. This chapter mainly focuses on (1) epidemiologic and molecular evidence on IBD and risk of colorectal cancer, (2) molecular pathogenesis of IBD-induced carcinogenesis, and (3) modeling of IBD-induced carcinogenesis in rodents and its application.
Collapse
Affiliation(s)
- Guang-Yu Yang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
37
|
Bell JA, St Charles JL, Murphy AJ, Rathinam VAK, Plovanich-Jones AE, Stanley EL, Wolf JE, Gettings JR, Whittam TS, Mansfield LS. Multiple factors interact to produce responses resembling spectrum of human disease in Campylobacter jejuni infected C57BL/6 IL-10-/- mice. BMC Microbiol 2009; 9:57. [PMID: 19296832 PMCID: PMC2669091 DOI: 10.1186/1471-2180-9-57] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 03/18/2009] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Campylobacter jejuni infection produces a spectrum of clinical presentations in humans--including asymptomatic carriage, watery diarrhea, and bloody diarrhea--and has been epidemiologically associated with subsequent autoimmune neuropathies. This microorganism is genetically variable and possesses genetic mechanisms that may contribute to variability in nature. However, relationships between genetic variation in the pathogen and variation in disease manifestation in the host are not understood. We took a comparative experimental approach to explore differences among different C. jejuni strains and studied the effect of diet on disease manifestation in an interleukin-10 deficient mouse model. RESULTS In the comparative study, C57BL/6 interleukin-10-/- mice were infected with seven genetically distinct C. jejuni strains. Four strains colonized the mice and caused disease; one colonized with no disease; two did not colonize. A DNA:DNA microarray comparison of the strain that colonized mice without disease to C. jejuni 11168 that caused disease revealed that putative virulence determinants, including loci encoding surface structures known to be involved in C. jejuni pathogenesis, differed from or were absent in the strain that did not cause disease. In the experimental study, the five colonizing strains were passaged four times in mice. For three strains, serial passage produced increased incidence and degree of pathology and decreased time to develop pathology; disease shifted from watery to bloody diarrhea. Mice kept on an ~6% fat diet or switched from an approximately 12% fat diet to an approximately 6% fat diet just before infection with a non-adapted strain also exhibited increased incidence and severity of disease and decreased time to develop disease, although the effects of diet were only statistically significant in one experiment. CONCLUSION C. jejuni strain genetic background and adaptation of the strain to the host by serial passage contribute to differences in disease manifestations of C. jejuni infection in C57BL/6 IL-10-/- mice; differences in environmental factors such as diet may also affect disease manifestation. These results in mice reflect the spectrum of clinical presentations of C. jejuni gastroenteritis in humans and contribute to usefulness of the model in studying human disease.
Collapse
Affiliation(s)
- Julia A Bell
- Comparative Enteric Diseases Laboratory, National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Swidsinski A, Ung V, Sydora BC, Loening-Baucke V, Doerffel Y, Verstraelen H, Fedorak RN. Bacterial overgrowth and inflammation of small intestine after carboxymethylcellulose ingestion in genetically susceptible mice. Inflamm Bowel Dis 2009; 15:359-64. [PMID: 18844217 DOI: 10.1002/ibd.20763] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Detergents and emulsifiers added to food may destroy the mucus barrier, which normally isolates bacteria from the intestinal wall, and lead to chronic bowel inflammation in susceptible persons. We investigated the influence of 2% carboxymethylcellulose (CMC) on the biostructure of the intestinal microbiota in IL-10 gene-deficient mice. METHODS Twenty to 27-week-old IL-10 gene-deficient mice received either 2% CMC solution (n = 7) or water (n = 6) orally for 3 weeks. Intestinal bacteria were investigated using fluorescence in situ hybridization in paraffin-fixed sections of the intestine. RESULTS CMC-treated IL-10 gene-deficient mice demonstrated a massive bacterial overgrowth, distention of spaces between villi, with bacteria filling these spaces, adherence of bacteria to the mucosa, and migration of bacteria to the bottom of the crypts of Lieberkuehn. Leukocytes migrated into the intestinal lumen in 4 of the 7 CMC mice. The changes were similar to those observed in Crohn's disease in humans and were absent in control animals. CONCLUSIONS CMC induces bacterial overgrowth and small bowel inflammation in susceptible animals. Because of its ubiquity in products and its unrestricted use in food of the industrial world, CMC is an ideal suspect to account for the rise of IBD in the 20th century.
Collapse
Affiliation(s)
- Alexander Swidsinski
- Humboldt University, Charité Hospital, Laboratory for Molecular Genetics, Polymicrobial Infections and Bacterial Biofilms, 10098 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
39
|
Ewaschuk JB, Diaz H, Meddings L, Diederichs B, Dmytrash A, Backer J, Looijer-van Langen M, Madsen KL. Secreted bioactive factors from Bifidobacterium infantis enhance epithelial cell barrier function. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1025-34. [PMID: 18787064 DOI: 10.1152/ajpgi.90227.2008] [Citation(s) in RCA: 395] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Live probiotic bacteria are effective in reducing gut permeability and inflammation. We have previously shown that probiotics release peptide bioactive factors that modulate epithelial resistance in vitro. The objectives of this study were to determine the impact of factors released from Bifidobacteria infantis on intestinal epithelial cell permeability and tight junction proteins and to assess whether these factors retain their bioactivity when administered to IL-10-deficient mice. B. infantis conditioned medium (BiCM) was applied to T84 human epithelial cells in the presence and absence of TNF-alpha and IFN-gamma. Transepithelial resistance (TER), tight junction proteins [claudins 1, 2, 3, and 4, zonula occludens (ZO)-1, and occludin] and MAP kinase activity (p38 and ERK) were examined. Acute effects of BiCM on intestinal permeability were assessed in colons from IL-10-deficient mice in Ussing chambers. A separate group of IL-1-deficient mice was treated with BiCM for 4 wk and then assessed for intestinal histological injury, cytokine levels, epithelial permeability, and immune response to bacterial antigens. In T84 cells, BiCM increased TER, decreased claudin-2, and increased ZO-1 and occludin expression. This was associated with enhanced levels of phospho-ERK and decreased levels of phospho-p38. BiCM prevented TNF-alpha- and IFN-gamma-induced drops in TER and rearrangement of tight junction proteins. Inhibition of ERK prevented the BiCM-induced increase in TER and attenuated the protection from TNF-alpha and IFN-gamma. Oral BiCM administration acutely reduced colonic permeability in mice whereas long-term BiCM treatment in IL-10-deficient mice attenuated inflammation, normalized colonic permeability, and decreased colonic and splenic IFN-gamma secretion. In conclusion, peptide bioactive factors from B. infantis retain their biological activity in vivo and are effective in normalizing gut permeability and improving disease in an animal model of colitis. The effects of BiCM are mediated in part by changes in MAP kinases and tight junction proteins.
Collapse
|
40
|
Murdoch TB, Fu H, MacFarlane S, Sydora BC, Fedorak RN, Slupsky CM. Urinary metabolic profiles of inflammatory bowel disease in interleukin-10 gene-deficient mice. Anal Chem 2008; 80:5524-31. [PMID: 18558774 DOI: 10.1021/ac8005236] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inflammatory bowel disease (IBD) is a chronic debilitating disorder that is thought to have both genetic and environmental contributors. Commensal microflora have been shown to play a key part in the disease process. Metabolomics, the study of large numbers of small molecule metabolites, has demonstrated that disease and/or changes in gut microbial composition modulate mammalian urine metabolite fingerprints. The aim of this project was to associate the development of IBD with specific changes in a mouse urinary metabolic fingerprint. Interleukin-10 (IL-10) gene-deficient mice were raised alongside age-matched 129/SvEv controls in conventional housing. Urine samples (22 h) were collected at ages 4, 6, 8, 12, 16, and 20 weeks. Metabolite concentrations were derived from analysis of nuclear magnetic resonance spectra, and both multivariate and two-way analysis of variance (ANOVA) statistical techniques were applied to the resulting data. Principal component analysis and partial least-squares-discriminant analysis of urine derived from the control and IL-10 gene-deficient mice revealed that while both groups initially had similar metabolic profiles, they diverged substantially with the onset of IBD as assessed through external phenotypic changes. Several metabolites, including trimethylamine (TMA) and fucose, changed dramatically in the IL-10 gene-deficient mice following 8 weeks of age, concomitant with the known timeline for development of severe histological injury. This study illustrates that metabolomics is effective at distinguishing IBD using urinary metabolite profiles.
Collapse
Affiliation(s)
- Travis B Murdoch
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Sydora BC, MacFarlane SM, Tavernini MM, Doyle JSG, Fedorak RN. CD4+CD25+ regulatory T cells have divergent effects on intestinal inflammation in IL-10 gene-deficient mice. Dig Dis Sci 2008; 53:1544-52. [PMID: 17990114 DOI: 10.1007/s10620-007-0064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2007] [Accepted: 10/04/2007] [Indexed: 12/09/2022]
Abstract
The regulatory effect of murine CD4+CD25+ T-cells in vivo appears to be dependent on the secretion of IL-10. The lack of IL-10 in the IL-10 gene-deficient mouse has a profoundly negative effect on the mouse's regulation of the response to intestinal bacteria, resulting in severe enterocolitis. We investigated the effect of neonatal injection with wild-type CD4+CD25+ T-cells on the intestinal immune response in IL-10 gene-deficient mice. At the time of analysis, 8-15 weeks later, all mice demonstrated an increased, antigen-stimulated systemic response. However, the intestinal response was divergent with about half of the mice developing an intestinal inflammation with a high injury score, the other half demonstrating a remarkable reduction in injury score with a marked decrease in intestinal IFNgamma release. Our data demonstrate that CD4+CD25+ T-cells can be activated in IL-10 gene-deficient mice and that this stimulation under stringent conditions has the potential to reduce intestinal inflammation.
Collapse
Affiliation(s)
- Beate C Sydora
- Department of Medicine, Division of Gastroenterology, Center of Excellence for Gastrointestinal Inflammation and Immunity Research, University of Alberta, Zeidler Ledcor Building, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
42
|
Imaoka A, Shima T, Kato K, Mizuno S, Uehara T, Matsumoto S, Setoyama H, Hara T, Umesaki Y. Anti-inflammatory activity of probiotic Bifidobacterium: Enhancement of IL-10 production in peripheral blood mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-29 cells. World J Gastroenterol 2008; 14:2511-6. [PMID: 18442197 PMCID: PMC2708361 DOI: 10.3748/wjg.14.2511] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine the anti-inflammatory activity of probiotic Bifidobacteria in Bifidobacteria-fermented milk (BFM) which is effective against active ulcerative colitis (UC) and exacerbations of UC, and to explore the immunoregulatory mechanisms.
METHODS: Peripheral blood mononuclear cells (PBMNC) from UC patients or HT-29 cells were co-cultured with heat-killed probiotic bacteria or culture supernatant of Bifidobacterium breve strain Yakult (BbrY) or Bifidobacterium bifidum strain Yakult (BbiY) to estimate the amount of IL-10 or IL-8 secreted.
RESULTS: Both strains of probiotic Bifidobacteria contained in the BFM induced IL-10 production in PBMNC from UC patients, though BbrY was more effective than BbiY. Conditioned medium (CM) and DNA of both strains inhibited IL-8 secretion in HT-29 cells stimulated with TNF-α, whereas no such effect was observed with heat-killed bacteria. The inhibitory effect of CM derived from BbiY was greater than that of CM derived from BbrY. DNAs of the two strains had a comparable inhibitory activity against the secretion of IL-8. CM of BbiY induced a repression of IL-8 gene expression with a higher expression of IκB-ζ mRNA 4 h after culture of HT-29 cells compared to that in the absence of CM.
CONCLUSION: Probiotic Bifidobacterium strains in BFM enhance IL-10 production in PBMNC and inhibit IL-8 secretion in intestinal epithelial cells, suggesting that BFM has anti-inflammatory effects against ulcerative colitis.
Collapse
|
43
|
Hosea Blewett HJ, Cicalo MC, Holland CD, Field CJ. The immunological components of human milk. ADVANCES IN FOOD AND NUTRITION RESEARCH 2008; 54:45-80. [PMID: 18291304 DOI: 10.1016/s1043-4526(07)00002-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Breast-feeding is generally accepted as the optimal method of feeding infants. However, we have yet to fully understand the complex mixture of bioactive compounds contained in human milk. Epidemiological studies have indicated that breast-feeding is associated with health benefits in the infant for many immune-related conditions. Breast milk contains various antimicrobial substances, factors that promote immune development, constituents that promote tolerance/priming of the infant immune system, as well as anti-inflammatory components. This chapter identifies and discusses the immunological compounds in human milk and the available evidence for their effect on the immune system of the infant. Current feeding regimens recommended for infants are based primarily on the current understanding of the nutritional requirements of the neonate, but perhaps will be modified to reflect the consequences on immune function both immediate and later in life.
Collapse
Affiliation(s)
- Heather J Hosea Blewett
- Department of Agricultural, Food and Nutritional Sciences, Alberta Institute for Human Nutrition, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | | | | | | |
Collapse
|
44
|
de Moreno de LeBlanc A, Chaves S, Carmuega E, Weill R, Antóine J, Perdigón G. Effect of long-term continuous consumption of fermented milk containing probiotic bacteria on mucosal immunity and the activity of peritoneal macrophages. Immunobiology 2007; 213:97-108. [PMID: 18241694 DOI: 10.1016/j.imbio.2007.07.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Revised: 06/07/2007] [Accepted: 07/23/2007] [Indexed: 11/18/2022]
Abstract
The effect of the long-term administration of commercial fermented milk containing probiotic bacteria in the mucosal immune response and peritoneal macrophages was analyzed. BALB/c mice were fed with fermented milk for 98 consecutive days. Small and large intestines were removed for histology; IgA, CD4, CD8 cells and cytokines-producing cells were counted. The influence on the immune cells associated with bronchus and mammary glands as well as on peritoneal macrophages was also analyzed. Continuous oral administration of fermented milk increased IgA+ cells in both parts of the intestine (small and large intestine). IL-10, a regulatory cytokine, increased in the intestinal cells in most samples. TNFalpha, IFNgamma and IL-2 producing cells were also enhanced. Values for CD4 and CD8(+) cell populations in lamina propria of the intestine were increased in relation to the control throughout the assay. No modifications in the histology of intestines were observed. Long-term consumption of fermented milk enhanced intestinal mucosa immunity, mediated by IgA+ cells and by cytokine production. This improvement of gut immunity was maintained and down-regulated by cytokines such as IL-10, preventing gut inflammatory immune response. The effect of this fermented milk on mucosal sites distant to the gut, such as bronchus and mammary glands, showed that in both tissues the increase in IgA+ cells was only observed at the beginning of the continuous consumption and no modifications in the number of cytokine positive cells were found. Similar observations were found when phagocytic activity of peritoneal macrophages was measured. It was demonstrated that the most evident effect of long-term consumption of fermented milk was observed in the intestine. Immunodulatory effects and the maintenance of intestinal homeostasis without secondary effects after long-term administration of fermented milk were also observed.
Collapse
Affiliation(s)
- A de Moreno de LeBlanc
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Chacabuco 145, Tucumán, Argentina (T4000ILC)
| | | | | | | | | | | |
Collapse
|
45
|
Sydora BC, Macfarlane SM, Walker JW, Dmytrash AL, Churchill TA, Doyle J, Fedorak RN. Epithelial barrier disruption allows nondisease-causing bacteria to initiate and sustain IBD in the IL-10 gene-deficient mouse. Inflamm Bowel Dis 2007; 13:947-54. [PMID: 17427241 DOI: 10.1002/ibd.20155] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND In the IL-10 gene-deficient mouse model, development of intestinal inflammation is associated with a defect in epithelial barrier integrity that is thought to allow sufficient passage of bacteria or bacterial antigens to initiate a mucosal immune response. Microbial monoassociation experiments into axenic animals have shown that some, but not all, endogenous bacteria will initiate an intestinal inflammatory response. For instance, Bacteroides vulgatus does not initiate intestinal inflammation in axenic IL-10 gene-deficient mice. We investigated whether B. vulgatus requires concomitant disruption of the intestinal epithelial barrier integrity in order to initiate an inflammatory response. METHODS We first identified a dose of the indomethacin that would cause a primary disruption of the epithelial barrier without causing intestinal inflammation. IL-10 axenic mice were then administered this dose of indomethacin in their drinking water for 7 days and concomitantly monoassociated, by oral gavage, with B. vulgatus. RESULTS Indomethacin treatment (2 microg/g/d) for 7 days resulted in disruption of epithelial barrier integrity, but it caused neither a systemic inflammatory response nor a mucosal inflammatory response in the colon or cecum. Monoassociation with B. vulgatus alone did not lead to a mucosal inflammatory response, despite a measurable systemic response. In contrast, administration of indomethacin plus B. vulgatus-monoassociation resulted in a marked intestinal inflammatory response in colon and cecum. CONCLUSIONS Our data show that, in a genetically predisposed animal model, the nondisease-causing endogenous bacteria, B. vulgatus, is able to cause an intestinal inflammatory response provided that disruption of the intestinal epithelial barrier has occurred.
Collapse
Affiliation(s)
- Beate C Sydora
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Elovitz MA, Mrinalini C. The use of progestational agents for preterm birth: lessons from a mouse model. Am J Obstet Gynecol 2006; 195:1004-10. [PMID: 17000233 DOI: 10.1016/j.ajog.2006.06.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/19/2006] [Accepted: 06/01/2006] [Indexed: 01/08/2023]
Abstract
OBJECTIVE On the basis of the recent Maternal Fetal Medicine Unit Networks clinical trial, the American College of Obstetricians and Gynecologists supports the administration of 17-alpha hydroxyprogesterone caproate to high-risk patients. Because inflammation/infection is believed to be a contributing factor in many cases of preterm birth, it is imperative to understand the effect of 17-alpha hydroxyprogesterone caproate treatment in this clinical situation. STUDY DESIGN Using a mouse model of localized intrauterine inflammation, we investigated the ability of progestational agents to prevent preterm birth. On gestational day 15 (E15), dams were assigned randomly to treatment with 17-alpha hydroxyprogesterone caproate, medroxyprogesterone acetate, or vehicle before intrauterine infusion of lipopolysaccharide. All dams were monitored for morbidity and preterm birth. Three separate sets of experiments were performed to assess different outcomes at 6, 24, and 96 hours. At 6 and 24 hours, C-reactive protein, interleukin-6, and interleukin-10 levels were measured in maternal serum by enzyme-linked immunosorbent assay. RESULTS Pretreatment with 17-alpha hydroxyprogesterone caproate or medroxyprogesterone acetate before intrauterine lipopolysaccharide treatment significantly decreased the preterm birth rate, compared with lipopolysaccharide treatment alone. Medroxyprogesterone acetate treatment was more effective than 17-alpha hydroxyprogesterone caproate treatment in the prevention of preterm birth and resulted in live pups at term. Treatment with 17-alpha hydroxyprogesterone caproate was associated with significant maternal morbidity. CONCLUSION In the setting of intrauterine inflammation, progestational agents decrease the preterm birth rate but can result in maternal morbidity. 17-Alpha hydroxyprogesterone caproate should not be used in patients who are suspected of having subclinical infection and/or acute preterm labor. The mechanisms by which progestational agents inhibit preterm birth warrants further investigations so that the use of this drug to appropriate populations could be pursued without undue fetal or maternal harm.
Collapse
Affiliation(s)
- Michal A Elovitz
- Department of Obstetrics and Gynecology, Center for Research in Reproduction and Women's Health, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
47
|
Sydora BC, Tavernini MM, Doyle J, Fedorak RN. A defect in epithelial barrier integrity is not required for a systemic response to bacterial antigens or intestinal injury in T cell receptor-alpha gene-deficient mice. Inflamm Bowel Dis 2006; 12:750-7. [PMID: 16917231 DOI: 10.1097/00054725-200608000-00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Genetically induced disruption of the intestinal epithelial barrier leads to development of intestinal inflammation. In the interleukin-10 gene-deficient inflammatory bowel disease (IBD) mouse model, for instance, a primary defect in intestinal epithelial integrity occurs before the development of enterocolitis. In humans, a causal role for epithelial barrier disruption is still controversial. Although studies with first-degree relatives of IBD patients suggests an underlying role of impaired barrier function, a primary epithelial barrier defect in IBD patients has not been confirmed. The purpose of this article is to examine whether a primary epithelial barrier disruption is a prerequisite for the development of intestinal inflammation or whether intestinal inflammation can develop in the absence of epithelial disruption. We examined the intestinal epithelial integrity of the T cell receptor (TCR)-alpha gene-deficient mouse model of IBD. MATERIALS AND METHODS In vivo colonic permeability, determined by mannitol transmural flux, was assessed in 6-week-, 12-week-, and 25-week-old TCR-alpha gene-deficient and wild-type control mice using a single-pass perfusion technique. Mice were scored for intestinal histological injury and intestinal cytokine levels measured in organ cultures. Systemic responses to bacterial antigens were determined through 48-h spleen cell cultures stimulated with sonicate derived from endogenous bacterial strains. RESULTS In contrast with previous findings in the interleukin-10 gene-deficient IBD model, TCR-alpha gene-deficient mice did not demonstrate evidence of primary intestinal epithelial barrier disruption at any age, despite developing a moderate to severe colitis within 12 weeks. A rise in intestinal interferon (IFN)-gamma levels preceded the onset of mucosal inflammation and then correlated closely with the degree of intestinal inflammation and injury. Spleen cells from TCR-alpha gene-deficient mice released IFN-gamma in response to stimulation with endogenous luminal bacterial antigens, a finding that suggests that the systemic response to bacterial antigens occurred independently of epithelial barrier disruption. CONCLUSIONS Intestinal inflammation and a systemic response to bacterial antigens can develop in the absence of a measurable disruption of intestinal permeability.
Collapse
Affiliation(s)
- Beate C Sydora
- Center of Excellence for Gastrointestinal Inflammation and Immunity Research, Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
48
|
Sydora BC, Martin SM, Lupicki M, Dieleman LA, Doyle J, Walker JW, Fedorak RN. Bacterial antigens alone can influence intestinal barrier integrity, but live bacteria are required for initiation of intestinal inflammation and injury. Inflamm Bowel Dis 2006; 12:429-36. [PMID: 16775486 DOI: 10.1097/00054725-200606000-00001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Intestinal flora plays a critical role in the initiation and perpetuation of inflammatory bowel disease. This study examined whether live fecal bacteria were necessary for the initiation of this inflammatory response or whether sterile fecal material would provoke a similar response. Three preparations of fecal material were prepared: (1) a slurry of live fecal bacteria, (2) a sterile lysate of bacterial antigens, and (3) a sterile filtrate of fecal water. Each preparation was introduced via gastric gavage into the intestines of axenic interleukin-10 gene-deficient mice genetically predisposed to develop inflammatory bowel disease. Intestinal barrier integrity and degrees of mucosal and systemic inflammations were determined for each preparation group. Intestinal barrier integrity, as determined by mannitol transmural flux, was altered by both live fecal bacterial and sterile lysates of bacterial antigens, although it was not altered by sterile filtrates of fecal water. However, only live fecal bacteria initiated mucosal inflammation and injury and a systemic immune response. Fecal bacterial antigens in the presence of live bacteria and sterile fecal bacterial antigens have different effects on the initiation and perpetuation of intestinal inflammation.
Collapse
Affiliation(s)
- Beate C Sydora
- Department of Medicine, Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
49
|
Sydora BC, Tavernini MM, Doyle JSG, Fedorak RN. Association with selected bacteria does not cause enterocolitis in IL-10 gene-deficient mice despite a systemic immune response. Dig Dis Sci 2005; 50:905-13. [PMID: 15906767 DOI: 10.1007/s10620-005-2663-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Resident bacteria have been implicated to play a major role in the development of inflammatory bowel disease. While luminally sterile IL-10 gene-deficient mice remain disease-free, their conventionally raised littermates develop enterocolitis associated with increased numbers of luminal and mucosal adherent bacteria. To investigate the role of defined bacteria on the initiation and development of this enterocolitis, we associated luminally sterile IL-10 gene-deficient mice with pure strains of resident bacteria. Axenic, luminally sterile mice were either monoassociated with viridans group Streptococcus or Clostridium sordellii or co-associated with Bacteroides vulgatus and Clostridium sordellii. Seven to 22 weeks later the mice were analyzed for intestinal histologic injury, epithelial permeability, and an inflammatory immune response to bacterial antigens. Despite optimal colonization none of the tested bacteria caused intestinal inflammation, release of inflammatory cytokines from the epithelia, or disruption of the epithelial barrier integrity. However, in the case of association with Bacteroides vulgatus and Clostridium sordellii, a systemic immune response to bacterial-derived antigens was measured, with a magnitude similar to that seen in conventional sick Il-10 gene-deficient mice. This response was not detected in mice associated with viridans group Streptococcus. We conclude that colonization of the intestinal lumen with individual bacterial species may not be sufficient to alter epithelial barrier integrity, increase intestinal cytokine release, or cause intestinal inflammation in susceptible IL-10 gene-deficient mice, despite the ability of these same bacteria to stimulate a systemic response.
Collapse
Affiliation(s)
- Beate C Sydora
- Department of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
50
|
Silva MA, López CB, Riverin F, Oligny L, Menezes J, Seidman EG. Characterization and distribution of colonic dendritic cells in Crohn's disease. Inflamm Bowel Dis 2004; 10:504-12. [PMID: 15472509 DOI: 10.1097/00054725-200409000-00003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dendritic cells (DCs) are thought to play an important role in the pathogenesis of autoimmune inflammation, including Crohn's disease (CD). We investigated the distribution and state of maturation of DCs in the colon in relation to the severity of inflammation and therapy. Using archival specimens from colonic resections in 19 pediatric patients with CD and 14 controls, we identified and characterized the DCs within the lamina propria, submucosa, and muscularis compartments using morphologic and quantitative immunohistochemical methods. The distribution of CD11c+CD83+CD68+DC-SIGN+ and immature CD11c+CD83-CD68-DC-SIGN+ DCs within the different compartments varied according to the presence or absence of CD as well as to the severity of inflammation and systemic corticoid treatment. Immature DCs were only found in non-inflamed control colonic tissue. Marked reductions (60% and 30%) in total CD11c and CD83 DC numbers were observed in CD tissue samples compared with controls (P < 0.05). CD samples from patients on corticosteroid therapy were significantly more depleted than in tissue from untreated patients or those on other drugs. Colonic tissue with severe inflammation had reduced numbers of CD11c+ and CD83+ DCs in the lamina propria and submucosal compartments (80% and 76% for CD11c; 75% and 76% for CD83, respectively, P < 0.05), with a concomitant increase (525% for CD11c and 700% for CD83 P < 0.05) of DCs in the muscularis compartment, compared to moderately inflamed and non-inflamed CD tissue. Our data suggest that an imbalance in intestinal DC subpopulations may play a role in the initiation and/or the maintenance of chronic inflammation in CD. Corticosteroid therapy is associated with colonic DC depletion.
Collapse
Affiliation(s)
- Manuel A Silva
- Mucosal Immunology Laboratory, Division of Gastroenterology, Hepatology & Nutrition, Sainte-Justine Hospital Research Centre, Department of Paediatrics, University of Montreal, Quebec, Canada H3TICS
| | | | | | | | | | | |
Collapse
|