1
|
Gillombardo CB, Darrah R, Dick TE, Moore M, Kong N, Decker MJ, Han F, Yamauchi M, Dutschmann M, Azzam S, Strohl KP. C57BL/6J mouse apolipoprotein A2 gene is deterministic for apnea. Respir Physiol Neurobiol 2016; 235:88-94. [PMID: 27756649 DOI: 10.1016/j.resp.2016.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 09/30/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022]
Abstract
RATIONALE Brainstem apolipoprotein AII (apoa2) mRNA expression correlates with apnea in breathing present in the adult C57Bl/6J (B6) sleep apnea model. OBJECTIVES To test the hypothesis that the B6 apoa2 gene contributes to the trait, we performed plethysmographic testing in apoa2 knock out (KO: -/-) mice, an in situ brainstem-spinal cord preparation comparing KO to WT (+/+) mice, and B6xDBA recombinant inbred strains (RISs). MEASUREMENTS AND MAIN RESULTS Apoa2 WT do, but KO and heterozygote (+/-) mice do not exhibit apnea during post-hypoxic breathing, measured in vivo. In the in situ model, pauses and instability in fictive phrenic bursting are substantially reduced in KO vs. WT preparations. In 24 RISs, apnea number in vivo was higher in strains with B6 apoa2 than with DBA apoa2 alleles. CONCLUSIONS The B6 apoa2 polymorphism is directly involved in breath production, and its identification suggests a novel pathway influencing risk for adult sleep apnea.
Collapse
Affiliation(s)
- Carl B Gillombardo
- Department of Medicine, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Rebecca Darrah
- Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, OH, United States
| | - Thomas E Dick
- Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH, United States; School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Michael Moore
- Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH, United States
| | - Nathan Kong
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Michael J Decker
- Francis Payne Bolton School of Nursing, Case Western Reserve University, Cleveland, OH, United States
| | - Fang Han
- People's Hospital, Beijing Medical University, Beijing, China
| | | | - Mathias Dutschmann
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Australia
| | - Sausan Azzam
- Department of Nutrition, Case School of Medicine, Cleveland, OH, United States
| | - Kingman P Strohl
- Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH, United States; School of Medicine, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
2
|
Cramer NP, Xu X, Christensen C, Bierman A, Tankersley CG, Galdzicki Z. Strain variation in the adaptation of C57Bl6 and BALBc mice to chronic hypobaric hypoxia. Physiol Behav 2015; 143:158-65. [PMID: 25647362 DOI: 10.1016/j.physbeh.2015.01.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 12/23/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022]
Abstract
The interplay of environmental and genetic factors may lead to a spectrum of physiological and behavioral outcomes. How environmental stress factors interact with the diverse mouse genomes is still poorly understood and elucidating the underlying interactions requires specific stress models that can target integrated physiological systems. Here, we employ behavioral tests and whole-body plethysmography to examine the effects of 12 weeks of simulated high altitude (HA) exposure on two inbred mouse strains, BALBc and C57Bl6. We find that HA induced- weight loss recovers at significantly different rates in these two strains. Even at 12 weeks, however, both strains fail to reach body weight levels of controls. Performance on two motor tasks, rotarod and treadmill, improve with HA exposure but more prominently in BALBc mice. Whole-body plethysmography outcomes indicate that compensation to chronic HA includes increased respiratory frequencies and tidal volumes in both strains. However, the effects on tidal volume are significantly greater in BALBc mice and showed a biphasic course. Whole- body metabolic rates are also increased in both strains with prolonged HA exposure, but were more pronounced in BALBc mice suggestive of less successful adaptation in this strain. These adaptations occur in the absence of gross pathological changes in all major organs. Together these results indicate that chronic HA exposure results in environmental stressors that impact the specific physiological responses of BALBc more than C57Bl6 mice. Thus, these strains provide a promising platform for investigating how genetic backgrounds can differentially reinforce the effects of long-lasting environmental stressors and their potential to interact with psychological stressors.
Collapse
Affiliation(s)
- Nathan P Cramer
- F. Edward Hébert School of Medicine, Department of Anatomy, Physiology and Genetics, Uniformed Services Univ. of the Health Sciences, Bethesda, MD, United States
| | - Xiufen Xu
- F. Edward Hébert School of Medicine, Department of Anatomy, Physiology and Genetics, Uniformed Services Univ. of the Health Sciences, Bethesda, MD, United States
| | - Christine Christensen
- Division of Comparative Pathology Armed Forces Radiobiology Research Institute, Uniformed Services Univ. of the Health Sciences, Bethesda, MD, United States
| | - Alexis Bierman
- Division of Physiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Clarke G Tankersley
- F. Edward Hébert School of Medicine, Department of Anatomy, Physiology and Genetics, Uniformed Services Univ. of the Health Sciences, Bethesda, MD, United States; Division of Physiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Zygmunt Galdzicki
- F. Edward Hébert School of Medicine, Department of Anatomy, Physiology and Genetics, Uniformed Services Univ. of the Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
3
|
Fuchs H, Gailus-Durner V, Adler T, Aguilar-Pimentel JA, Becker L, Calzada-Wack J, Da Silva-Buttkus P, Neff F, Götz A, Hans W, Hölter SM, Horsch M, Kastenmüller G, Kemter E, Lengger C, Maier H, Matloka M, Möller G, Naton B, Prehn C, Puk O, Rácz I, Rathkolb B, Römisch-Margl W, Rozman J, Wang-Sattler R, Schrewe A, Stöger C, Tost M, Adamski J, Aigner B, Beckers J, Behrendt H, Busch DH, Esposito I, Graw J, Illig T, Ivandic B, Klingenspor M, Klopstock T, Kremmer E, Mempel M, Neschen S, Ollert M, Schulz H, Suhre K, Wolf E, Wurst W, Zimmer A, Hrabě de Angelis M. Mouse phenotyping. Methods 2010; 53:120-35. [PMID: 20708688 DOI: 10.1016/j.ymeth.2010.08.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 12/13/2022] Open
Abstract
Model organisms like the mouse are important tools to learn more about gene function in man. Within the last 20 years many mutant mouse lines have been generated by different methods such as ENU mutagenesis, constitutive and conditional knock-out approaches, knock-down, introduction of human genes, and knock-in techniques, thus creating models which mimic human conditions. Due to pleiotropic effects, one gene may have different functions in different organ systems or time points during development. Therefore mutant mouse lines have to be phenotyped comprehensively in a highly standardized manner to enable the detection of phenotypes which might otherwise remain hidden. The German Mouse Clinic (GMC) has been established at the Helmholtz Zentrum München as a phenotyping platform with open access to the scientific community (www.mousclinic.de; [1]). The GMC is a member of the EUMODIC consortium which created the European standard workflow EMPReSSslim for the systemic phenotyping of mouse models (http://www.eumodic.org/[2]).
Collapse
Affiliation(s)
- Helmut Fuchs
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 München/Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Gailus-Durner V, Fuchs H, Adler T, Aguilar Pimentel A, Becker L, Bolle I, Calzada-Wack J, Dalke C, Ehrhardt N, Ferwagner B, Hans W, Hölter SM, Hölzlwimmer G, Horsch M, Javaheri A, Kallnik M, Kling E, Lengger C, Mörth C, Mossbrugger I, Naton B, Prehn C, Puk O, Rathkolb B, Rozman J, Schrewe A, Thiele F, Adamski J, Aigner B, Behrendt H, Busch DH, Favor J, Graw J, Heldmaier G, Ivandic B, Katus H, Klingenspor M, Klopstock T, Kremmer E, Ollert M, Quintanilla-Martinez L, Schulz H, Wolf E, Wurst W, de Angelis MH. Systemic first-line phenotyping. Methods Mol Biol 2009; 530:463-509. [PMID: 19266331 DOI: 10.1007/978-1-59745-471-1_25] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
With the completion of the mouse genome sequence an essential task for biomedical sciences in the twenty-first century will be the generation and functional analysis of mouse models for every gene in the mammalian genome. More than 30,000 mutations in ES cells will be engineered and thousands of mouse disease models will become available over the coming years by the collaborative effort of the International Mouse Knockout Consortium. In order to realize the full value of the mouse models proper characterization, archiving and dissemination of mouse disease models to the research community have to be performed. Phenotyping centers (mouse clinics) provide the necessary capacity, broad expertise, equipment, and infrastructure to carry out large-scale systemic first-line phenotyping. Using the example of the German Mouse Clinic (GMC) we will introduce the reader to the different aspects of the organization of a mouse clinic and present selected methods used in first-line phenotyping.
Collapse
|
5
|
Lydic R. Sleep disruption is related to allelic variation in the ob gene. Am J Physiol Regul Integr Comp Physiol 2006; 290:R892-3. [PMID: 16537820 DOI: 10.1152/ajpregu.00845.2005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Reinhard C, Meyer B, Fuchs H, Stoeger T, Eder G, Rüschendorf F, Heyder J, Nürnberg P, de Angelis MH, Schulz H. Genomewide Linkage Analysis Identifies Novel Genetic Loci for Lung Function in Mice. Am J Respir Crit Care Med 2005; 171:880-8. [PMID: 15640362 DOI: 10.1164/rccm.200409-1204oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Pulmonary function, including lung volumes and compliance, may be genetically determined, but few genetic polymorphisms have been identified that control these traits. We used an experimental approach and performed the first whole genome scan for pulmonary function in mice. OBJECTIVES AND METHODS To identify novel chromosomal regions contributing to lung function, quantitative trait locus linkage analysis was applied in N(2) backcross and F(2) intercross mice derived from two inbred strains-C3H/HeJ and JF1/Msf-with extremely divergent phenotypes. MAIN RESULTS Significant linkages to total lung capacity with LOD (logarithm of the odds) scores up to 6.0 were detected on chromosomes 15 and 17, to dead space volume and lung compliance on chromosomes 5 and 15 (LOD scores higher than 4.0), to lung compliance also on chromosome 19 (LOD score of 5.8), and to diffusing capacity on chromosomes 15 and 17 (LOD scores up to 5.0). The region of interest on chromosome 17 near D17Mit133 contains a syntenic region to human chromosome 6q27, which was recently identified to be linked to lung function in humans. The identified intervals harbor valuable candidate genes, such as the relaxin1 and transforming growth factor beta receptor 3 gene, which revealed missense polymorphisms between the parental strains. CONCLUSION The study provides evidence for linkage of different measures of lung function on murine chromosomes 5, 15, 17, and 19 and suggests novel candidate genes that may also affect the expression of human pulmonary function.
Collapse
|
7
|
Douglas CL, Bowman GN, Baghdoyan HA, Lydic R. C57BL/6J and B6.V-LEPOB mice differ in the cholinergic modulation of sleep and breathing. J Appl Physiol (1985) 2004; 98:918-29. [PMID: 15475596 DOI: 10.1152/japplphysiol.00900.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Respiratory and arousal state control are heritable traits in mice. B6.V-Lep(ob) (ob) mice are leptin deficient and differ from C57BL/6J (B6) mice by a variation in the gene coding for leptin. The ob mouse has morbid obesity and disordered breathing that is homologous to breathing of obese humans. This study tested the hypothesis that microinjecting neostigmine into the pontine reticular nucleus, oral part (PnO), of B6 and ob mice alters sleep and breathing. In B6 and ob mice, neostigmine caused a concentration-dependent increase (P < 0.0001) in percentage of time spent in a rapid eye movement (REM) sleeplike state (REM-Neo). Relative to saline (control), higher concentrations of neostigmine increased REM-Neo duration and the number of REM-Neo episodes in B6 and ob mice and decreased percent wake, percent non-REM, and latency to onset of REM-Neo (P < 0.001). In B6 and ob mice, REM sleep enhancement by neostigmine was blocked by atropine. Differences in control amounts of sleep and wakefulness between B6 and the congenic ob mice also were identified. After PnO injection of saline, ob mice spent significantly (P < 0.05) more time awake and less time in non-REM sleep. B6 mice displayed more (P < 0.01) baseline locomotor activity than ob mice, and PnO neostigmine decreased locomotion (P < 0.0001) in B6 and ob mice. Whole body plethysmography showed that PnO neostigmine depressed breathing (P < 0.001) in B6 and ob mice and caused greater respiratory depression in B6 than ob mice (P < 0.05). Western blot analysis identified greater (P < 0.05) expression of M2 muscarinic receptor protein in ob than B6 mice for cortex, midbrain, cerebellum, and pons, but not medulla. Considered together, these data provide the first evidence that pontine cholinergic control of sleep and breathing varies between mice known to differ by a spontaneous mutation in the gene coding for leptin.
Collapse
Affiliation(s)
- Christopher L Douglas
- Department of Anesthesiology, University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-0615, USA
| | | | | | | |
Collapse
|
8
|
Gonsenhauser I, Wilson CG, Han F, Strohl KP, Dick TE. Strain differences in murine ventilatory behavior persist after urethane anesthesia. J Appl Physiol (1985) 2004; 97:888-94. [PMID: 15333626 DOI: 10.1152/japplphysiol.01346.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Differences in breathing pattern between awake C57BL/6J (B6) and A/J mice are such that A/J mice breathe slower, deeper, and with greater variability than B6. We theorized that urethane anesthesia, by affecting cortical and subcortical function, would test the hypothesis that strain differences require a fully functional neuroaxis. We anesthetized B6 and A/J mice with urethane, placed them in a whole-body plethysmograph, and measured the durations of inspiration and expiration, respiratory frequency (Fr), and peak amplitude during exposure to room air (21% O2), hyperoxia (5 min, 100% O2), hypoxia (5 min, 8% O2), and posthypoxic reoxygenation (5 min, 100% O2). Breathing variability was assessed by calculating the coefficient of variation (CV) and by applying spatial statistics to Poincaré plots constructed from the timing and amplitude data. Even though Fr in anesthetized B6 and A/J mice was greater than that for unanesthetized animals, anesthetized A/J mice still breathed slower, deeper, and with greater variability than B6 mice at rest and during hyperoxia. During the fourth minute of hypoxia, Fr and its CV were not significantly different between strains. Even though Fr was similar between strains immediately after hypoxia, its CV was significantly greater for B6 than A/J mice. Posthypoxic Fr was significantly less than baseline Fr in B6 but not A/J mice, and the CV for posthypoxic Fr was greater for B6 but less for AJ mice compared with baseline CV. This difference in patterning was confirmed by spatial statistical analysis. We conclude that strain-specific differences in respiratory pattern and its variability are robust genetic traits. The neural substrate for these differences, at least partially, exists within subcortical structures generating the breathing pattern.
Collapse
Affiliation(s)
- Iahn Gonsenhauser
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4941, USA
| | | | | | | | | |
Collapse
|
9
|
Demarco GJ, Baghdoyan HA, Lydic R. Carbachol in the pontine reticular formation of C57BL/6J mouse decreases acetylcholine release in prefrontal cortex. Neuroscience 2004; 123:17-29. [PMID: 14667438 DOI: 10.1016/j.neuroscience.2003.08.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The prefrontal cortex and brainstem modulate autonomic and arousal state control but the neurotransmitter mechanisms underlying communication between prefrontal cortex and brainstem remain poorly understood. This study examined the hypothesis that microdialysis delivery of carbachol to the pontine reticular formation (PRF) of anesthetized C57BL/6J (B6) mouse modulates acetylcholine (ACh) release in the frontal association cortex. Microdialysis delivery of carbachol (8.8 mM) to the PRF caused a significant (P<0.01) decrease (-28%) in ACh release in the frontal association cortex, a significant (P<0.01) decrease (-23%) in respiratory rate, and a significant (P<0.01) increase (223%) in time to righting after anesthesia. Additional in vitro studies used the [(35)S]guanylyl-5'-O-(gamma-thio)-triphosphate ([(35)S]GTPgammaS) assay to test the hypothesis that muscarinic cholinergic receptors activate guanine nucleotide binding proteins (G proteins) in the frontal association cortex and basal forebrain. In vitro treatment with carbachol (1 mM) caused a significant (P<0.01) increase in [(35)S]GTPgammaS binding in the frontal association cortex (62%) and basal forebrain nuclei including medial septum (227%), vertical (210%) and horizontal (165%) limbs of the diagonal band of Broca, and substantia innominata (127%). G protein activation by carbachol was concentration-dependent and blocked by atropine, indicating that the carbachol-stimulated [(35)S]GTPgammaS binding was mediated by muscarinic cholinergic receptors. Together, the in vitro and in vivo data show for the first time in B6 mouse that cholinergic neurotransmission in the PRF can significantly alter ACh release in frontal association cortex, arousal from anesthesia, and respiratory rate.
Collapse
Affiliation(s)
- G J Demarco
- Department of Anesthesiology, University of Michigan, 7433 Medical Sciences Building I, 1150 West Medical Center Drive, Ann Arbor, MI 48109-0615, USA
| | | | | |
Collapse
|
10
|
Han F, Subramanian S, Dick TE, Dreshaj IA, Strohl KP. Ventilatory behavior after hypoxia in C57BL/6J and A/J mice. J Appl Physiol (1985) 2001; 91:1962-70. [PMID: 11641331 DOI: 10.1152/jappl.2001.91.5.1962] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Given the environmental forcing by extremes in hypoxia-reoxygenation, there might be no genetic effect on posthypoxic short-term potentiation of ventilation. Minute ventilation (VE), respiratory frequency (f), tidal volume (VT), and the airway resistance during chemical loading were assessed in unanesthetized unrestrained C57BL/6J (B6) and A/J mice using whole body plethysmography. Static pressure-volume curves were also performed. In 12 males for each strain, after 5 min of 8% O2 exposure, B6 mice had a prominent decrease in VE on reoxygenation with either air (-11%) or 100% O2 (-20%), due to the decline of f. In contrast, A/J animals had no ventilatory undershoot or f decline. After 5 min of 3% CO2-10% O2 exposure, B6 exhibited significant decrease in VE (-28.4 vs. -38.7%, air vs. 100% O2) and f (-13.8 vs. -22.3%, air vs. 100% O2) during reoxygenation with both air and 100% O2; however, A/J mice showed significant increase in VE (+116%) and f (+62.2%) during air reoxygenation and significant increase in VE (+68.2%) during 100% O2 reoxygenation. There were no strain differences in dynamic airway resistance during gas challenges or in steady-state total respiratory compliance measured postmortem. Strain differences in ventilatory responses to reoxygenation indicate that genetic mechanisms strongly influence posthypoxic ventilatory behavior.
Collapse
Affiliation(s)
- F Han
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Obstructive sleep apnea hypopnea syndrome (OSAHS) is a complex chronic condition that is undoubtedly influenced by multiple factors. Accumulating data suggest that there are strong genetic underpinnings for this condition. It has been estimated that approximately 40% of the variance in the apnea hypopnea index (AHI) may be explained by familial factors. It is likely that genetic factors associated with craniofacial structure, body fat distribution and neural control of the upper airway muscles interact to produce the OSAHS phenotype. Although the role of specific genes that influence the development of OSAHS have not yet been identified, current research in rodents suggests that several genetic systems may be important. In this chapter, we shall first define the OSAHS phenotype, and then review the evidence that suggests an underlying genetic basis of OSAHS, the risk factors for OSAHS that may be inherited, and potential candidate genes.
Collapse
Affiliation(s)
- Susan Redline
- Rainbow Babies and Childrens Hospital and Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
12
|
Abstract
Studies in mice and rats support the hypothesis that ventilation and its components (frequency and tidal volume) are determined to a significant extent by genetic mechanisms. The question can no longer be 'is there a genetic effect?' but rather 'how strong is the genetic component?' and 'what genes are involved?' The computational analyses of selectively bred animals now offer powerful tools to begin to dissect the genetic factors that track with ventilatory traits. Control of the conditions in the colony and in the laboratory are keys to reducing the environmental 'noise' and increasing the likelihood of detecting gene loci that correlate quantitatively with phenotype values before and during the response to chemosensory challenges. Knowing the chromosomal location of genes for ventilation will then permit the identification of proteins systems responsible for the structural and functional components for respiration.
Collapse
Affiliation(s)
- F Han
- Department of Medicine, 111j(w), Louis Stokes VA Medical Center, Case Western Reserve University, 10701 East Boulevard, Cleveland, OH 44106, USA
| | | |
Collapse
|