1
|
He Y, Huang Y, Mai C, Pan H, Luo HB, Liu L, Xie Y. The immunomodulatory role of PDEs inhibitors in immune cells: therapeutic implication in rheumatoid arthritis. Pharmacol Res 2020; 161:105134. [DOI: 10.1016/j.phrs.2020.105134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 01/19/2023]
|
2
|
Raheem IT, Breslin MJ, Fandozzi C, Fuerst J, Hill N, Huszar S, Kandebo M, Kim SH, Ma B, McGaughey G, Renger JJ, Schreier JD, Sharma S, Smith S, Uslaner J, Yan Y, Coleman PJ, Cox CD. Discovery of tetrahydropyridopyrimidine phosphodiesterase 10A inhibitors for the treatment of schizophrenia. Bioorg Med Chem Lett 2012; 22:5903-8. [PMID: 22892116 DOI: 10.1016/j.bmcl.2012.07.072] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/16/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
Abstract
We describe the discovery of potent and orally bioavailable tetrahydropyridopyrimidine inhibitors of phosphodiesterase 10A by systematic optimization of a novel HTS lead. Lead compound THPP-1 exhibits nanomolar potencies, excellent pharmacokinetic properties, and a clean off-target profile. It displays in vivo target engagement as measured by increased rat striatal cGMP levels upon oral dosing. It shows dose-dependent efficacy in a key pharmacodynamic assay predictive of antipsychotic activity, the psychostimulant-induced rat hyperlocomotion assay. Further, THPP-1 displays significantly fewer preclinical adverse events in assays measuring prolactin secretion, catalepsy, and weight gain, in contrast to the typical and atypical antipsychotics haloperidol and olanzapine.
Collapse
Affiliation(s)
- Izzat T Raheem
- Discovery Chemistry, Merck Research Laboratories, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
N-Acylhydrazones as inhibitors of PDE10A. Bioorg Med Chem Lett 2011; 21:4155-9. [DOI: 10.1016/j.bmcl.2011.05.100] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/24/2011] [Accepted: 05/25/2011] [Indexed: 12/21/2022]
|
4
|
Watelet JB, Gillard M, Benedetti MS, Lelièvre B, Diquet B. Therapeutic management of allergic diseases. Drug Metab Rev 2009; 41:301-43. [PMID: 19601717 DOI: 10.1080/10837450902891204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Allergic diseases are characterized by the activation of inflammatory cells and by a massive release of mediators. The aim of this chapter was to describe succinctly the modes of action, indications, and side effects of the major antiallergic and antiasthmatic drugs. When considering the ideal pharmacokinetic characteristics of a drug, a poorly metabolized drug may confer a lower variability in plasma concentrations and metabolism-based drug interactions, although poorly metabolized drugs may be prone to transporter-based disposition and interactions. The ideal pharmacological properties of a drug include high binding affinity, high selectivity, and appropriate association and dissociation rates. Finally, from a patient perspective, the frequency and route of administration are important considerations for ease of use.
Collapse
Affiliation(s)
- Jean-Baptiste Watelet
- Department of Otohinolaryngology, Head and Neck Surgery, Ghent University Hospital, Ghent University, Belgium.
| | | | | | | | | |
Collapse
|
5
|
Grootendorst DC, Gauw SA, Verhoosel RM, Sterk PJ, Hospers JJ, Bredenbröker D, Bethke TD, Hiemstra PS, Rabe KF. Reduction in sputum neutrophil and eosinophil numbers by the PDE4 inhibitor roflumilast in patients with COPD. Thorax 2007; 62:1081-7. [PMID: 17573446 PMCID: PMC2094292 DOI: 10.1136/thx.2006.075937] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 05/16/2007] [Indexed: 11/04/2022]
Abstract
BACKGROUND Roflumilast is a targeted oral once-daily administered phosphodiesterase 4 (PDE4) inhibitor with clinical efficacy in chronic obstructive pulmonary disease (COPD). Results from in vitro studies with roflumilast indicate that it has anti-inflammatory properties that may be applicable for the treatment of COPD. METHODS In a crossover study, 38 patients with COPD (mean (SD) age 63.1 (7.0) years, post-bronchodilator forced expiratory volume in 1 s (FEV(1)) 61.0 (12.6)% predicted) received 500 microg roflumilast or placebo once daily for 4 weeks. Induced sputum samples were collected before and after 2 and 4 weeks of treatment. Differential and absolute cell counts were determined in whole sputum samples. Markers of inflammation were determined in sputum supernatants and blood. Spirometry was performed weekly. RESULTS Roflumilast significantly reduced the absolute number of neutrophils and eosinophils/g sputum compared with placebo by 35.5% (95% CI 15.6% to 50.7%; p = 0.002) and 50.0% (95% CI 26.8% to 65.8%; p<0.001), respectively. The relative proportion of sputum neutrophils and eosinophils was not affected by treatment (p>0.05). Levels of soluble interleukin-8, neutrophil elastase, eosinophil cationic protein and alpha(2)-macroglobulin in sputum and the release of tumour necrosis factor alpha from blood cells were significantly reduced by roflumilast compared with placebo treatment (p<0.05 for all). Post-bronchodilator FEV(1) improved significantly during roflumilast compared with placebo treatment with a mean difference between treatments of 68.7 ml (95% CI 12.9 to 124.5; p = 0.018). CONCLUSION PDE4 inhibition by roflumilast treatment for 4 weeks reduced the number of neutrophils and eosinophils, as well as soluble markers of neutrophilic and eosinophilic inflammatory activity in induced sputum samples of patients with COPD. This anti-inflammatory effect may in part explain the concomitant improvement in post-bronchodilator FEV(1).
Collapse
Affiliation(s)
- Diana C Grootendorst
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Larsen GL, Loader JE, Fratelli C, Brian Kang JK, Dakhama A, Colasurdo GN. Phosphodiesterase IV and neutral endopeptidase in airways from developing and allergen sensitized rabbits. Pulm Pharmacol Ther 2005; 19:335-42. [PMID: 16242981 DOI: 10.1016/j.pupt.2005.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 08/08/2005] [Accepted: 08/27/2005] [Indexed: 11/19/2022]
Abstract
Phosphodiesterase IV (PDE IV) and neutral endopeptidase (NEP) may modulate the neurally mediated nonadrenergic noncholinergic inhibitory (NANCi) response. This response is not present in normal rabbits until 2 weeks of age. Allergen sensitization and challenge of fully grown 13-week old rabbits decreases the NANCi response. Our goal was to assess NANCi as a function of age and allergen sensitization. Tracheal smooth muscle (TSM) rings from normal 1-, 2-, and 13-week old rabbits plus ragweed immune as well as ragweed immune/challenged (I/C) 13-week old rabbits were assessed. Colorimetric assays of PDE IV and NEP activity were conducted on TSM from each group. NANCi responses were obtained in the presence and absence of Ro 20-1724 (PDE IV inhibitor) and/or phosphoramidon (Phos; NEP inhibitor) after contraction of TSM with neurokinin A. In normal TSM, there was no difference in PDE IV as a function of age. Conversely, NEP decreased significantly from 1 to 13 weeks of age. The immune and I/C groups had decreases in NEP and increases in PDE IV that were significant. Neither Ro 20-1724 nor Phos alone or together increased NANCi responses in TSM from 1- or 2-week old rabbits. However, both enhanced relaxation in TSM from normal, immune, and I/C 13-week old rabbits with an additive effect when drugs were combined. This work demonstrates (1) normal maturational changes in NEP but not PDE IV within TSM of this species; (2) modulation of the NANCi response by inhibitors of PDE IV and NEP in 13- but not 2-week old rabbits; (3) increased PDE IV and decreased NEP levels in the immune and I/C groups with reconstitution of NANCi responses by the combination of inhibitors. We conclude that mediation of the NANCi response is different in normal 2- and 13-week old rabbits. Both PDE IV and NEP modulated relaxation in fully grown rabbits, but had no effect at the younger age. Furthermore, both ragweed sensitization alone and ragweed challenge of immune rabbits altered NANCi via increases in PDE IV and decreases in NEP.
Collapse
Affiliation(s)
- Gary L Larsen
- Department of Pediatrics, Division of Pediatric Pulmonary Medicine, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO 80206, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Sanz MJ, Cortijo J, Morcillo EJ. PDE4 inhibitors as new anti-inflammatory drugs: effects on cell trafficking and cell adhesion molecules expression. Pharmacol Ther 2005; 106:269-97. [PMID: 15922015 DOI: 10.1016/j.pharmthera.2004.12.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2004] [Indexed: 01/15/2023]
Abstract
Phosphodiesterase 4 (PDE4) is a major cyclic AMP-hydrolyzing enzyme in inflammatory and immunomodulatory cells. The wide range of inflammatory mechanisms under control by PDE4 points to this isoenzyme as an attractive target for new anti-inflammatory drugs. Selective inhibitors of PDE4 have demonstrated a broad spectrum of anti-inflammatory activities including the inhibition of cellular trafficking and microvascular leakage, cytokine and chemokine release from inflammatory cells, reactive oxygen species production, and cell adhesion molecule expression in a variety of in vitro and in vivo experimental models. The initially detected side effects, mainly nausea and emesis, appear at least partially overcome by the 'second generation' PDE4 inhibitors, some of which like roflumilast and cilomilast are in the later stages of clinical development for treatment of chronic obstructive pulmonary disease. These new drugs may also offer opportunities for treatment of other inflammatory diseases.
Collapse
Affiliation(s)
- María Jesús Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avenida Blasco Ibáñez 15, E-46010 Valencia, Spain
| | | | | |
Collapse
|
8
|
Grootendorst DC, Gauw SA, Benschop N, Sterk PJ, Hiemstra PS, Rabe KF. Efficacy of the novel phosphodiesterase-4 inhibitor BAY 19-8004 on lung function and airway inflammation in asthma and chronic obstructive pulmonary disease (COPD). Pulm Pharmacol Ther 2004; 16:341-7. [PMID: 14580925 DOI: 10.1016/s1094-5539(03)00090-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Selective inhibitors of phosphodiesterase-4 (PDE4) inhibit the hydrolysis of intracellular cAMP, which may result in bronchodilation and suppression of inflammation. We examined the effect of 1 week treatment with BAY 19-8004 (5 mg once daily), a novel orally administered PDE4 inhibitor, on trough FEV1 and markers of inflammation in induced sputum in patients with asthma or chronic obstructive pulmonary disease (COPD). Seven patients with asthma (mean [SD] FEV1 69.5 [9.3]% predicted; reversibility in FEV1 26.2 [10.1]%; all non-smokers) and 11 patients with COPD (FEV1 58.6 [8.3]% predicted; reversibility in FEV1 6.5 [4.7]%; median [range] 44 [21-90] pack years of smoking) were included in this randomized, double-blind, placebo-controlled trial. FEV1 was measured before and after 1 week of treatment; sputum was induced by 4.5% saline inhalation on the last day of treatment. FEV1 did not improve during either treatment in both patient groups (p>0.2). Sputum cell counts were not different following placebo and BAY 19-8004 treatment in asthma and COPD patients (p>0.2). However, only in patients with COPD, small but significant reductions in sputum levels of albumin and eosinophil cationic protein were observed (p<0.05). In conclusion, 1 week of treatment with the selective PDE4 inhibitor BAY 19-8004 does not affect FEV1 and sputum cell numbers in patients with asthma or COPD. However, such treatment does seem to reduce levels of albumin and eosinophil cationic protein in sputum samples obtained from patients with COPD.
Collapse
Affiliation(s)
- D C Grootendorst
- Department of Pulmonology, Leiden University Medical Centre, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
9
|
Schenk T, Breel GJ, Koevoets P, van den Berg S, Hogenboom AC, Irth H, Tjaden UR, van der Greef J. Screening of natural products extracts for the presence of phosphodiesterase inhibitors using liquid chromatography coupled online to parallel biochemical detection and chemical characterization. ACTA ACUST UNITED AC 2004; 8:421-9. [PMID: 14567794 DOI: 10.1177/1087057103255973] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The ability to rapidly identify active compounds in a complex mixture (e.g., natural products extract) is still one of the major problems in natural products screening programs. An elegant way to overcome this problem is to separate the complex mixture by gradient liquid chromatography followed by online biochemical detection parallel with chemical characterization, referred to as high-resolution screening (HRS). To find and identify phosphodiesterase (PDE) inhibitors in natural products extracts using the HRS technology, the authors developed a continuous-flow PDE enzymatic assay. The suitability of the continuous-flow PDE enzymatic assay for natural products screening was demonstrated. After optimization of the continuous-flow PDE assay, the limit of detection for 3-isobutyl-1-methyl-xanthine (IBMX) was 1 muM, with a dynamic range from 1 to 100 muM IBMX. The applicability of the HRS technology for the detection of PDE inhibitors in natural products extracts was demonstrated by the analysis of a plant extract spiked with 2 naturally occurring PDE inhibitors. The plant extract was analyzed with 2 assay lines in parallel, enabling background fluorescence correction of the sample. The simultaneous quantification of the active compounds using evaporative light-scattering detection allowed the estimation of the IC(50) value of the active compounds directly in the crude extract.
Collapse
Affiliation(s)
- T Schenk
- Kiadis BV, Niels Bohrweg 11-13, 2333 CA Leiden, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The current asthma therapies are not cures and symptoms return soon after treatment is stopped even after long term treatment. Although inhaled glucocorticoids are highly effective in controlling airway inflammation in asthma, they are ineffective in the small group of patients with glucocorticoid-dependent and -resistant asthma. With very few exceptions, COPD is caused by tobacco smoking, and smoking cessation is the only truly effective treatment of COPD available. Current pharmacological treatment of COPD is unsatisfactory, as it does not significantly influence the severity of the disease or its natural course. Glucocorticoids are scarcely effective in COPD patients without concomitant asthma. Bronchodilators improves symptoms and quality of life, in COPD patients, but, with the exception of tiotropium, they do not significantly influence the natural course of the disease. Theophylline is the only drug which has been demonstrated to have a significant effect on airway inflammation in patients with COPD. Here we review the pharmacology of currently used antiinflammatory therapies for asthma and COPD and their proposed mechanisms of action. Recent understanding of disease mechanisms in severe steroid-dependent and -resistant asthma and in COPD, has lead to the development of novel compounds, which are in various stages of clinical development. We review the current status of some of these new potential drugs.
Collapse
Affiliation(s)
- Gaetano Caramori
- Department of Thoracic Medicine, National Heart and Lung Institute at Imperial College School of Science, Technology and Medicine, Dovehouse Street, SW3 6LY, London, UK
| | | |
Collapse
|
11
|
Gorska MM, Alam R. Signaling molecules as therapeutic targets in allergic diseases. J Allergy Clin Immunol 2003; 112:241-50; quiz 251. [PMID: 12897726 DOI: 10.1067/mai.2003.1667] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A molecular understanding of physiologic and pathologic processes requires complete knowledge about the signal transduction mechanism of involved cells. Signal transduction research is a rapidly growing field in basic science. Unlike intercellular inflammatory mediators, signaling molecules show less functional redundancy. This allows inhibition of multiple cytokines/mediators by blocking one common signaling molecule. Interference with signaling pathways has shown significant potential for inhibition of fundamental processes as well as clinical phenotype of allergic diseases. The purpose of this review was to provide a theoretical classification of signaling molecules based on their function and to analyze various strategies for developing effective signaling inhibitors for allergic diseases.
Collapse
Affiliation(s)
- Magdalena M Gorska
- Division of Allergy and Immunology, National Jewish Medical and Research Center and University of Colorado Health Sciences Center, Denver, CO, USA
| | | |
Collapse
|
12
|
de Boer WI. Potential new drugs for therapy of chronic obstructive pulmonary disease. Expert Opin Investig Drugs 2003; 12:1067-86. [PMID: 12831344 DOI: 10.1517/13543784.12.7.1067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic obstructive pulmonary disease is a major health problem with cigarette smoking as its major risk factor. Current therapies are directed against the symptoms (e.g., breathlessness and mucus production) or the chronic airway inflammation. However, the excessive annual decline in lung function and the airway inflammation have not yet been shown to be improved by these strategies. New potential drug therapies are directed against specific components of the inflammation. Novel drugs have been developed for treatment of inflammatory diseases including chronic obstructive pulmonary disease in order to antagonise cytokines and chemokines such as TNF-alpha, CXC chemokine ligand 8 (IL-8) or CC chemokine ligand 2 (monocyte chemoattractant protein 1) that orchestrate the inflammatory process. Some of these drugs are shown to be effective in patients with other chronic inflammatory diseases but still have to prove their efficacy in the treatment of chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- W I de Boer
- Netherlands Asthma Foundation, Leusden, The Netherlands.
| |
Collapse
|