1
|
Johnson BP, Cohen LG. Applied strategies of neuroplasticity. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:599-609. [PMID: 37620093 DOI: 10.1016/b978-0-323-98817-9.00011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Various levels of somatotopic organization are present throughout the human nervous system. However, this organization can change when needed based on environmental demands, a phenomenon known as neuroplasticity. Neuroplasticity can occur when learning a new motor skill, adjusting to life after blindness, or following a stroke. Following an injury, these neuroplastic changes can be adaptive or maladaptive, and often occur regardless of whether rehabilitation occurs or not. But not all movements produce neuroplasticity, nor do all rehabilitation interventions. Here, we focus on research regarding how to maximize adaptive neuroplasticity while also minimizing maladaptive plasticity, known as applied neuroplasticity. Emphasis is placed on research exploring how best to apply neuroplastic principles to training environments and rehabilitation protocols. By studying and applying these principles in research and clinical practice, it is hoped that learning of skills and regaining of function and independence can be optimized.
Collapse
Affiliation(s)
- Brian P Johnson
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
2
|
Johnson BP, Cohen LG. Reward and plasticity: Implications for neurorehabilitation. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:331-340. [PMID: 35034746 DOI: 10.1016/b978-0-12-819410-2.00018-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuroplasticity follows nervous system injury in the presence or absence of rehabilitative treatments. Rehabilitative interventions can be used to modulate adaptive neuroplasticity, reducing motor impairment and improving activities of daily living in patients with brain lesions. Learning principles guide some rehabilitative interventions. While basic science research has shown that reward combined with training enhances learning, this principle has been only recently explored in the context of neurorehabilitation. Commonly used reinforcers may be more or less rewarding depending on the individual or the context in which the task is performed. Studies in healthy humans showed that both reward and punishment can enhance within-session motor performance; but reward, and not punishment, improves consolidation and retention of motor skills. On the other hand, neurorehabilitative training after brain lesions involves complex tasks (e.g., walking and activities of daily living). The contribution of reward to neurorehabilitation is incompletely understood. Here, we discuss recent research on the role of reward in neurorehabilitation and the needed directions of future research.
Collapse
Affiliation(s)
- Brian P Johnson
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
3
|
Stampanoni Bassi M, Gilio L, Buttari F, Maffei P, Marfia GA, Restivo DA, Centonze D, Iezzi E. Remodeling Functional Connectivity in Multiple Sclerosis: A Challenging Therapeutic Approach. Front Neurosci 2017; 11:710. [PMID: 29321723 PMCID: PMC5733539 DOI: 10.3389/fnins.2017.00710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 11/13/2022] Open
Abstract
Neurons in the central nervous system are organized in functional units interconnected to form complex networks. Acute and chronic brain damage disrupts brain connectivity producing neurological signs and/or symptoms. In several neurological diseases, particularly in Multiple Sclerosis (MS), structural imaging studies cannot always demonstrate a clear association between lesion site and clinical disability, originating the "clinico-radiological paradox." The discrepancy between structural damage and disability can be explained by a complex network perspective. Both brain networks architecture and synaptic plasticity may play important roles in modulating brain networks efficiency after brain damage. In particular, long-term potentiation (LTP) may occur in surviving neurons to compensate network disconnection. In MS, inflammatory cytokines dramatically interfere with synaptic transmission and plasticity. Importantly, in addition to acute and chronic structural damage, inflammation could contribute to reduce brain networks efficiency in MS leading to worse clinical recovery after a relapse and worse disease progression. These evidence suggest that removing inflammation should represent the main therapeutic target in MS; moreover, as synaptic plasticity is particularly altered by inflammation, specific strategies aimed at promoting LTP mechanisms could be effective for enhancing clinical recovery. Modulation of plasticity with different non-invasive brain stimulation (NIBS) techniques has been used to promote recovery of MS symptoms. Better knowledge of features inducing brain disconnection in MS is crucial to design specific strategies to promote recovery and use NIBS with an increasingly tailored approach.
Collapse
Affiliation(s)
- Mario Stampanoni Bassi
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Luana Gilio
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Pierpaolo Maffei
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Girolama A Marfia
- Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | - Diego Centonze
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Multiple Sclerosis Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology & Unit of Neurorehabilitation, IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| |
Collapse
|
4
|
Carey LM, Seitz RJ. Functional Neuroimaging in Stroke Recovery and Neurorehabilitation: Conceptual Issues and Perspectives. Int J Stroke 2016; 2:245-64. [DOI: 10.1111/j.1747-4949.2007.00164.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background In stroke, functional neuroimaging has become a potent diagnostic tool; opened new insights into the pathophysiology of ischaemic damage in the human brain; and made possible the assessment of functional–structural relationships in postlesion recovery. Summary of review Here, we give a critical account on the potential and limitation of functional neuroimaging and discuss concepts related to the use of neuroimaging for exploring the neurobiological and neuroanatomical mechanisms of poststroke recovery and neurorehabilitation. We identify and provide evidence for five hypotheses that functional neuroimaging can provide new insights into: adaptation occurs at the level of functional brain systems; the brain–behaviour relationship varies with recovery and over time; functional neuroimaging can improve our ability to predict recovery and select individuals for rehabilitation; mechanisms of recovery reflect different pathophysiological phases; and brain adaptation may be modulated by experience and specific rehabilitation. The significance and application of this new evidence is discussed, and recommendations made for investigations in the field. Conclusion Functional neuroimaging is an important tool to explore the mechanisms underlying brain plasticity and, thereby, to guide clinical research in neurorehabilitation.
Collapse
Affiliation(s)
- Leeanne M. Carey
- National Stroke Research Institute, Neurosciences Building, Heidelberg Heights, Vic., Australia
- School of Occupational Therapy, LaTrobe University, Bundoora, Vic., Australia
| | - Rüdiger J. Seitz
- National Stroke Research Institute, Neurosciences Building, Heidelberg Heights, Vic., Australia
- Institute of Advanced Study, La Trobe University, Bundoora, Vic., Australia
- Department of Neurology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Wing K, Lynskey JV, Bosch PR. Whole-Body Intensive Rehabilitation Is Feasible and Effective in Chronic Stroke Survivors: A Retrospective Data Analysis. Top Stroke Rehabil 2015; 15:247-55. [DOI: 10.1310/tsr1503-247] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Kafri M, Zaltsberg N, Dickstein R. EMG activity of finger flexor muscles and grip force following low-dose transcutaneous electrical nerve stimulation in healthy adult subjects. Somatosens Mot Res 2014; 32:1-7. [PMID: 25059799 DOI: 10.3109/08990220.2014.937413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Somatosensory stimulation modulates cortical and corticospinal excitability and consequently affects motor output. Therefore, low-amplitude transcutaneous electrical nerve stimulation (TENS) has the potential to elicit favorable motor responses. The purpose of the two presented pilot studies was to shed light on TENS parameters that are relevant for the enhancement of two desirable motor outcomes, namely, electromyographic (EMG) activity and contraction strength of the finger flexors and wrist muscles. In 5 and 10 healthy young adults (in Study I and Study II, respectively) TENS was delivered to the volar aspect of the forearm. We manipulated TENS frequency (150 Hz vs. 5 Hz), length of application (10, 20, and 60 min), and side of application (unilateral, right forearm vs. bilateral forearms). EMG amplitude and grip force were measured before (Pre), immediately after (Post), and following 15 min of no stimulation (Study I only). The results indicated that low-frequency bursts of TENS applied to the skin overlying the finger flexor muscles enhance the EMG activity of the finger flexors and grip force. The increase in EMG activity of the flexor muscles was observed after 20 min of stimulation, while grip force was increased only after 1 h. The effects of uni- and bilateral TENS were comparable. These observations allude to a modulatory effect of TENS on the tested motor responses; however, unequivocal conclusions of the findings are hampered by individual differences that affect motor outcomes, such as in level of attention.
Collapse
Affiliation(s)
- Michal Kafri
- Department of Physical Therapy, Faculty of Social Welfare and Health Sciences, University of Haifa , Haifa , Israel
| | | | | |
Collapse
|
7
|
Machado AG, Cooperrider J, Furmaga HT, Baker KB, Park HJ, Chen Z, Gale JT. Chronic 30-Hz deep cerebellar stimulation coupled with training enhances post-ischemia motor recovery and peri-infarct synaptophysin expression in rodents. Neurosurgery 2014; 73:344-53; discussion 353. [PMID: 23670034 DOI: 10.1227/01.neu.0000430766.80102.ac] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Over 500,000 Americans have strokes every year, making stroke the leading cause for disability in the United States and in the industrialized world. New treatments to improve poststroke motor recovery are needed. OBJECTIVE To investigate a novel approach for enhancing motor recovery that involves chronic, electrical stimulation of ascending cerebellar output combined with motor training. METHODS Adult Sprague-Dawley rats underwent unilateral endothelin-1 injections in the dominant cerebral cortex and placement of a chronic stimulating electrode in the contralateral lateral cerebellar nucleus. After 1 week, the animals were separated into 2 groups (STIM+ and STIM-), matched for poststroke motor performance in the pasta matrix task. At 2 weeks post-ischemia, the treatment phase was initiated, with animals in the STIM+ group receiving pulsed, 30-Hz stimulation for 12 hours/day. Motor training continued for both groups over 3 to 5 weeks. RESULTS A total of 23 animals were examined after 3 weeks of treatment. STIM+ animals showed a significant improvement in motor function compared with post-ischemia baseline performance as well as in comparison with the STIM- group. Immunohistochemistry revealed a significant increase in the perilesional expression of synaptophysin for the STIM+ vs the STIM- animals. CONCLUSION These results indicate that chronic activation of ascending cerebellofugal pathways enhances motor recovery after focal cortical ischemia. The recovery was associated with an increase in perilesional cortical plasticity relative to nontreated controls.
Collapse
Affiliation(s)
- Andre G Machado
- *Center for Neurological Restoration, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio; ‡Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; §Department of Neurology, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Following stroke, patients are commonly left with debilitating motor and speech impairments. This article reviews the state of the art in neurological repair for stroke and proposes a new model for the future. We suggest that stroke treatment--from the time of the ictus itself to living with the consequences--must be fundamentally neurological, from limiting the extent of injury at the outset, to repairing the consequent damage. Our model links brain and behaviour by targeting brain circuits, and we illustrate the model though action observation treatment, which aims to enhance brain network connectivity. The model is based on the assumptions that the mechanisms of neural repair inherently involve cellular and circuit plasticity, that brain plasticity is a synaptic phenomenon that is largely stimulus-dependent, and that brain repair required both physical and behavioural interventions that are tailored to reorganize specific brain circuits. We review current approaches to brain repair after stroke and present our new model, and discuss the biological foundations, rationales, and data to support our novel approach to upper-extremity and language rehabilitation. We believe that by enhancing plasticity at the level of brain network interactions, this neurological model for brain repair could ultimately lead to a cure for stroke.
Collapse
Affiliation(s)
- Steven L Small
- Department of Neurology, University of California, Irvine, 200 Manchester Avenue, Suite 206, Orange, CA 92697, USA
| | | | | |
Collapse
|
9
|
Elder J, Cortes M, Rykman A, Hill J, Karuppagounder S, Edwards D, Ratan RR. The epigenetics of stroke recovery and rehabilitation: from polycomb to histone deacetylases. Neurotherapeutics 2013; 10:808-16. [PMID: 24092615 PMCID: PMC3805866 DOI: 10.1007/s13311-013-0224-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Classical de-afferentation studies, as well as experience-dependent visual plasticity paradigms, have confirmed that both the developing and adult nervous system are capable of unexpected levels of plasticity. This capacity is underscored by the significant spontaneous recovery that can occur in patients with mild-to-moderate impairment following stroke. An evolving model is that an interaction of biological and environmental factors during all epochs post-stroke influences the extent and quality of this plasticity. Here, we discuss data that have implicated specific epigenetic proteins as integrators of environmental influences in 3 aspects of stroke recovery: spontaneous impairment reduction in humans; peri-infarct rewiring in animals as a paradigm for developing therapeutically-driven impairment reduction beyond natural spontaneous recovery; and, finally, classical hippocampal learning and memory paradigms that are theoretically important in skill acquisition for both impairment reduction and compensatory strategies in the rehabilitation setting. Our discussion focuses primarily on B lymphoma Mo-MLV1 insertion region proteins of the polycomb repressive complex, alpha thalassemia/mental retardation syndrome X-linked chromatin remodeling factors, and the best known and most dynamic gene repressors, histone deacetylases. We will highlight exciting current data associated with these proteins and provide promising speculation about how they can be manipulated by drugs, biologics, or noninvasive stimulation for stroke recovery.
Collapse
Affiliation(s)
- Jessica Elder
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
- />Department of Epidemiology, Weill Medical College of Cornell University, New York, NY USA
| | - Mar Cortes
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
- />Department of Neurology, Weill Medical College of Cornell University, New York, NY USA
| | - Avrielle Rykman
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
| | - Justin Hill
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
- />Department of Neurology, Weill Medical College of Cornell University, New York, NY USA
- />Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY USA
| | - Saravanan Karuppagounder
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
- />Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY USA
| | - Dylan Edwards
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
- />Department of Neurology, Weill Medical College of Cornell University, New York, NY USA
| | - Rajiv R. Ratan
- />Center for Stroke Recovery, Burke-Cornell Medical Research Institute, 785 Mamaroneck Avenue White Plains, New York, 10605 NY USA
- />Department of Neurology, Weill Medical College of Cornell University, New York, NY USA
- />Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY USA
| |
Collapse
|
10
|
Sharma N, Classen J, Cohen LG. Neural plasticity and its contribution to functional recovery. HANDBOOK OF CLINICAL NEUROLOGY 2013; 110:3-12. [PMID: 23312626 DOI: 10.1016/b978-0-444-52901-5.00001-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
In this chapter we address the phenomena of neural plasticity, operationally defined as the ability of the central nervous system to adapt in response to changes in the environment or lesions. At the cellular level, we discuss basic changes in membrane excitability, synaptic plasticity as well as structural changes in dendritic and axonal anatomy that support behavioral expressions of plasticity and functional recovery. We consider the different levels at which these changes can occur and possible links with modification of cognitive strategies, recruitment of new/different neural networks, or changes in strength of such connections or specific brain areas in charge of carrying out a particular task (i.e., movement, language, vision, hearing). The study of neuroplasticity has wide-reaching implications for understanding reorganization of action and cognition in the healthy and lesioned brain.
Collapse
Affiliation(s)
- Nikhil Sharma
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | | | | |
Collapse
|
11
|
Tripathi A. New cellular and molecular approaches to ageing brain. Ann Neurosci 2012; 19:177-82. [PMID: 25205996 PMCID: PMC4117059 DOI: 10.5214/ans.0972.7531.190410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 07/01/2012] [Accepted: 12/30/2012] [Indexed: 11/23/2022] Open
Abstract
The last decade has witnessed a mammoth progress in the area of brain ageing. Recent gene profiling and brain imaging techniques have made it possible to explore the dark areas of ageing neurons in a new molecular perspective. Many conserved pathways and cellular and molecular mechanisms particularly nuclear mitochondrial molecular interactions are known now. Disruptions in mitochondrial function and reduction in cellular antioxidative and immunoproteins contribute to generation of reactive oxygen species (ROS) which leads to deteriorated adult neurogenesis, reduced white matter and compromised neural plasticity. The overall deteriorated structure and function of neurons is manifested in form of cognitive decline and prolonged neurodegenerative disorders. Dietary restrictions (DR), physical and mental activities however have been shown to counter these ailments. However more precise molecular dynamics at protein levels is still debatable which is the future task for neuroscientists.
Collapse
Affiliation(s)
- Anurag Tripathi
- Department of Zoology, Ranchi College, Ranchi University, Ranchi – 834008
| |
Collapse
|
12
|
Greifzu F, Schmidt S, Schmidt KF, Kreikemeier K, Witte OW, Löwel S. Global impairment and therapeutic restoration of visual plasticity mechanisms after a localized cortical stroke. Proc Natl Acad Sci U S A 2011; 108:15450-5. [PMID: 21873250 PMCID: PMC3174619 DOI: 10.1073/pnas.1016458108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We tested the influence of a photothrombotic lesion in somatosensory cortex on plasticity in the mouse visual system and the efficacy of anti-inflammatory treatment to rescue compromised learning. To challenge plasticity mechanisms, we induced monocular deprivation (MD) in 3-mo-old mice. In control animals, MD induced an increase of visual acuity of the open eye and an ocular dominance (OD) shift towards this eye. In contrast, after photothrombosis, there was neither an enhancement of visual acuity nor an OD-shift. However, OD-plasticity was present in the hemisphere contralateral to the lesion. Anti-inflammatory treatment restored sensory learning but not OD-plasticity, as did a 2-wk delay between photothrombosis and MD. We conclude that (i) both sensory learning and cortical plasticity are compromised in the surround of a cortical lesion; (ii) transient inflammation is responsible for impaired sensory learning, suggesting anti-inflammatory treatment as a useful adjuvant therapy to support rehabilitation following stroke; and (iii) OD-plasticity cannot be conceptualized solely as a local process because nonlocal influences are more important than previously assumed.
Collapse
Affiliation(s)
- Franziska Greifzu
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany; and
| | - Silvio Schmidt
- Hans-Berger Klinik für Neurologie, Universitätsklinikum Jena, D-07747 Jena, Germany
| | - Karl-Friedrich Schmidt
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany; and
| | - Klaus Kreikemeier
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany; and
| | - Otto W. Witte
- Hans-Berger Klinik für Neurologie, Universitätsklinikum Jena, D-07747 Jena, Germany
| | - Siegrid Löwel
- Institut für Allgemeine Zoologie und Tierphysiologie, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany; and
| |
Collapse
|
13
|
Handfunktionsstörungen: Assessment und Management. NeuroRehabilitation 2010. [DOI: 10.1007/978-3-642-12915-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Pearson-Fuhrhop KM, Kleim JA, Cramer SC. Brain plasticity and genetic factors. Top Stroke Rehabil 2009; 16:282-99. [PMID: 19740733 DOI: 10.1310/tsr1604-282] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Brain plasticity refers to changes in brain function and structure that arise in a number of contexts. One area in which brain plasticity is of considerable interest is recovery from stroke, both spontaneous and treatment-induced. A number of factors influence these poststroke brain events. The current review considers the impact of genetic factors. Polymorphisms in the human genes coding for brain-derived neurotrophic factor (BDNF) and apolipoprotein E (ApoE) have been studied in the context of plasticity and/or stroke recovery and are discussed here in detail. Several other genetic polymorphisms are indirectly involved in stroke recovery through their modulating influences on processes such as depression and pharmacotherapy effects. Finally, new genetic polymorphisms that have not been studied in the context of stroke are proposed as new directions for study. A better understanding of genetic influences on recovery and response to therapy might allow improved treatment after stroke.
Collapse
|
15
|
Ruscheweyh R, Willemer C, Krüger K, Duning T, Warnecke T, Sommer J, Völker K, Ho HV, Mooren F, Knecht S, Flöel A. Physical activity and memory functions: an interventional study. Neurobiol Aging 2009; 32:1304-19. [PMID: 19716631 DOI: 10.1016/j.neurobiolaging.2009.08.001] [Citation(s) in RCA: 314] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/02/2009] [Accepted: 08/03/2009] [Indexed: 11/25/2022]
Abstract
Previous studies have suggested beneficial effects of physical activity on cognition. Here, we asked in an interventional approach if physical activity performed at different intensity levels would differentially affect episodic memory function. Additionally, we tried to identify mechanisms mediating these changes. Sixty-two healthy elderly individuals were assessed for level of physical activity, aerobic fitness, episodic memory score, neurotrophin and catecholamine levels, and received a magnetic resonance image of the brain at baseline and after a six months intervention of medium or low-intensity physical activity or control. Increase in total physical activity was positively associated with increase in memory score over the entire cohort, without significant differences between intensity groups. It was also positively associated with increases in local gray matter volume in prefrontal and cingulate cortex, and BDNF levels (trend). In conclusion, we showed that physical activity conveys the beneficial effects on memory function independently of its intensity, possibly mediated by local gray matter volume and neurotrophic factors. Our findings may carry significant implications for prevention of cognitive decline in the elderly.
Collapse
Affiliation(s)
- R Ruscheweyh
- Department of Neurology, University of Muenster, Albert-Schweitzer-Strasse 33, Muenster, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
During the last decades, transcranial magnetic stimulation (TMS) has been used as a noninvasive method to investigate motor cortical reorganization and neuroplasticity in humans after stroke. An increasing number of studies in the field of motor control have used TMS to gain an understanding of the different aspects of stroke cortical physiology and motor recovery. This review addresses the effects of corticospinal tract (CST) lesions in humans and nonhuman primates on the functional organization of the motor system. We review information on the physiological mechanisms by which the CST contributes to normal motor control and to central nervous system reorganization following stroke when the CST is injured as measured using TMS. Insight into these physiological mechanisms has led to the development of scientifically sound interventional proposals in the field of neurorehabilitation.
Collapse
Affiliation(s)
- Monica A Perez
- Department of Physical Medicine and Rehabilitation, Center for the Neural Basis of Cognition, University of Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
17
|
Floel A, Cohen LG. Recovery of function in humans: cortical stimulation and pharmacological treatments after stroke. Neurobiol Dis 2009; 37:243-51. [PMID: 19520165 DOI: 10.1016/j.nbd.2009.05.027] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/29/2009] [Accepted: 05/30/2009] [Indexed: 11/19/2022] Open
Abstract
In this contribution, we first provide an overview of general principles of reorganisation in the human brain, and point out possible biomarkers of recovery. Subsequently, we expand on possibilities of adjuvant therapy in human rehabilitation using cortical stimulation and pharmacological treatments. Finally, we suggest future directions for research in this field.
Collapse
Affiliation(s)
- Agnes Floel
- Department of Neurology, University of Muenster, Germany.
| | | |
Collapse
|
18
|
|
19
|
Floel A, Hummel F, Duque J, Knecht S, Cohen LG. Influence of somatosensory input on interhemispheric interactions in patients with chronic stroke. Neurorehabil Neural Repair 2008; 22:477-85. [PMID: 18645188 DOI: 10.1177/1545968308316388] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ischemia-induced cutaneous anesthesia of the healthy hand in patients with chronic stroke elicits transient improvements of motor performance in the contralateral, paretic hand. OBJECTIVE The present study was designed to investigate one of the possible mechanisms underlying this effect. METHODS The authors evaluated the effects of transient ischemic cutaneous anesthesia of the healthy hand (target intervention) and healthy foot (control intervention) on transcranial magnetic stimulation-induced interhemispheric inhibition from the contralesional onto the ipsilesional primary motor cortex (M1). Ten subjects with chronic, predominantly subcortical stroke with motor impairment were assessed. RESULTS Cutaneous anesthesia of the intact hand but not the intact leg resulted in reduction of the inhibitory drive from the contralesional to the ipsilesional M1 both at rest and immediately preceding movements of the paretic hand. Changes in premovement interhemispheric inhibition showed a trend for correlation with improvements in finger-tapping speed in the paretic hand. CONCLUSION The findings suggest that modulation of interhemispheric inhibitory interactions between the contralesional and ipsilesional M1, either primarily or secondary to intrahemispheric excitability changes in either hemisphere, may contribute to performance improvements with cutaneous anesthesia of the intact hand. The present study provides additional insight into the mechanisms by which rehabilitative interventions focused on training one hand and restraining the other may operate after chronic stroke.
Collapse
Affiliation(s)
- Agnes Floel
- Human Cortical Physiology Section and Stroke Neuro-rehabilitation Clinic, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20817-1428, USA
| | | | | | | | | |
Collapse
|
20
|
|
21
|
Abstract
The concept of brain plasticity covers all the mechanisms involved in the capacity of the brain to adjust and remodel itself in response to environmental requirements, experience, skill acquisition, and new challenges including brain lesions. Advances in neuroimaging and neurophysiologic techniques have increased our knowledge of task-related changes in cortical representation areas in the intact and injured human brain. The recognition that neuronal progenitor cells proliferate and differentiate in the subventricular zone and dentate gyrus in the adult mammalian brain has raised the hope that regeneration may be possible after brain lesions. Regeneration will require that new cells differentiate, survive, and integrate into existing neural networks and that axons regenerate. To what extent this will be possible is difficult to predict. Current research explores the possibilities to modify endogenous neurogenesis and facilitate axonal regeneration using myelin inhibitory factors. After apoptotic damage in mice new cortical neurons can form long-distance connections. Progenitor cells from the subventricular zone migrate to cortical and subcortical regions after ischemic brain lesions, apparently directed by signals from the damaged region. Postmortem studies on human brains suggest that neurogenesis may be altered in degenerative diseases. Functional and anatomic data indicate that myelin inhibitory factors, cell implantation, and modification of extracellular matrix may be beneficial after spinal cord lesions. Neurophysiologic data demonstrating that new connections are functioning are needed to prove regeneration. Even if not achieving the goal, methods aimed at regeneration can be beneficial by enhancing plasticity in intact brain regions.
Collapse
Affiliation(s)
- Barbro B Johansson
- Wallenberg Neuroscience Center, Department of Clinical Neuroscience, Lund University, Lund, Sweden.
| |
Collapse
|
22
|
Cramer SC, Parrish TB, Levy RM, Stebbins GT, Ruland SD, Lowry DW, Trouard TP, Squire SW, Weinand ME, Savage CR, Wilkinson SB, Juranek J, Leu SY, Himes DM. Predicting functional gains in a stroke trial. Stroke 2007; 38:2108-14. [PMID: 17540966 DOI: 10.1161/strokeaha.107.485631] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE A number of therapies in development for patients with central nervous system injury aim to reduce disability by improving function of surviving brain elements rather than by salvaging tissue. The current study tested the hypothesis that, after adjusting for a number of clinical assessments, a measure of brain function at baseline would improve prediction of behavioral gains after treatment. METHODS Twenty-four patients with chronic stroke underwent baseline clinical and functional MRI assessments, received 6 weeks of rehabilitation therapy with or without investigational motor cortex stimulation, and then had repeat assessments. Thirteen baseline clinical/radiological measures were evaluated for ability to predict subsequent trial-related gains. RESULTS Across all patients, bivariate analyses found that greater trial-related functional gains were predicted by (1) smaller infarct volume, (2) greater baseline clinical status, and (3) lower degree of activation in stroke-affected motor cortex on baseline functional MRI. When these 3 variables were further assessed using multivariate linear regression modeling, only lower motor cortex activation and greater clinical status at baseline remained significant predictors. Note that lower baseline motor cortex activation was also associated with larger increases in motor cortex activation after treatment. CONCLUSIONS Lower motor cortex activity at baseline predicted greater behavioral gains after therapy, even after controlling for a number of clinical assessments. The boosts in cortical activity that paralleled behavioral gains suggest that in some patients, low baseline cortical activity represents underuse of surviving cortical resources. A measure of brain function might be important for optimal clinical decision-making in the context of a restorative intervention.
Collapse
Affiliation(s)
- Steven C Cramer
- Department of Anatomy, University of California, Irvine, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zafonte RD. Brain Injury Research: Lessons for Reinventing the Future. The 38th Zeiter Lecture. Arch Phys Med Rehabil 2007; 88:551-4. [PMID: 17466721 DOI: 10.1016/j.apmr.2007.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
I discuss novel dynamics in brain injury medicine that will shape the field of physical medicine and rehabilitation over the next several years. I review the lessons from previous clinical trials and discuss how rapid biotechnologic changes will influence the lives of people with disabilities. This lecture focuses on prior paradigms and addresses lessons learned, novel strategies for reinvention (including person-specific therapies), conventional therapy programs, biomaterials and devices, cellular-based therapies, and potential therapeutic interventions.
Collapse
Affiliation(s)
- Ross D Zafonte
- University of Pittsburgh, UPMC Health System, Pittsburgh, PA 15215, USA.
| |
Collapse
|
24
|
Abstract
The purpose of this review article is to discuss the novel dynamics in the area of traumatic brain injury medicine and how rapid changes in biotechnology will influence the lives of persons with traumatic brain injury. This article will focus on biomaterials, devices, cellular therapy, conventional therapy, and person-specific therapy that will be part of the future care plans for those who treat persons with traumatic brain injury.
Collapse
Affiliation(s)
- Ross D Zafonte
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, UPMC Health System, Pittsburgh, PA 15213, USA.
| |
Collapse
|