1
|
Cortinovis M, Perico N, Remuzzi G. Tubulointerstitial injury in proteinuric chronic kidney diseases. Front Med (Lausanne) 2024; 11:1478697. [PMID: 39529801 PMCID: PMC11550959 DOI: 10.3389/fmed.2024.1478697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Proteinuria is an independent risk factor for chronic kidney disease progression and cardiovascular diseases. Apart from its prognostic role, the load of proteins that pass across the disrupted glomerular capillary wall trigger multiple pathophysiologic processes. These include, among others, intratubular complement activation and excessive proximal tubular reabsorption of filtered proteins, especially albumin and albumin-bound free fatty acids, which can set off several pathways of cellular damage. The activation of these pathways can cause apoptosis of proximal tubular cells and paracrine effects that incite the development of interstitial inflammation and fibrosis, ultimately leading to irreversible kidney injury. In this review, we provide a comprehensive overview of the current understanding on the mechanisms underlying the tubular toxicity of ultrafiltered proteins in the setting of proteinuric chronic kidney diseases. The acquired knowledge is expected to be instrumental for the development of novel therapeutic classes of medications to be tested on top of standard of care with optimized renin-angiotensin-aldosterone blockade and sodium-glucose cotransporter-2 inhibition, in order to further improve the clinical outcomes of patients with proteinuric chronic kidney diseases.
Collapse
Affiliation(s)
- Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | | |
Collapse
|
2
|
Xu C, Ha X, Yang S, Tian X, Jiang H. Advances in understanding and treating diabetic kidney disease: focus on tubulointerstitial inflammation mechanisms. Front Endocrinol (Lausanne) 2023; 14:1232790. [PMID: 37859992 PMCID: PMC10583558 DOI: 10.3389/fendo.2023.1232790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetic kidney disease (DKD) is a serious complication of diabetes that can lead to end-stage kidney disease. Despite its significant impact, most research has concentrated on the glomerulus, with little attention paid to the tubulointerstitial region, which accounts for the majority of the kidney volume. DKD's tubulointerstitial lesions are characterized by inflammation, fibrosis, and loss of kidney function, and recent studies indicate that these lesions may occur earlier than glomerular lesions. Evidence has shown that inflammatory mechanisms in the tubulointerstitium play a critical role in the development and progression of these lesions. Apart from the renin-angiotensin-aldosterone blockade, Sodium-Glucose Linked Transporter-2(SGLT-2) inhibitors and new types of mineralocorticoid receptor antagonists have emerged as effective ways to treat DKD. Moreover, researchers have proposed potential targeted therapies, such as inhibiting pro-inflammatory cytokines and modulating T cells and macrophages, among others. These therapies have demonstrated promising results in preclinical studies and clinical trials, suggesting their potential to treat DKD-induced tubulointerstitial lesions effectively. Understanding the immune-inflammatory mechanisms underlying DKD-induced tubulointerstitial lesions and developing targeted therapies could significantly improve the treatment and management of DKD. This review summarizes the latest advances in this field, highlighting the importance of focusing on tubulointerstitial inflammation mechanisms to improve DKD outcomes.
Collapse
Affiliation(s)
- Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaowen Ha
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
3
|
Peng Z, Wang H, Zheng J, Wang J, Xiang Y, Liu C, Ji M, Liu H, Pan L, Qin X, Qu X. Is the proximal tubule the focus of tubulointerstitial fibrosis? Heliyon 2023; 9:e13508. [PMID: 36846656 PMCID: PMC9950842 DOI: 10.1016/j.heliyon.2023.e13508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Tubulointerstitial fibrosis (TIF), a common end result of almost all progressive chronic kidney diseases (CKD), is also the best predictor of kidney survival. Almost all cells in the kidney are involved in the progression of TIF. Myofibroblasts, the primary producers of extracellular matrix, have previously received a great deal of attention; however, a large body of emerging evidence reveals that proximal tubule (PT) plays a central role in TIF progression. In response to injury, renal tubular epithelial cells (TECs) transform into inflammatory and fibroblastic cells, producing various bioactive molecules that drive interstitial inflammation and fibrosis. Here we reviewed the increasing evidence for the key role of the PT in promoting TIF in tubulointerstitial and glomerular injury and discussed the therapeutic targets and carrier systems involving the PT that holds particular promise for treating patients with fibrotic nephropathy.
Collapse
Affiliation(s)
- Zhi Peng
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Hui Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Jiaoyun Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jie Wang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Chi Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Ming Ji
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Lang Pan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
4
|
Chang TT, Chiang CH, Chen C, Lin SC, Lee HJ, Chen JW. Antioxidation and Nrf2-mediated heme oxygenase-1 activation contribute to renal protective effects of hydralazine in diabetic nephropathy. Biomed Pharmacother 2022; 151:113139. [PMID: 35623171 DOI: 10.1016/j.biopha.2022.113139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/08/2022] [Accepted: 05/15/2022] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and oxidative stress are associated with the progression of diabetic nephropathy (DN). Hydralazine is an antihypertensive agent and may act as a xanthine oxidase (XO) inhibitor to reduce uric acid levels in a mouse renal injury model. This study aimed to investigate the potential mechanisms of hydralazine in experimental DN. Streptozotocin-induced diabetic mice were fed a high-fat diet to generate DN. Human renal proximal tubular epithelial cells were used in vitro. Nitrendipine and allopurinol which can reduce blood pressure or XO activity levels, were used as two positive controls. Hydralazine downregulated NF-κB/p38 signaling pathways and reduced TNF-α/IL-6 expressions in high glucose-stimulated renal proximal tubular epithelial cells. Hydralazine reduced in vitro ROS production via XO inhibition and nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated heme oxygenase (HO)-1 activation. Furthermore, hydralazine reduced high glucose-induced apoptosis by downregulating PARP/caspase-3 signaling. Hydralazine and allopurinol but not nitrendipine reduced serum uric acid levels and systemic inflammation. Hydralazine and allopurinol treatment improved renal function with decreased urinary albumin-to-creatinine ratios, glomerular hypertrophy, glomerulosclerosis, and fibrosis in the kidney of DN mice. While both hydralazine and allopurinol downregulated XO and NADPH oxidase expression, only hydralazine upregulated Nrf2/HO-1 renal expression, suggesting the additional effects of hydralazine independent of XO/ NADPH oxidase inhibition. In conclusion, hydralazine protected renal proximal tubular epithelial cells against the insults of high glucose and prevented renal damage via XO/NADPH oxidase inhibition and Nrf-2/HO-1 activation, suggesting the comprehensive antioxidation and anti-inflammation mechanisms for the management of DN.
Collapse
Affiliation(s)
- Ting-Ting Chang
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chih-Hung Chiang
- Department of Urology, National Taiwan University Hospital, Taipei, Taiwan; Department of Urology/Medical Research and Education, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yi-Lan, Taiwan
| | - Ching Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Su-Chu Lin
- Department of Urology/Medical Research and Education, Taipei Veterans General Hospital, Yuan-Shan/Su-Ao Branch, Yi-Lan, Taiwan
| | - Hsin-Jou Lee
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Healthcare and Services Center, Taipei Veterans General Hospital, Taipei, Taiwan; Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
5
|
Hu Y, Tang W, Liu W, Hu Z, Pan C. Astragaloside IV Alleviates Renal Tubular Epithelial-Mesenchymal Transition via CX3CL1-RAF/MEK/ERK Signaling Pathway in Diabetic Kidney Disease. Drug Des Devel Ther 2022; 16:1605-1620. [PMID: 35669284 PMCID: PMC9166910 DOI: 10.2147/dddt.s360346] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/15/2022] [Indexed: 12/29/2022] Open
Abstract
Background Epithelial–mesenchymal transition (EMT) plays an important role in interstitial matrix deposition and renal fibrosis in diabetic kidney disease (DKD). It has been verified that Astragaloside IV (AS-IV) is beneficial for ameliorating DKD. However, the underlying mechanisms of AS-IV on regulating EMT in DKD are yet to be established. Accumulated evidence has suggested that C-X3-C motif ligand 1 (CX3CL1) plays a significant role in the progression of EMT. Purpose We aimed to investigate whether AS-IV could alleviate EMT by regulating CX3CL1 in DKD and reveal its underlying mechanisms. Methods For the in vivo study, mice were divided into the following five groups (n=10): db/m+vehicle, db/db+vehicle, db/db+AS-IV-L (10mg/kg/d), db/db+AS-IV-M (20mg/kg/d), db/db+AS-IV-H (40mg/kg/d). After 12 weeks of treatment, the renal injuries were assessed based on the related parameters of urine, blood and histopathological examination. Immunohistochemistry and Western blotting were used to detect relative proteins levels. Then in HK-2 cells, the molecular mechanism of AS-IV attenuating the EMT in mice with DKD through the CX3CL1-RAF/MEK/ERK pathway was studied. Results In the present study, we found that AS-IV reduced urinary protein levels and improved renal pathological damage in DKD mice. Moreover, AS-IV ameliorated the renal tubular EMT induced by hyperglycemia or high glucose (HG), and decreased the expression of CX3CL1 and inhibited the activation of the RAF/MEK/ERK pathway in vivo and in vitro. In HK-2 cells, downregulation of CX3CL1 suppressed the stimulation of the RAF/MEK/ERK pathway and EMT induced by HG. However, CX3CL1 overexpression eliminated the benefits of AS-IV on the RAF/MEK/ERK pathway and EMT. Conclusion In summary, we indicated that AS-IV alleviates renal tubular EMT through the CX3CL1-RAF/MEK/ERK signaling pathway, indicating that CX3CL1 could be a potential therapeutic target of AS-IV in DKD.
Collapse
Affiliation(s)
- Yonghui Hu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, People's Republic of China
| | - Wangna Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, People's Republic of China
| | - Wenjie Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, People's Republic of China
| | - Zhibo Hu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, People's Republic of China
| | - Congqing Pan
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, People's Republic of China.,Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, People's Republic of China
| |
Collapse
|
6
|
Ma J, Gong Q, Pan X, Guo P, He L, You Y. Depletion of Fractalkine ameliorates renal injury and Treg cell apoptosis via the p38MAPK pathway in lupus-prone mice. Exp Cell Res 2021; 405:112704. [PMID: 34126056 DOI: 10.1016/j.yexcr.2021.112704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 11/20/2022]
Abstract
Fractalkine (FKN) is a chemokine with several roles, including chemotaxis; adhesion; and immune damage, which also participates in cell inflammation and apoptosis and responds to the pathogenesis of autoimmune diseases. Given the involvement of regulatory T cells (Treg) cells in autoimmune diseases, this study investigated the regulatory mechanism of FKN in renal injury and Treg apoptosis via the p38 mitogen-activated protein kinase (p38MAPK) signaling pathway in lupus-prone mice. Lupus was induced in BALB/c female mice by injection of pristane, followed by isolation of CD4+CD25+ Treg cells from the spleen of lupus model mice. To deplete FKN, mice received injection of an anti-FKN antibody, and Treg cells were transfected with FKN small-interfering RNA. Lupus mice and Treg cells were treated with the p38MAPK inhibitor SB203580 and activator U-46619, respectively, and urine protein and serum urea nitrogen, creatinine, and autoantibodies were measured and renal histopathological changes analyzed. We determined levels of FKN, phosphorylated p38 (p-p38), and forkhead box P3 (FOXP3) in renal tissue and Treg cells, and analyzed apoptosis rates and levels of key apoptotic factors in Treg cells. The renal FKN and p-p38 levels increased, whereas renal FOXP3 level decreased in lupus-prone mice. Treatment with the anti-FKN antibody and the p38MAPK inhibitor ameliorated proteinuria and renal function, significantly reducing serum autoantibody, renal FKN, and p-p38 levels while increasing renal FOXP3 level in lupus-prone mice. Moreover, FKN knockdown and administration of the p38MAPK inhibitor reduced apoptosis and levels of pro-apoptotic factors, increased levels of anti-apoptotic factors, and suppressed activation of p38MAPK signaling in Treg cells derived from lupus model mice. Furthermore, treatment with the p38MAPK activator U-46619 had the opposite effect on these cells. These data indicated that depletion of FKN ameliorated renal injury and Treg cell apoptosis via inhibition of p38MAPK signaling in lupus nephritis, suggesting that targeting FKN represents a potential therapeutic strategy for treating Lupus nephritis.
Collapse
Affiliation(s)
- Jingxue Ma
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, China
| | - Qiming Gong
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, China
| | - Xiuhong Pan
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, China
| | - Pengwei Guo
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, China
| | - Linlin He
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, China
| | - Yanwu You
- Department of Nephrology, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
7
|
Chang CY, Chien YJ, Kao MC, Lin HY, Chen YL, Wu MY. Pre-operative proteinuria, postoperative acute kidney injury and mortality: A systematic review and meta-analysis. Eur J Anaesthesiol 2021; 38:702-714. [PMID: 34101638 DOI: 10.1097/eja.0000000000001542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate the association of pre-operative proteinuria with postoperative acute kidney injury (AKI) development as well as the requirement for a renal replacement therapy (RRT) and mortality at short-term and long-term follow-up. BACKGROUND Postoperative AKI is associated with surgical morbidity and mortality. Pre-operative proteinuria is potentially a risk factor for postoperative AKI and mortality. However, the results in literature are conflicting. METHODS We searched PubMed, Embase, Scopus, Web of Science and Cochrane Library from the inception through to 3 June 2020. Observational cohort studies investigating the association of pre-operative proteinuria with postoperative AKI development, requirement for RRT, and all-cause mortality at short-term and long-term follow-up were considered eligible. Using inverse variance method with a random-effects model, the pooled effect estimates and 95% confidence interval (CI) were calculated. RESULTS Twenty-eight studies were included. Pre-operative proteinuria was associated with postoperative AKI development [odds ratio (OR) 1.74, 95% CI, 1.45 to 2.09], in-hospital RRT (OR 1.70, 95% CI, 1.25 to 2.32), requirement for RRT at long-term follow-up [hazard ratio (HR) 3.72, 95% CI, 2.03 to 6.82], and long-term all-cause mortality (hazard ratio 1.50, 95% CI, 1.30 to 1.73). In the subgroup analysis, pre-operative proteinuria was associated with increased odds of postoperative AKI in both cardiovascular (OR 1.77, 95% CI, 1.47 to 2.14) and noncardiovascular surgery (OR 1.63, 95% CI, 1.01 to 2.63). Moreover, there is a stepwise increase in OR of postoperative AKI development when the quantity of proteinuria increases from trace to 3+. CONCLUSION Pre-operative proteinuria is significantly associated with postoperative AKI and long-term mortality. Pre-operative anaesthetic assessment should take into account the presence of proteinuria to identify high-risk patients. PROSPERO REGISTRATION CRD42020190065.
Collapse
Affiliation(s)
- Chun-Yu Chang
- From the Department of Anesthesiology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City (C-YC, M-CK, H-YL), Department of Anesthesiology, School of Medicine, Tzu Chi University, Hualien (C-YC, M-CK, H-YL), Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City (Y-JC), Department of Physical Medicine and Rehabilitation, School of Medicine, Tzu Chi University, Hualien (Y-JC), Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City (Y-LC, M-YW) and Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan (Y-LC, M-YW)
| | | | | | | | | | | |
Collapse
|
8
|
Megalin-mediated albumin endocytosis in renal proximal tubules is involved in the antiproteinuric effect of angiotensin II type 1 receptor blocker in a subclinical acute kidney injury animal model. Biochim Biophys Acta Gen Subj 2021; 1865:129950. [PMID: 34144121 DOI: 10.1016/j.bbagen.2021.129950] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Tubule-interstitial injury (TII) is one of the mechanisms involved in the progression of renal diseases with progressive proteinuria. Angiotensin II (Ang II) type 1 receptor blockers (ARBs) have been successfully used to treat renal diseases. However, the mechanism correlating treatment with ARBs and proteinuria is not completely understood. The hypothesis that the anti-proteinuric effect of losartan is associated with the modulation of albumin endocytosis in PT epithelial cells (PTECs) was assessed. METHODS We used a subclinical acute kidney injury animal model (subAKI) and LLC-PK1 cells, a model of PTECs. RESULTS In subAKI, PT albumin overload induced TII development, measured by: (1) increase in urinary lactate dehydrogenase and γ-glutamyltranspeptidase activity; (2) proteinuria associated with impairment in megalin-mediated albumin reabsorption; (3) increase in luminal and interstitial space in tubular cortical segments. These effects were avoided by treating the animals with losartan, an ARB. Using LLC-PK1 cells, we observed that: (1) 20 mg/mL albumin increased the secretion of Ang II and decreased megalin-mediated albumin endocytosis; (2) the effects of Ang II and albumin were abolished by 10-8 M losartan; (3) MEK/ERK pathway is the molecular mechanism underlying the Ang II-mediated inhibitory effect of albumin on PT albumin endocytosis. CONCLUSION Our results show that PT megalin-mediated albumin endocytosis is a possible target during the treatment of renal diseases patients with ARB. GENERAL SIGNIFICANCE The findings obtained in the present work represents a step forward to the current knowledge on about the role of ARBs in the treatment of renal disease.
Collapse
|
9
|
Osoro EK, Du X, Liang D, Lan X, Farooq R, Huang F, Zhu W, Ren J, Sadiq M, Tian L, Yang X, Li D, Lu S. Induction of PDCD4 by albumin in proximal tubule epithelial cells potentiates proteinuria-induced dysfunctional autophagy by negatively targeting Atg5. Biochem Cell Biol 2021; 99:617-628. [PMID: 33831322 DOI: 10.1139/bcb-2021-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The precise molecular mechanism of autophagy dysfunction in type 1 diabetes is not known. Herein, the role of programmed cell death 4 (PDCD4) in autophagy regulation in the pathogenesis of diabetic kidney disease (DKD) in vivo and in vitro was described. It was found that Pdcd4 mRNA and protein was upregulated in the streptozotocin (STZ)-induced DKD rats. In addition, a unilateral ureteral obstruction mouse model displayed an upregulation of PDCD4 in the disease group. kidney biopsy samples of human DKD patients showed an upregulation of PDCD4. Furthermore, western blotting of the STZ-induced DKD rat tissues displayed a low microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, as compared to the control. It was found that albumin overload in cultured PTEC could upregulate the expression of PDCD4 and p62, and decrease the expression of LC3-II and autophagy-related 5 (Atg5) proteins. The knockout of Pdcd4 in cultured PTECs could lessen albumin-induced dysfunctional autophagy as evidenced by the recovery of Atg5 and LC3-II protein. The forced expression of PDCD4 could further suppress the expression of crucial autophagy-related gene Atg5. Herein, endogenous PDCD4 was shown to promote proteinuria-induced dysfunctional autophagy by negatively regulating Atg5. PDCD4 might therefore be a potential therapeutic target in DKD.
Collapse
Affiliation(s)
- Ezra Kombo Osoro
- Xian Jiaotong University, 12480, Biochemistry and Molecular Biology, Xi'an, China.,Xi'an Jiaotong University, 12480, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, Shaanxi, China;
| | - Xiaojuan Du
- Xian Jiaotong University, 12480, Biochemistry and Molecular Biology, Xi'an, Shaanxi, China.,Xi'an Jiaotong University, 12480, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, Shaanxi, China;
| | - Dong Liang
- Xi'an Jiaotong University, 12480, Biochemistry and Molecular Biology, Xi'an, Shaanxi, China.,Xi'an Jiaotong University, 12480, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, Shaanxi, China;
| | - Xi Lan
- Xi'an Jiaotong University, 12480, Biochemistry and Molecular Biology, Xi'an, Shaanxi, China.,Xi'an Jiaotong University, 12480, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, Shaanxi, China;
| | - Riaz Farooq
- Xi'an Jiaotong University, 12480, Biochemistry and Molecular Biology, Xi'an, Shaanxi, China.,Xi'an Jiaotong University, 12480, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, Shaanxi, China;
| | - Fumeng Huang
- Xian Jiaotong University, 12480, Biochemistry and Molecular Biology, Xi'an, China.,Xi'an Jiaotong University, 12480, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, Shaanxi, China;
| | - Wenhua Zhu
- Xian Jiaotong University, 12480, Biochemistry and Molecular Biology, Xi'an, China.,Xi'an Jiaotong University, 12480, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, Shaanxi, China;
| | - Jiajun Ren
- Xian Jiaotong University, 12480, Biochemistry and Molecular Biology, Xi'an, China.,Xi'an Jiaotong University, 12480, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, Shaanxi, China;
| | - Muhammad Sadiq
- Xian Jiaotong University, 12480, Biochemistry and Molecular Biology, Xi'an, China.,Xi'an Jiaotong University, 12480, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, Shaanxi, China;
| | - Lifang Tian
- Xi'an Jiaotong University, 12480, Department of Nephrology, the Second Affiliated Hospital, Xi'an, Shaanxi, China;
| | - Xudong Yang
- Xian Jiaotong University, 12480, Biochemistry and Molecular Biology, Xi'an, China.,Xi'an Jiaotong University, 12480, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, Shaanxi, China;
| | - Dongmin Li
- Xian Jiaotong University, 12480, Biochemistry and Molecular Biology, Xi'an, China.,Xi'an Jiaotong University, 12480, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, Shaanxi, China;
| | - Shemin Lu
- Xian Jiaotong University, 12480, Biochemistry and Molecular Biology, Xi'an, Shaanxi, China.,Xi'an Jiaotong University, 12480, Key Laboratory of Environment and Genes Related to Diseases, Xi'an, Shaanxi, China;
| |
Collapse
|
10
|
Wang Y, He W. Improving the Dysregulation of FoxO1 Activity Is a Potential Therapy for Alleviating Diabetic Kidney Disease. Front Pharmacol 2021; 12:630617. [PMID: 33859563 PMCID: PMC8042272 DOI: 10.3389/fphar.2021.630617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
A substantial proportion of patients with diabetes will develop kidney disease. Diabetic kidney disease (DKD) is one of the most serious complications in diabetic patients and the leading cause of end-stage kidney disease worldwide. Although some mechanisms have been revealed to contribute to the understanding of the pathogenesis of DKD and some drugs currently in use have been shown to be beneficial, prevention and management of DKD remain tricky and challenging. FoxO1 transcriptional factor is a crucial regulator of cellular homeostasis and posttranslational modification is a major mechanism to alter FoxO1 activity. There is increasing evidence that FoxO1 is involved in the regulation of various cellular processes such as stress resistance, autophagy, cell cycle arrest, and apoptosis, thereby playing an important role in the pathogenesis of DKD. Improving the dysregulation of FoxO1 activity by natural compounds, synthetic drugs, or manipulation of gene expression may attenuate renal cell injury and kidney lesion in the cells cultured under a high-glucose environment and in diabetic animal models. The available data imply that FoxO1 may be a potential clinical target for the prevention and treatment of DKD.
Collapse
Affiliation(s)
- Yan Wang
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Weichun He
- Center for Kidney Disease, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Wang K, Jiang L, Hu A, Sun C, Zhou L, Huang Y, Chen Q, Dong J, Zhou X, Zhang F. Vertebral-specific activation of the CX3CL1/ICAM-1 signaling network mediates non-small-cell lung cancer spinal metastasis by engaging tumor cell-vertebral bone marrow endothelial cell interactions. Am J Cancer Res 2021; 11:4770-4789. [PMID: 33754027 PMCID: PMC7978319 DOI: 10.7150/thno.54235] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Rationale: The spine is one of the most common metastatic sites of non-small cell lung cancer (NSCLC), and NSCLC spinal metastasis results in serious consequences. Metastatic extravasation of disseminated cancer cells including increased invasiveness, adhesion and transendothelial migration is crucial for tumor metastasis. This study aimed to investigate the mechanisms underlying NSCLC spinal metastasis based on the C-X3-C motif chemokine ligand 1- (CX3CL1) and intercellular adhesion molecule-1- (ICAM-1) mediated signaling network. Methods: Immunohistochemistry, western blotting, and reverse transcription-quantitative PCR were conducted to detect the distribution of CX3CL1/ICAM-1 in different organs. Transwell, adhesion, and transendothelial migration assays were performed to evaluate the regulatory effects of CX3CL1/ICAM-1 on NSCLC cell invasion, adhesion, and transendothelial migration in vitro. A spontaneous spinal metastasis mouse model was established via injection of NSCLC cells into the left cardiac ventricle of NOD/SCID mice. The effects of CX3CL1/ICAM-1 on NSCLC spinal metastasis in vivo were validated using bioluminescent, micro-computerized tomography, immunohistochemistry and histological analyses. Results: CX3CL1 expression was specifically higher in vertebral bone compared with limb bones and lung tissue, and was associated with NSCLC spinal metastasis. Mechanically, vertebral bone marrow endothelial cells (VBMECs) enhanced NSCLC cell invasion via CX3CL1 signaling-mediated activation of the PI3K/AKT pathway. Furthermore, we found that VBMECs effectively induced ICAM-1-dependent NSCLC cell adhesion in coordination with platelets through the CX3CL1/ICAM-1/LFA-1 pathway. Meanwhile, CX3CL1 enhanced NSCLC cell transendothelial migration by increasing permeability of VBMECs via ICAM-1-dependent activation of the Src/GEF-H1 pathway. Interestingly, NSCLC cells were indicated to promote CX3CL1 secretion of VBMECs through MAPK14/ADMA17-dependent CX3CL1 release and NF-κB-dependent CX3CL1 synthesis. Based on these findings, we revealed a novel feedback cycle between circulating NSCLC cells and VBMECs mediated by CX3CL1/ICAM-1 signaling. Further disengagement of the CX3CL1/ICAM-1-mediated feedback cycle in vivo significantly restricted metastasis and prolonged mouse survival. Conclusions: Our results indicated a unique feedback cycle between circulating NSCLC cells and VBMECs mediated by CX3CL1/ICAM-1 signaling, which is necessary for NSCLC spinal metastasis. This work provides a new perspective for underlying the mechanisms of NSCLC spinal metastasis and indicates potential novel targets for the prevention of NSCLC spinal metastasis.
Collapse
|
12
|
Inflammation and salt in young adults: the African-PREDICT study. Eur J Nutr 2020; 60:873-882. [PMID: 32494865 PMCID: PMC7900065 DOI: 10.1007/s00394-020-02292-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Low-grade inflammation and a diet high in salt are both established risk factors for cardiovascular disease. High potassium (K+) intake was found to counter increase in blood pressure due to high salt intake and may potentially also have protective anti-inflammatory effects. To better understand these interactions under normal physiological conditions, we investigated the relationships between 22 inflammatory mediators with 24-h urinary K+ in young healthy adults stratified by low, medium and high salt intake (salt tertiles). We stratified by ethnicity due to potential salt sensitivity in black populations. METHODS In 991 healthy black (N = 457) and white (N = 534) adults, aged 20-30 years, with complete data for 24-h urinary sodium and K+, we analysed blood samples for 22 inflammatory mediators. RESULTS We found no differences in inflammatory mediators between low-, mid- and high-sodium tertiles in either the black or white groups. In multivariable-adjusted regression analyses in white adults, we found only in the lowest salt tertile that K+ associated negatively with pro-inflammatory mediators, namely interferon gamma, interleukin (IL) -7, IL-12, IL-17A, IL-23 and tumour necrosis factor alpha (all p ≤ 0.046). In the black population, we found no independent associations between K+ and any inflammatory mediator. CONCLUSION In healthy white adults, 24-h urinary K+ associated independently and negatively with specific pro-inflammatory mediators, but only in those with a daily salt intake less than 6.31 g, suggesting K+ to play a protective, anti-inflammatory role in a low-sodium environment. No similar associations were found in young healthy black adults.
Collapse
|
13
|
Wu MH, Lin CN, Chiu DTY, Chen ST. Kynurenine/Tryptophan Ratio Predicts Angiotensin Receptor Blocker Responsiveness in Patients with Diabetic Kidney Disease. Diagnostics (Basel) 2020; 10:diagnostics10040207. [PMID: 32283658 PMCID: PMC7235821 DOI: 10.3390/diagnostics10040207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Albuminuria is a measurement and determinant factor for diabetic kidney disease (DKD). Angiotensin receptor blocker (ARB) is recommended for albuminuria in DKD with variable response. To find surrogate markers to predict the therapeutic effect of ARB, we carried out a prospective study to correlate plasma metabolites and the progression of renal function/albuminuria in DKD patients. A total of 56 type 2 diabetic patients with various stages of chronic kidney disease and albuminuria were recruited. ARB was prescribed once albuminuria was established. Urinary albumin-to-creatinine ratio (UACR) was determined before and six months after ARB treatment, with a ≥30% reduction of UACR considered an ARB responder. Plasma levels of 145 metabolites were measured before ARB treatment; only those associated with albuminuria were selected and compared between ARB responders and non-responders. Both lower tryptophan (Trp ≤ 46.75 μmol/L) levels and a higher kynurenine/tryptophan ratio (KTR ≥ 68.5 × 10−3) were significantly associated with macroalbuminuria (MAU), but only KTR (≥54.7 × 10−3) predicts ARB responsiveness (sensitivity 90.0%, specificity 50%) in MAU. Together, these data suggest that the kynurenine/tryptophan ratio predicts angiotensin receptor blocker responsiveness in patients with diabetic kidney disease.
Collapse
Affiliation(s)
- Ming-Hsien Wu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
- Division of Endocrinology and Metabolism, Department of Internal Medicine, New Taipei Municipal TuCheng Hospital, New Taipei City 236, Taiwan
| | - Chia-Ni Lin
- Department of Laboratory Medicine, Chang Gung Memorial Hospital Linkou Branch, Chang Gung University, Taoyuan 333, Taiwan;
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Healthy Aging Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Szu-Tah Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, Taoyuan 333, Taiwan;
- Correspondence: ; Tel.: +886-3-3281200 (ext. 8821); Fax: +886-3-3288257
| |
Collapse
|
14
|
Peruchetti DB, Silva-Filho JL, Silva-Aguiar RP, Teixeira DE, Takiya CM, Souza MC, Henriques MDG, Pinheiro AAS, Caruso-Neves C. IL-4 Receptor α Chain Protects the Kidney Against Tubule-Interstitial Injury Induced by Albumin Overload. Front Physiol 2020; 11:172. [PMID: 32174845 PMCID: PMC7056741 DOI: 10.3389/fphys.2020.00172] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/13/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence has highlighted the role of tubule-interstitial injury (TII) as a vital step in the pathogenesis of acute kidney injury (AKI). Incomplete repair of TII during AKI could lead to the development of chronic kidney disease. Changes in albumin endocytosis in proximal tubule epithelial cells (PTECs) is linked to the development of TII. In this context, interleukin (IL)-4 has been shown to be an important factor in modulating recovery of TII. We have studied the possible role of IL-4 in TII induced by albumin overload. A subclinical AKI model characterized by albumin overload in the proximal tubule was used, without changing glomerular function. Four groups were generated: (1) CONT, wild-type mice treated with saline; (2) BSA, wild-type mice treated with 10 g/kg/day bovine serum albumin (BSA); (3) KO, IL4Rα–/– mice treated with saline; and (4) KO + BSA, IL4Rα–/– mice treated with BSA. As reported previously, mice in the BSA group developed TII without changes in glomerular function. The following parameters were increased in the KO + BSA group compared with the BSA group: (1) tubular injury score; (2) urinary γ-glutamyltransferase; (3) CD4+ T cells, dendritic cells, macrophages, and neutrophils are associated with increases in renal IL-6, IL-17, and transforming growth factor β. A decrease in M2-subtype macrophages associated with a decrease in collagen deposition was observed. Using LLC-PK1 cells, a model of PTECs, we observed that (1) these cells express IL-4 receptor α chain associated with activation of the JAK3/STAT6 pathway; (2) IL-4 alone did not change albumin endocytosis but did reverse the inhibitory effect of higher albumin concentration. This effect was abolished by JAK3 inhibitor. A further increase in urinary protein and creatinine levels was observed in the KO + BSA group compared with the BSA group, but not compared with the CONT group. These observations indicate that IL-4 has a protective role in the development of TII induced by albumin overload that is correlated with modulation of the pro-inflammatory response. We propose that megalin-mediated albumin endocytosis in PTECs could work as a sensor, transducer, and target during the genesis of TII.
Collapse
Affiliation(s)
- Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - João Luiz Silva-Filho
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina M Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana C Souza
- Instituto de Tecnologia em Fármacos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUìDE/FAPERJ, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rio de Janeiro Innovation Network in Nanosystems for Health - NanoSAUìDE/FAPERJ, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTIC, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Medina-Navarro R, Torres-Ramos YD, Guzmán-Grenfell AM, Díaz-Flores M, León-Reyes G, Hicks G JJ. Lysosomal dysfunction induced by changes in albumin's tertiary structure: Potential key factor in protein toxicity during diabetic nephropathy. Life Sci 2019; 230:197-207. [PMID: 31150688 DOI: 10.1016/j.lfs.2019.05.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/24/2019] [Accepted: 05/26/2019] [Indexed: 01/25/2023]
Abstract
AIMS Increased amounts of protein, in particular albumin within renal tubular cells (TBCs), induce the expression of inflammatory and fibrogenic mediators, which are adverse prognostic factors in tubulointerstitial fibrosis and diabetic nephropathy (DN). We sought to assess the participation of the thiol-linked tertiary structure of albumin in the mechanism of protein toxicity in a model of TBCs. MATERIALS AND METHODS Cultured human renal proximal tubular cells, HK-2, were exposed to isolated albumin from patients with and without DN (Stages 0, 1 and 4). The magnitude of change of the albumin tertiary structure, cell viability (LDH leakage), apoptosis (Annexin V), transdifferentiation and reticulum endoplasmic stress (Western blot and flow cytometry) and lysosomal enzyme activity were assessed. KEY FINDINGS We found that albumin from Stage 4 patients presented >50% higher thiol-dependent changes of tertiary structure compared to Stages 0 and 1. Cells incubated with Stage 4 albumin displayed 5 times less viability, accompanied by an increased number of apoptotic cells; evidence of profibrogenic markers E-cadherin and vimentin and higher expression of epithelial-to-mesenchymal transition markers α-SMA and E-cadherin and of endoplasmic reticulum stress protein GRP78 were likewise observed. Moreover, we found that cathepsin B activity in isolated lysosomes showed a significant inhibitory effect on albumin from patients in advanced stages of DN and on albumin that was intentionally modified. SIGNIFICANCE Overall, this study showed that thiol-dependent changes in albumin's tertiary structure interfere with the lysosomal proteolysis of renal TBCs, inducing molecular changes associated with interstitial fibrosis and DN progression.
Collapse
Affiliation(s)
- Rafael Medina-Navarro
- Department of Experimental Metabolism, Center for Biomedical Research, Michoacán, Mexico.
| | - Yessica Dorin Torres-Ramos
- Department of Immuno-Biochemistry, National Institute of Perinatology, Ministry of Health, Mexico City, Mexico
| | | | - Margarita Díaz-Flores
- Biochemistry Medical Research Unit, National Medical Center, IMSS, México City, Mexico
| | - Guadalupe León-Reyes
- Department of Immuno-Biochemistry, National Institute of Perinatology, Ministry of Health, Mexico City, Mexico
| | - Juan José Hicks G
- Health Research Policies, Coordinating Commission of National Health Institutes and Highly Specialized Hospitals, Mexico City, Mexico
| |
Collapse
|
16
|
Huang X, Xue H, Ma J, Zhang Y, Zhang J, Liu Y, Qin X, Sun C. Salidroside ameliorates Adriamycin nephropathy in mice by inhibiting β-catenin activity. J Cell Mol Med 2019; 23:4443-4453. [PMID: 30993911 PMCID: PMC6533469 DOI: 10.1111/jcmm.14340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Salidroside is a major phenylethanoid glycoside in Rhodiola rosea L., a traditional Chinese medicine, with multiple biological activities. It has been shown that salidroside possesses protective effects for alleviating diabetic renal dysfunction, contrast‐induced‐nephropathy and other kidney diseases. However, the involved molecular mechanism was still not understood well. Herein, we examined the protective effects of salidroside in mice with Adriamycin (ADR)‐induced nephropathy and the underlying molecular mechanism. The results showed that salidroside treatment ameliorates proteinuria; improves expressions of nephrin and podocin; and reduces kidney fibrosis and glomerulosclerosis induced by ADR. Mechanistically, ADR induces a robust accumulation of β‐catenin in the nucleus and stimulates its downstream target gene expression. The application of salidroside largely abolishes the nuclear translocation of β‐catenin and thus inhibits its activity. Furthermore, the activation of β‐catenin almost completely counteracts the protective roles of salidroside in ADR‐injured podocytes. Taken together, our data indicate that salidroside ameliorates proteinuria, renal fibrosis and podocyte injury in ADR nephropathy, which may rely on inhibition of β‐catenin signalling pathway.
Collapse
Affiliation(s)
- Xinzhong Huang
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Haiyan Xue
- Department of Nephrology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jinyu Ma
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China
| | | | - Jing Zhang
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China
| | - Yue Liu
- Department of Nephrology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, China
| | - Xiaogang Qin
- Department of Nephrology, Traditional Chinese Medicine Hospital of Tongzhou District, Nantong, China
| | - Cheng Sun
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China
| |
Collapse
|
17
|
Fries JWU. MicroRNAs as markers to monitor endothelin-1 signalling and potential treatment in renal disease: Carcinoma - proteinuric damage - toxicity. Biol Cell 2019; 111:169-186. [PMID: 30866090 DOI: 10.1111/boc.201800059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/01/2019] [Accepted: 02/25/2019] [Indexed: 12/11/2022]
Abstract
This review highlights new developments in miRNA as diagnostic and surveillance tools in diseases damaging the renal proximal tubule mediated by endothelin in the field of renal carcinoma, proteinuric kidney disease and tubulotoxicity. A new mechanism in the miRNA regulation of proteins leads to the binding of the miRNA directly to the DNA with premature transcriptional termination and hence the formation of truncated protein isoforms (Mxi2, Vim3). These isoforms are mediated through miRNA15a or miRNA 498, respectively. ET-1 can activate a cytoplasmic complex consisting of NF-κB p65, MAPK p38α, and PKCα. Consequently, PKCα does not transmigrate into the nucleus, which leads to the loss of suppression of a primiRNA15a, maturation of this miRNA in the cytoplasm, tubular secretion and detectability in the urine. This mechanism has been shown in renal cell carcinoma and in proteinuric disease as a biomarker for the activation of the signalling pathway. Similarly, ET-1 induced miRNA 498 transmigrates into the nucleus to form the truncated protein Vim3, which is a biomarker for the benign renal cell tumour, oncocytoma. In tubulotoxicity, ET-1 induced miRNa133a down-regulating multiple-drug-resistant related protein-2, relevant for proteinuric and cisplatin/cyclosporine A toxicity. Current advantages and limitations of miRNAs as urinary biomarkers are discussed.
Collapse
Affiliation(s)
- Jochen W U Fries
- Department of Pathology, University Hospital of Koeln, 50931, Koeln, Germany
| |
Collapse
|
18
|
Soliman AR, Ahmed RM, Soliman M, Abdallah A, Zayed B. The effect of co-infection with hepatitis B and hepatitis C viruses on the prevalence of proteinuria and loss of renal function: a single-center experience. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2018. [DOI: 10.4103/ejim.ejim_51_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
19
|
Urakami-Takebayashi Y, Kuroda Y, Murata T, Miyazaki M, Nagai J. Pioglitazone induces hypoxia-inducible factor 1 activation in human renal proximal tubular epithelial cell line HK-2. Biochem Biophys Res Commun 2018; 503:1682-1688. [DOI: 10.1016/j.bbrc.2018.07.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 02/02/2023]
|
20
|
Gewin LS. Renal fibrosis: Primacy of the proximal tubule. Matrix Biol 2018; 68-69:248-262. [PMID: 29425694 PMCID: PMC6015527 DOI: 10.1016/j.matbio.2018.02.006] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 12/20/2022]
Abstract
Tubulointerstitial fibrosis (TIF) is the hallmark of chronic kidney disease and best predictor of renal survival. Many different cell types contribute to TIF progression including tubular epithelial cells, myofibroblasts, endothelia, and inflammatory cells. Previously, most of the attention has centered on myofibroblasts given their central importance in extracellular matrix production. However, emerging data focuses on how the response of the proximal tubule, a specialized epithelial segment vulnerable to injury, plays a central role in TIF progression. Several proximal tubular responses such as de-differentiation, cell cycle changes, autophagy, and metabolic changes may be adaptive initially, but can lead to maladaptive responses that promote TIF both through autocrine and paracrine effects. This review discusses the current paradigm of TIF progression and the increasingly important role of the proximal tubule in promoting TIF both in tubulointerstitial and glomerular injuries. A better understanding and appreciation of the role of the proximal tubule in TIF has important implications for therapeutic strategies to halt chronic kidney disease progression.
Collapse
Affiliation(s)
- Leslie S Gewin
- The Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
21
|
Nakatani S, Nakatani A, Ishimura E, Toi N, Tsuda A, Mori K, Emoto M, Hirayama Y, Saito A, Inaba M. Urinary Iron Excretion is Associated with Urinary Full-Length Megalin and Renal Oxidative Stress in Chronic Kidney Disease. Kidney Blood Press Res 2018; 43:458-470. [PMID: 29590662 DOI: 10.1159/000488470] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/16/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Megalin mediates the uptake of glomerular-filtered iron in the proximal tubules. Urinary full length megalin (C-megalin) excretion has been found to be increased in association with megalin-mediated metabolic load to the endo-lysosomal system in proximal tubular epithelial cells (PTECs) of residual nephrons. In the present study, we investigated the association between urinary iron and C-megalin in chronic kidney disease (CKD) patients, and the possible harmful effect of iron in renal tubules. METHODS Urinary levels of iron and C-megalin were measured in 63 CKD patients using automatic absorption spectrometry and a recently-established sandwich ELISA, respectively. RESULTS Although both urinary C-megalin and urinary total protein levels were correlated with urinary iron (C-megalin: ρ = 0.574, p <0.001; total protein: ρ = 0.500, p <0.001, respectively), urinary C-megalin alone emerged as an independent factor positively associated with urinary iron (β = 0.520, p <0.001) (R2 = 0.75, p <0.001). Furthermore, urinary iron was significantly and positively associated with urinary 8-hydroxydeoxyguanosine, an oxidative stress marker, while no association with other markers of renal tubular injury, i.e., β2-microglobulin and N-acetyl-β-D-glucosaminidase, was noted. CONCLUSIONS Our findings suggest that renal iron handling may be associated with megalin-mediated endo-lysosomal metabolic load in PTECs of residual nephrons and oxidative stress in renal tubules.
Collapse
Affiliation(s)
- Shinya Nakatani
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Nakatani
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Eiji Ishimura
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Norikazu Toi
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Akihiro Tsuda
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Katsuhito Mori
- Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masanori Emoto
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yoshiaki Hirayama
- Reagent Research and Development Department, Denka Seiken Co., Ltd., Gosen, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masaaki Inaba
- Department of Metabolism, Endocrinology, and Molecular Medicine, Osaka City University Graduate School of Medicine, Osaka, Japan.,Department of Nephrology, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
22
|
Alicic RZ, Johnson EJ, Tuttle KR. Inflammatory Mechanisms as New Biomarkers and Therapeutic Targets for Diabetic Kidney Disease. Adv Chronic Kidney Dis 2018; 25:181-191. [PMID: 29580582 DOI: 10.1053/j.ackd.2017.12.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 02/08/2023]
Abstract
Diabetic kidney disease (DKD) is the leading cause of CKD and end-stage kidney disease (ESKD) worldwide. Approximately 30-40% of people with diabetes develop this microvascular complication, placing them at high risk of losing kidney function as well as of cardiovascular events, infections, and death. Current therapies are ineffective for arresting kidney disease progression and mitigating risks of comorbidities and death among patients with DKD. As the global count of people with diabetes will soon exceed 400 million, the need for effective and safe treatment options for complications such as DKD becomes ever more urgent. Recently, the understanding of DKD pathogenesis has evolved to recognize inflammation as a major underlying mechanism of kidney damage. In turn, inflammatory mediators have emerged as potential biomarkers and therapeutic targets for DKD. Phase 2 clinical trials testing inhibitors of monocyte-chemotactic protein-1 chemokine C-C motif-ligand 2 and the Janus kinase/signal transducer and activator of transcription pathway, in particular, have produced promising results.
Collapse
|
23
|
Liu BC, Tang TT, Lv LL, Lan HY. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int 2018; 93:568-579. [DOI: 10.1016/j.kint.2017.09.033] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
|
24
|
Dobronravov VA, Mayer DA, Berezhnaya OV, Lapin SV, Mazing AV, Sipovsky VG, Smirnov AV. [Membranous nephropathy in a Russian population]. TERAPEVT ARKH 2017; 89:21-29. [PMID: 28745685 DOI: 10.17116/terarkh201789621-29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To analyze the clinical and morphological manifestations of membranous nephropathy (MN) and to evaluate the efficiency of its therapy. MATERIAL AND METHODS MN cases in 2009 to 2016 were retrospectively detected with a subsequent analysis of patients with primary MN (PMN). The titer of IgG-autoantibodies to phospholipase A2 receptor (anti-PLA2R Ab) was determined by an indirect immunofluorescence assay. Treatment outcomes, such as the time course of changes in proteinuria, nephrotic syndrome (NS), and the development of complete and partial remissions (CR and PR), were assessed. RESULTS MN was detected in 201 cases; the secondary etiology of the disease was established in 24.9%. The prevalence of MN among morphologically confirmed glomerulopathies was 14%; that of PMN was 10.4%. The median period to diagnosis PMN was 8 (5; 19) months. 150 patients with PMN (66.7% were men; age was 50±15 years) were distributed according to the following morphological stages: Stages I (23.9%), II (48.5%), III (26.1%), and IV (1.5%). Elevated anti-PLA2R Ab levels were found in 51.6% of cases; NS in the presence of proteinuria was detected in 85.6% of patients. An estimated glomerular filtration rate (eGFR) of <60 ml/min/1.73 m2 was seen in 25% of cases. Treatment outcomes were evaluated in 80 cases; the median follow-up period was 19 (8; 40) months. 68% of cases had CR (32%) or PR (36%) with a median follow-up of 26 (13; 44) months. Spontaneous CRs or PRs were observed in 7.5% of the patients. Multivariate analysis showed that the probability of CR or PR increased 3.2-fold in the use of cyclophosphamide and/or cyclosporine and decreased as eGFR dropped. CONCLUSION In Russia, PMN is a common type of glomerulopathy, the specific features of which should include the low rates of spontaneous remissions and detection of anti-PLA2R Abs. For renal protection, the majority of patients with PMN require timely diagnosis and treatment; individualization of the choice of treatment and its enhanced efficiency call for further investigations.
Collapse
Affiliation(s)
- V A Dobronravov
- I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| | - D A Mayer
- I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| | - O V Berezhnaya
- I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| | - S V Lapin
- I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| | - A V Mazing
- I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| | - V G Sipovsky
- I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| | - A V Smirnov
- I.P. Pavlov First Saint Petersburg State Medical University, Ministry of Health of Russia, Saint Petersburg, Russia
| |
Collapse
|
25
|
Fatah H, Benfaed N, Chana RS, Chunara MH, Barratt J, Baines RJ, Brunskill NJ. Reduced proximal tubular expression of protein endocytic receptors in proteinuria is associated with urinary receptor shedding. Nephrol Dial Transplant 2017; 33:934-943. [DOI: 10.1093/ndt/gfx321] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hiwa Fatah
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Nura Benfaed
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Ravinder S Chana
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Mohamed H Chunara
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Jonathan Barratt
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
- Department of Nephrology, Leicester General Hospital, Leicester, UK
| | - Richard J Baines
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
- Department of Nephrology, Leicester General Hospital, Leicester, UK
| | - Nigel J Brunskill
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, UK
- Department of Nephrology, Leicester General Hospital, Leicester, UK
| |
Collapse
|
26
|
Yin W, Xu S, Wang Z, Liu H, Peng L, Fang Q, Deng T, Zhang W, Lou J. Recombinant human GLP-1(rhGLP-1) alleviating renal tubulointestitial injury in diabetic STZ-induced rats. Biochem Biophys Res Commun 2017; 495:793-800. [PMID: 29137984 DOI: 10.1016/j.bbrc.2017.11.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 11/29/2022]
Abstract
GLP-1-based treatment improves glycemia through stimulation of insulin secretion and inhibition of glucagon secretion. Recently, more and more findings showed that GLP-1 could also protect kidney from diabetic nephropathy. Most of these studies focused on glomeruli, but the effect of GLP-1 on tubulointerstitial and tubule is not clear yet. In this study, we examined the renoprotective effect of recombinant human GLP-1 (rhGLP-1), and investigated the influence of GLP-1 on inflammation and tubulointerstitial injury using diabetic nephropathy rats model of STZ-induced. The results showed that rhGLP-1 reduced urinary albumin without influencing the body weight and food intake. rhGLP-1 could increased the serum C-peptide slightly but not lower fasting blood glucose significantly. In diabetic nephropathy rats, beside glomerular sclerosis, tubulointerstitial fibrosis was very serious. These lesions could be alleviated by rhGLP-1. rhGLP-1 decreased the expression of profibrotic factors collagen I, α-SMA, fibronectin, and inflammation factors MCP-1 and TNFα in tubular tissue and human proximal tubular cells (HK-2 cells). Furthermore, rhGLP-1 significantly inhibited the phosphorylation of NF-κB, MAPK in both diabetic tubular tissue and HK-2 cells. The inhibition of the expression of TNFα, MCP-1, collagen I and α-SMA in HK-2 cells by GLP-1 could be mimicked by blocking NF-κB or MAPK. These results indicate that rhGLP-1 exhibit renoprotective effect by alleviation of tubulointerstitial injury via inhibiting phosphorylation of MAPK and NF-κB. Therefore, rhGLP-1 may be a potential drug for treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Weiqin Yin
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China
| | - Shiqing Xu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Honglin Liu
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Qing Fang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Tingting Deng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China
| | - Wenjian Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China.
| | - Jinning Lou
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, PR China; Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, PR China.
| |
Collapse
|
27
|
Jia Y, Sun Y, Weng L, Li Y, Zhang Q, Zhou H, Yang B. Low molecular weight fucoidan protects renal tubular cells from injury induced by albumin overload. Sci Rep 2016; 6:31759. [PMID: 27545472 PMCID: PMC4992848 DOI: 10.1038/srep31759] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/27/2016] [Indexed: 12/02/2022] Open
Abstract
Albuminuria is a causative and aggravating factor for progressive renal damage in chronic kidney disease (CKD). The aim of this study was to determine if low molecular weight fucoidan (LMWF) could protect renal function and tubular cells from albumin overload caused injury. Treatment with 10 mg/g bovine serum albumin caused renal dysfunction, morphological changes, and overexpression of inflammation and fibrosis associated proteins in 129S2/Sv mice. LMWF (100 mg/kg) protected against kidney injury and renal dysfunction with decreased blood creatinine by 34% and urea nitrogen by 25%, increased creatinine clearance by 48%, and decreased significantly urinary albumin concentration. In vitro proximal tubule epithelial cell (NRK-52E) model showed that LMWF dose-dependently inhibited overexpression of proinflammatory and profibrotic factors, oxidative stress and apoptosis caused by albumin overload. These experimental results indicate that LMWF protects against albumin overload caused renal injury by inhibiting inflammation, fibrosis, oxidative stress and apoptosis, which suggests that LMWF could be a promising candidate drug for preventing CKD.
Collapse
Affiliation(s)
- Yingli Jia
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191, P.R. China
| | - Yi Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191, P.R. China
| | - Lin Weng
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191, P.R. China
| | - Yingjie Li
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191, P.R. China
| | - Quanbin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, P.R. China
| | - Hong Zhou
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191, P.R. China
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Department of Pharmacology, School of Basic Medical Sciences, Peking University, 100191, P.R. China
| |
Collapse
|
28
|
Ding LH, Liu D, Xu M, Wu M, Liu H, Tang RN, Ma KL, Chen PS, Liu BC. TLR2-MyD88-NF-κB pathway is involved in tubulointerstitial inflammation caused by proteinuria. Int J Biochem Cell Biol 2015; 69:114-20. [PMID: 26485683 DOI: 10.1016/j.biocel.2015.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/23/2015] [Accepted: 10/13/2015] [Indexed: 01/04/2023]
Abstract
Proteinuria is an important risk factor for chronic kidney diseases (CKD). Several studies have suggested that proteinuria initiates tubulointerstitial inflammation, while the mechanisms have not been fully understood. In this study, we hypothesized whether the activation of the TLR2-MyD88-NF-κB pathway is involved in tubulointerstitial inflammation induced by proteinuria. We observed expression of TLR2, MyD88, NF-κB, as well as TNF-α and IL-6 detected by immunohistostaining, Western blotting and real-time PCR in albumin-overloaded (AO) nephropathy rats. In vitro, we observed these markers in HK-2 cells stimulated by albumin. We used TLR2 siRNA or the NF-κB inhibitor BAY 11-7082 to observe the influence of TNF-α and IL-6 expression caused by albumin overload. Finally, we studied these markers in non-IgA mesangioproliferative glomerulonephritis (MsPGN) patients with different levels of proteinuria. It was demonstrated that expression of TLR2, MyD88 and NF-κB were significantly increased in AO rats and in non-IgA MsPGN patients with high levels of proteinuria, and TNF-α and IL-6 expressions were increased after NF-κB activation. Furthermore, TNF-α and IL-6 expression was positively correlated with the level of proteinuria. Albumin-overload induced TNF-α and IL-6 secretions by the TLR2-MyD88-NF-κB pathway activation, which could be attenuated by the TLR2 siRNA or BAY 11-7082 in HK-2 cells. In summary, we demonstrated that proteinuria may exhibit an endogenous danger-associated molecular pattern (DAMP) that induces tubulointerstitial inflammation via the TLR2-MyD88-NF-κB pathway activation.
Collapse
Affiliation(s)
- Li-Hong Ding
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Dan Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Xu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Min Wu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Hong Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ri-Ning Tang
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Kun-Ling Ma
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Ping-Sheng Chen
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China
| | - Bi-Cheng Liu
- Institute of Nephrology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| |
Collapse
|
29
|
Management of proteinuria in the transplanted patient. Pediatr Nephrol 2015; 30:889-903. [PMID: 25159718 DOI: 10.1007/s00467-014-2876-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/23/2014] [Accepted: 06/03/2014] [Indexed: 10/24/2022]
Abstract
Proteinuria is a relatively frequent complication in children after renal transplantation (40-80 %). It is usually mild and non-nephrotic in nature and predominantly tubular in origin. The major causes of post-transplant proteinuria are recurrence of primary glomerulonephritis [mostly focal segmental glomerulosclerosis (FSGS)], rejection (acute and chronic), mTOR inhibitors or hypertension. Proteinuria is a risk factor for graft loss and patient death in adults, and even a mild proteinuria (0.1-0.2 g/day) is associated with impaired graft and patient survival. In children, proteinuria seems to be associated with graft but not patient survival. Proteinuria (protein/creatinine ratio) should be assessed regularly in all children. In children with prior chronic kidney disease due to idiopathic FSGS, proteinuria should be assessed daily during the first month after transplantation to enable early diagnosis of recurrence. The cause of proteinuria should be identified, and graft biopsy should be considered in children with unexplained proteinuria, especially with new onset proteinuria or deterioration of previously mild proteinuria. Treatment must be primarily targeted at the cause of proteinuria, and in normotensive children symptomatic antiproteinuric therapy with angiotensin-converting enzyme inhibitors/angiotensin II receptor antagonists should also be initiated. Other antihypertensive drugs should be used to achieve target blood pressure of <75th percentile. Target proteinuria should be <20 mg/mmol creatinine.
Collapse
|
30
|
Fractalkine-CX3CR1-dependent recruitment and retention of human CD1c+ myeloid dendritic cells by in vitro-activated proximal tubular epithelial cells. Kidney Int 2015; 87:1153-63. [PMID: 25587706 DOI: 10.1038/ki.2014.407] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 10/23/2014] [Accepted: 10/30/2014] [Indexed: 12/24/2022]
Abstract
Chemokines play pivotal roles in tissue recruitment and retention of leukocytes, with CX3CR1 recently identified as a chemokine receptor that selectively targets mouse kidney dendritic cells (DCs). We have previously demonstrated increased tubulointerstitial recruitment of human transforming growth factor-β (TGF-β)-producing DCs in renal fibrosis and chronic kidney disease (CKD). However, little is known about the mechanism of human DC recruitment and retention within the renal interstitium. We identified CD1c+ DCs as the predominant source of profibrotic TGF-β and highest expressors of the fractalkine receptor CX3CR1 within the renal DC compartment. Immunohistochemical analysis of diseased human kidney biopsies showed colocalization of CD1c+ DCs with fractalkine-positive proximal tubular epithelial cells (PTECs). Human primary PTEC activation with interferon-γ and tumor necrosis factor-α induced both secreted and surface fractalkine expression. In line with this, we found fractalkine-dependent chemotaxis of CD1c+ DCs to supernatant from activated PTECs. Finally, in comparison with unactivated PTECs, we showed significantly increased adhesion of CD1c+ DCs to activated PTECs via a fractalkine-dependent mechanism. Thus, TGF-β-producing CD1c+ DCs are recruited and retained in the renal tubulointerstitium by PTEC-derived fractalkine. These cells are then positioned to play a role in the development of fibrosis and progression of chronic kidney disease.
Collapse
|
31
|
Fatty acid-bearing albumin but not fatty acid-depleted albumin induces HIF-1 activation in human renal proximal tubular epithelial cell line HK-2. Biochem Biophys Res Commun 2014; 450:476-81. [PMID: 24924632 DOI: 10.1016/j.bbrc.2014.05.146] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 05/31/2014] [Indexed: 11/24/2022]
Abstract
Recently, we found that albumin overload induces expression of the transcription factor hypoxia-inducible factor-1α (HIF-1α) protein and several HIF-1 target genes in human renal proximal tubular epithelial cell line HK-2. In this study, the role of albumin-bound fatty acids in the albumin-induced HIF-1 activation was studied. The enhancing effect of fatty acid-bearing human serum albumin [FA(+)HSA] treatment on HIF-1α protein expression was much greater than that of fatty acid-depleted human serum albumin [FA(-)HSA] treatment. The FA(+)HSA treatment induced HIF-1 target gene mRNAs such as those of glucose transporter 1 (GLUT1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and breast cancer resistance protein (BCRP) in concentration-dependent manners, while FA(-)HSA caused no significant increases in these mRNAs. Consistent with increased GLUT1 mRNA, GLUT1 protein expression and GLUT inhibitor cytochalasin B-sensitive d-[(3)H]glucose uptake activity were significantly enhanced by treatment with FA(+)HSA, but not with FA(-)HSA. These findings indicate that fatty acids bound to albumin play a crucial role in albumin-induced HIF-1 activation followed by changes in HIF-1 target gene expression and protein product activity.
Collapse
|
32
|
Cravedi P, Remuzzi G. Pathophysiology of proteinuria and its value as an outcome measure in chronic kidney disease. Br J Clin Pharmacol 2014; 76:516-23. [PMID: 23441592 DOI: 10.1111/bcp.12104] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/19/2013] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney diseases share common pathogenic mechanisms that, independently from the initial injury, lead to glomerular hyperfiltration, proteinuria, and progressive renal scarring and function loss. Consistent experimental evidence supports the crucial role of proteinuria in accelerating kidney disease progression to end-stage renal failure through multiple pathways, including induction of tubular chemokine expression and complement activation. These events, in turn, lead to inflammatory cell infiltration in the interstitium and sustained fibrogenesis. The extent of proteinuria is widely recognized as a marker of the severity of chronic kidney disease and as a predictor of future decline in glomerular filtration rate. More importantly, a reduction in proteinuria invariably translates into a protection from renal function decline in patients with diabetic and non-diabetic renal disease. Recent evidence also showed the existence of a relationship between proteinuria levels and cardiovascular risk, which extends to the range of urinary albumin excretion that was previously thought 'normal'. Thus, proteinuria should be considered a valuable surrogate end point for clinical trials in patients with chronic renal diseases and a target for reno- and cardioprotecive strategies.
Collapse
Affiliation(s)
- Paolo Cravedi
- Istituto di Ricerche Farmacologiche 'Mario Negri' - IRCCS, Centro Anna Maria Astori
| | | |
Collapse
|
33
|
Kitching AR. Dendritic cells in progressive renal disease: some answers, many questions. Nephrol Dial Transplant 2014; 29:2185-93. [DOI: 10.1093/ndt/gfu076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
34
|
High glucose induces CCL20 in proximal tubular cells via activation of the KCa3.1 channel. PLoS One 2014; 9:e95173. [PMID: 24733189 PMCID: PMC3986377 DOI: 10.1371/journal.pone.0095173] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/24/2014] [Indexed: 02/05/2023] Open
Abstract
Background Inflammation plays a key role in the development and progression of diabetic nephropathy (DN). KCa3.1, a calcium activated potassium channel protein, is associated with vascular inflammation, atherogenesis, and proliferation of endothelial cells, macrophages, and fibroblasts. We have previously demonstrated that the KCa3.1 channel is activated by TGF-β1 and blockade of KCa3.1 ameliorates renal fibrotic responses in DN through inhibition of the TGF-β1 pathway. The present study aimed to identify the role of KCa3.1 in the inflammatory responses inherent in DN. Methods Human proximal tubular cells (HK2 cells) were exposed to high glucose (HG) in the presence or absence of the KCa3.1 inhibitor TRAM34 for 6 days. The proinflammatory cytokine chemokine (C-C motif) ligand 20 (CCL20) expression was examined by real-time PCR and enzyme-linked immunosorbent assay (ELISA). The activity of nuclear factor-κB (NF-κB) was measured by nuclear extraction and electrophoretic mobility shift assay (EMSA). In vivo, the expression of CCL20, the activity of NF-κB and macrophage infiltration (CD68 positive cells) were examined by real-time PCR and/or immunohistochemistry staining in kidneys from diabetic or KCa3.1-/- mice, and in eNOS-/- diabetic mice treated with the KCa3.1 channel inhibitor TRAM34. Results In vitro data showed that TRAM34 inhibited CCL20 expression and NF-κB activation induced by HG in HK2 cells. Both mRNA and protein levels of CCL20 significantly decreased in kidneys of diabetic KCa3.1-/- mice compared to diabetic wild type mice. Similarly, TRAM34 reduced CCL20 expression and NF-κB activation in diabetic eNOS-/- mice compared to diabetic controls. Blocking the KCa3.1 channel in both animal models led to a reduction in phosphorylated NF-κB. Conclusions Overexpression of CCL20 in human proximal tubular cells is inhibited by blockade of KCa3.1 under diabetic conditions through inhibition of the NF-κB pathway.
Collapse
|
35
|
Wu HJ, Yiu WH, Li RX, Wong DWL, Leung JCK, Chan LYY, Zhang Y, Lian Q, Lin M, Tse HF, Lai KN, Tang SCW. Mesenchymal stem cells modulate albumin-induced renal tubular inflammation and fibrosis. PLoS One 2014; 9:e90883. [PMID: 24646687 PMCID: PMC3960109 DOI: 10.1371/journal.pone.0090883] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/05/2014] [Indexed: 02/07/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSCs) have recently shown promise as a therapeutic tool in various types of chronic kidney disease (CKD) models. However, the mechanism of action is incompletely understood. As renal prognosis in CKD is largely determined by the degree of renal tubular injury that correlates with residual proteinuria, we hypothesized that BM-MSCs may exert modulatory effects on renal tubular inflammation and epithelial-to-mesenchymal transition (EMT) under a protein-overloaded milieu. Using a co-culture model of human proximal tubular epithelial cells (PTECs) and BM-MSCs, we showed that concomitant stimulation of BM-MSCs by albumin excess was a prerequisite for them to attenuate albumin-induced IL-6, IL-8, TNF-α, CCL-2, CCL-5 overexpression in PTECs, which was partly mediated via deactivation of tubular NF-κB signaling. In addition, albumin induced tubular EMT, as shown by E-cadherin loss and α-SMA, FN and collagen IV overexpression, was also prevented by BM-MSC co-culture. Albumin-overloaded BM-MSCs per se retained their tri-lineage differentiation capacity and overexpressed hepatocyte growth factor (HGF) and TNFα-stimulating gene (TSG)-6 via P38 and NF-κB signaling. Albumin-induced tubular CCL-2, CCL-5 and TNF-α overexpression were suppressed by recombinant HGF treatment, while the upregulation of α-SMA, FN and collagen IV was attenuated by recombinant TSG-6. Neutralizing HGF and TSG-6 abolished the anti-inflammatory and anti-EMT effects of BM-MSC co-culture in albumin-induced PTECs, respectively. In vivo, albumin-overloaded mice treated with mouse BM-MSCs had markedly reduced BUN, tubular CCL-2 and CCL-5 expression, α-SMA and collagen IV accumulation independent of changes in proteinuria. These data suggest anti-inflammatory and anti-fibrotic roles of BM-MSCs on renal tubular cells under a protein overloaded condition, probably mediated via the paracrine action of HGF and TSG-6.
Collapse
Affiliation(s)
- Hao Jia Wu
- Nephrology Division, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Wai Han Yiu
- Nephrology Division, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Rui Xi Li
- Nephrology Division, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Dickson W. L. Wong
- Nephrology Division, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Joseph C. K. Leung
- Nephrology Division, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Loretta Y. Y. Chan
- Nephrology Division, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Yuelin Zhang
- Cardiology Division, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Qizhou Lian
- Cardiology Division, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
- Department of Ophthalmology, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Miao Lin
- Nephrology Division, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Hung Fat Tse
- Cardiology Division, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kar Neng Lai
- Nephrology Division, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Sydney C. W. Tang
- Nephrology Division, The University of Hong Kong, Queen Mary Hospital, Hong Kong
- * E-mail:
| |
Collapse
|
36
|
Abstract
Experimental and human studies have shown that proteinuria contributes to the progression of renal disease. Overexposure to filtered proteins promotes the expression and release of chemokines by tubular epithelial cells, thus leading to inflammatory cell recruitment and renal impairment. This review focuses on recent progress in cellular and molecular understanding of the role of chemokines in the pathogenesis of proteinuria-induced renal injury, as well as their clinical implications and therapeutic potential.
Collapse
|
37
|
Sarnak MJ, Katz R, Newman A, Harris T, Peralta CA, Devarajan P, Bennett MR, Fried L, Ix JH, Satterfield S, Simonsick EM, Parikh CR, Shlipak MG. Association of urinary injury biomarkers with mortality and cardiovascular events. J Am Soc Nephrol 2014; 25:1545-53. [PMID: 24511130 DOI: 10.1681/asn.2013070713] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Kidney damage is a common sequela of several chronic pathologic conditions. Whether biomarkers of kidney damage are prognostic for more severe outcomes is unknown. We measured three urinary biomarkers (kidney injury molecule-1 [KIM-1], IL-18, and albumin) in 3010 individuals enrolled in the Health, Aging and Body Composition (Health ABC) study and used Cox proportional hazards models to investigate the associations of urinary KIM-1/creatinine (cr), IL-18/cr, and albumin/cr (ACR) with all-cause mortality and cardiovascular disease (CVD). Multivariable models adjusted for demographics, traditional CVD risk factors, and eGFR. Mean age of participants was 74 years, 49% of participants were men, and 41% of participants were black. During the median 12.4 years of follow-up, 1450 deaths and 797 CVD outcomes occurred. Compared with the lowest quartile, successive quartiles had the following adjusted hazard ratios (HRs; 95% confidence intervals [95% CIs]) for mortality: KIM-1/cr: (1.21; 1.03 to 1.41), (1.13; 0.96 to 1.34), and (1.28; 1.08 to 1.52); IL-18/cr: (1.02; 0.88 to 1.19), (1.16; 0.99 to 1.35), and (1.06; 0.90 to 1.25); ACR: (1.08; 0.91 to 1.27), (1.24; 1.06 to 1.46), and (1.63; 1.39 to 1.91). In similar analyses, only ACR quartiles associated with CVD: (1.19; 0.95 to 1.48), (1.35; 1.08 to 1.67), and (1.54; 1.24 to 1.91). Urinary KIM-1 had a modest association with all-cause mortality but did not associate with CVD, and urinary IL-18 did not associate with either outcome. In contrast, albuminuria strongly associated with all-cause mortality and CVD. Future studies should evaluate reasons for these differences in the prognostic importance of individual kidney injury markers.
Collapse
Affiliation(s)
- Mark J Sarnak
- Division of Nephrology, Tufts Medical Center, Boston, Massachusetts;
| | - Ronit Katz
- Kidney Research Institute, University of Washington, Seattle, Washington
| | - Anne Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tamara Harris
- Geriatric Epidemiology Section, National Institute on Aging, National Institutes of Health, Bethesda, Maryland
| | - Carmen A Peralta
- Department of Medicine, University of California and San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Prasad Devarajan
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Michael R Bennett
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Linda Fried
- Renal-Electrolyte Division and Renal Section, University of Pittsburgh School of Medicine and Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| | - Joachim H Ix
- Nephrology Section, Veterans Affairs San Diego Healthcare System and Divisions of Nephrology and Preventive Medicine, University of California, San Diego, California
| | - Suzanne Satterfield
- Department of Preventive Medicine, University of Tennessee, Memphis, Tennessee
| | - Eleanor M Simonsick
- Intramural Research Program, National Institute on Aging, Baltimore, Maryland
| | - Chirag R Parikh
- Section of Nephrology, Department of Medicine and Program of Applied Translational Research, Yale University, New Haven, Connecticut; and
| | - Michael G Shlipak
- Division of General Internal Medicine, San Francisco Veterans Affairs Medical Center, Departments of Medicine, Epidemiology and Biostatistics, University of California, San Francisco, California
| | | |
Collapse
|
38
|
Erkan E. Proteinuria: it is time to look beyond the proximal tubule. Am J Physiol Renal Physiol 2013; 305:F1107-8. [DOI: 10.1152/ajprenal.00425.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Elif Erkan
- University of Pittsburgh, Children's Hospital of Pittsburgh, Pediatric Nephrology, Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Erkan E. Proteinuria and progression of glomerular diseases. Pediatr Nephrol 2013; 28:1049-58. [PMID: 23124512 DOI: 10.1007/s00467-012-2335-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 01/21/2023]
Abstract
One of the major challenges of nephrology is to develop therapeutic strategies to halt the progression of kidney diseases. In clinical settings, nephrotic-range proteinuria correlates with the rate of progression, particularly in glomerular diseases. Hence, the degree of proteinuria has been utilized to monitor the response to treatment as well as to predict outcome. However, the pathophysiology of proteinuria-induced progression remains unknown. Albumin accounts for the majority of the protein in nephrotic urine and as a result of this clinical observation studies have focused on understanding the adverse effects of albumin overload in the kidney. Albumin is internalized by receptor-mediated endocytosis in proximal tubule cells via low density lipoprotein (LDL) type receptor, megalin. Albumin at high concentrations mimicking nephrotic milieu has resulted in the upregulation of pro-inflammatory/fibrogenic genes and apoptosis in proximal tubule cells in in vivo and in vitro models of albumin overload. These properties of albumin on proximal tubule cells may explain extensive tubulointerstitial fibrosis and tubular atrophy observed in end-stage kidney disease. In addition to tubular toxicity, podocytes respond to proteinuric states by cytoskeletal alterations and loss of the differentiation marker synaptopodin. Identifying the molecular network of proteins involved in albumin handling will enable us to manipulate the specific signaling pathways and prevent damage caused by proteinuria.
Collapse
Affiliation(s)
- Elif Erkan
- Division of Pediatric Nephrology, Children's Hospital of Pittsburgh, 530 45th Street 5th Floor, Office # 5129, Pittsburgh, PA 15201, USA.
| |
Collapse
|
40
|
Abstract
BACKGROUND Survival of renal allografts is limited by chronic allograft deterioration resulting from processes that are difficult to detect in their early stages, when therapeutic interventions would be most effective. Predictive biomarkers from easily accessible specimens, such as blood or urine, might improve early diagnosis of smoldering graft-damaging processes and help with the identification of patients at particularly high risk of sustained injury, thereby helping to tailor therapy and appropriate follow-up screening. OBJECTIVE This article reviews recently investigated biomarkers for the prediction of renal allograft failure, outlines the new '-omic' technologies as a potential source for the identification of new predictive biomarkers and judges the practical value of predictive biomarkers at the present timepoint. METHODS A literature search was performed using the medical database PubMed. No general restrictions (e.g., year of publication) were applied, but the focus was set on more recently published articles. CONCLUSION Despite a large number of interesting studies, none of the investigated candidate biomarkers is robustly established for widespread clinical use or able to replace biopsies for graft assessment.
Collapse
Affiliation(s)
- Olaf Boenisch
- Harvard Medical School, Brigham and Woman's Hospital and Children's Hospital Boston, Transplantation Research Center, 221 Longwood Avenue, Boston, MA 02115, USA +1 617 732 5951 ; +1 617 732 6392 ;
| | | |
Collapse
|
41
|
Moreno JA, Moreno S, Rubio-Navarro A, Sastre C, Blanco-Colio LM, Gómez-Guerrero C, Ortiz A, Egido J. Targeting chemokines in proteinuria-induced renal disease. Expert Opin Ther Targets 2012; 16:833-45. [PMID: 22793382 DOI: 10.1517/14728222.2012.703657] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Proteinuria is a common finding in glomerular diseases that contributes to the progression of chronic kidney injury. Tubular cells reabsorb the excess of albumin and other plasma proteins from the tubular lumen, triggering several pathophysiologic responses, such as overexpression of fibrogenic mediators and inflammatory chemokines. Chemokines are implicated both in the recruitment of inflammatory infiltrate and in a number of physiological and pathological processes related to protein overload. AREAS COVERED In recent years, the specific chemokines and their receptors and the intracellular signaling pathways involved in proteinuria-induced renal damage have been identified. This review provides an overview of the role of chemokines and their receptors in proteinuria-related renal disease and summarizes novel therapeutic approaches to restrain the progression of renal damage. EXPERT OPINION Inhibition of chemokine-induced biological activities is a promising therapeutic strategy in proteinuric disorders. Neutralizing antibodies and small organic molecules targeting chemokines and chemokine receptors have been proven to prevent inflammation and renal damage in experimental models of protein overload. Some of these compounds are currently being tested in human clinical trials.
Collapse
Affiliation(s)
- Juan Antonio Moreno
- Department of Nephrology, IIS-Fundación Jiménez Díaz, Autonoma University, Avda. Reyes Católicos 2, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Soetikno V, Sari FR, Lakshmanan AP, Arumugam S, Harima M, Suzuki K, Kawachi H, Watanabe K. Curcumin alleviates oxidative stress, inflammation, and renal fibrosis in remnant kidney through the Nrf2-keap1 pathway. Mol Nutr Food Res 2012; 57:1649-59. [PMID: 23174956 DOI: 10.1002/mnfr.201200540] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/18/2012] [Accepted: 09/19/2012] [Indexed: 12/20/2022]
Abstract
SCOPE We hypothesized that curcumin, by increasing the expression of nuclear factor-erythroid-2-related factor 2 (Nrf2), could reduce oxidative stress, inflammation, and renal fibrosis in remnant kidney. METHODS AND RESULTS Sprague-Dawley rats were subjected to 5/6 nephrectomy and randomly assigned to untreated (Nx), curcumin-treated (75 mg/kg/day, orally), and telmisartan-treated groups (10 mg/kg/day, orally; as positive control). Sham-operated rats also served as controls. Five/sixth nephrectomy caused renal dysfunction, as evidenced by elevated proteinuria, blood urea nitrogen, and plasma creatinine, and decreased creatinine clearance that were ameliorated by curcumin or telmisartan treatment. The Nx rats demonstrated reduced Nrf2 protein expression, whereas the Kelch-like ECH-associated protein 1 was upregulated and heme oxygenase-1 level was significantly diminished. Consequently, Nx animals had significantly higher kidney malondialdehyde concentration and lower glutathione peroxidase activity, which was associated with the upregulation of nicotinamide adenine dinucleotide phosphatase oxidase subunit (p67(phox) and p22(phox) ), NF-kappaB p65, TNF-α, TGF-β1, cyclooxygenase-2, and fibronectin accumulation in remnant kidney. Interestingly, all of these changes were ameliorated by curcumin or telmisartan. CONCLUSION These findings demonstrate that, by modulating Nrf2-Keap1 pathway, the curcumin effectively attenuates oxidative stress, inflammation, and renal fibrosis, which suggest that curcumin hold promising potential for safe treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Vivian Soetikno
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata City, Japan
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Tang SCW, Lai KN. The pathogenic role of the renal proximal tubular cell in diabetic nephropathy. Nephrol Dial Transplant 2012; 27:3049-56. [PMID: 22734110 DOI: 10.1093/ndt/gfs260] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A growing body of evidence indicates that the renal proximal tubular epithelial cell (PTEC) plays an important role in the pathogenesis of diabetic nephropathy (DN). Microalbuminuria that intensifies over time to overt proteinuria, a hallmark of DN, is already known to activate the PTEC to induce tubulointerstitial inflammation. In addition to proteins, a number of diabetic substrates including high glucose per se, advanced glycation end-products and their carbonyl intermediates, angiotensin II, and ultrafiltered growth factors activate a number of signaling pathways including nuclear factor kappa B, protein kinase C, extracellular signal-regulated kinase 1/2, p38, signal transducer and activator of transcription-1 and the generation of reactive oxygen species, to culminate in tubular cell hypertrophy and the accumulation in the interstitium of a repertoire of chemokines, cytokines, growth factors and adhesion molecules capable of orchestrating further inflammation and fibrosis. More recently, the kallikrein-kinin system (KKS) and toll-like receptors (TLRs) in PTECs have been implicated in this process. While in vitro data suggest that the KKS contributes to the progression of DN, there are conflicting in vivo results on its precise role, which may in part be strain-dependent. On the other hand, there are both in vitro and in vivo data to suggest a role for both TLR2 and TLR4 in DN. In this review, we offer a critical appraisal of the events linking the participation of the PTEC to the pathogenesis of DN, which we believe may be collectively termed diabetic tubulopathy.
Collapse
Affiliation(s)
- Sydney C W Tang
- Division of Nephrology, Department of Medicine, The University of Hong Kong, Queen Mary Hospital, Hong Kong SAR, China.
| | | |
Collapse
|
44
|
|
45
|
Lim AI, Chan LYY, Lai KN, Tang SCW, Chow CW, Lam MF, Leung JCK. Distinct role of matrix metalloproteinase-3 in kidney injury molecule-1 shedding by kidney proximal tubular epithelial cells. Int J Biochem Cell Biol 2012; 44:1040-50. [PMID: 22484054 DOI: 10.1016/j.biocel.2012.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/21/2012] [Accepted: 03/21/2012] [Indexed: 12/20/2022]
Abstract
Tubulointerstitial injury is a common pathway in progressive renal impairment and human proximal tubular epithelial cells (PTEC) play a crucial role in this process. Kidney injury molecule-1 (KIM-1) has received increasing attention due to its potential utility as the therapeutic target and biomarker for kidney injury. This study aims to explore the underlying mechanism regulating the release of KIM-1. Cultured primary human PTEC expressed and released KIM-1 from the apical surface through an ectodomain shedding process mediated by matrix metalloproteinase (MMP), independent of gene expression and protein synthesis. The constitutive KIM-1 shedding by PTEC was enhanced in a dose- and time-dependent manner by human serum albumin (HSA) or tumor necrosis factor-α (TNF-α), two important physiological stimuli found during kidney injury. Data from PCR array screening of MMPs gene expression in PTEC following activation by HSA or TNF-α, and from blocking experiments using either synthetic MMP inhibitors or MMP gene knockdown by siRNA, revealed that the constitutive and accelerated shedding of KIM-1 in cultured PTEC was mediated by MMP-3. Furthermore, the up-regulation of MMP-3 and KIM-1 release by PTEC was associated with generation of reactive oxygen species. In a mouse model of acute kidney injury induced by ischemia and reperfusion, increased expression of MMP-3 and KIM-1 as well as their co-localization were observed in kidney from ischemic but not in sham-operated mice. Taken together, these in vitro and in vivo evidences suggest that MMP-3 plays an inductive role in KIM-1 shedding by PTEC.
Collapse
Affiliation(s)
- Ai Ing Lim
- Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
46
|
Early association of low-grade albuminuria and allograft dysfunction predicts renal transplant outcomes. Transplantation 2012; 93:297-303. [PMID: 22228419 DOI: 10.1097/tp.0b013e31823ec0a7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Data on the combined associations of albuminuria and estimated glomerular filtration rate (eGFR) with renal transplant outcomes are limited. Our objective was to explore how renal transplant outcomes could be predicted by a combined variable of early low-grade albuminuria and allograft dysfunction. METHODS We studied a cohort of adult deceased-donor kidney transplant recipients who were subdivided into four groups according to median albuminuria (100 mg/day, interquartile range, 0-470 mg/day) and median eGFR (60 mL/min/1.73 m(2); interquartile range, 30-73 mL/min/1.73 m(2)) at third month posttransplantation as follows: group I (albuminuria <100 and eGFR >60, n=238); group II (albuminuria ≥100 and eGFR >60, n=151); group III (albuminuria <100 and eGFR ≤60; n=167); and group IV (albuminuria ≥100 and eGFR ≤60, n=228). RESULTS Death-censored graft survival was significantly lower in group IV compared with the rest (P<0.0001). Multivariate Cox regression analysis using fixed and time-dependent covariates showed that the combination of low-grade albuminuria and lower eGFR was associated with graft failure (hazard ratio, 2.2, 95% confidence interval, 1.3-3.7; P=0.003). Likewise, but to a lesser extent, the risk of mortality was increased for group IV (hazard ratio, 1.7, 95% confidence interval, 1.01-2.8; P=0.042). CONCLUSIONS Early association of low-grade albuminuria and allograft dysfunction represents an important risk factor of graft failure and mortality. This additive effect should be considered to identify individuals at risk for adverse kidney transplantation outcomes.
Collapse
|
47
|
Guo JK, Marlier A, Shi H, Shan A, Ardito TA, Du ZP, Kashgarian M, Krause DS, Biemesderfer D, Cantley LG. Increased tubular proliferation as an adaptive response to glomerular albuminuria. J Am Soc Nephrol 2011; 23:429-37. [PMID: 22193389 DOI: 10.1681/asn.2011040396] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Renal tubular atrophy accompanies many proteinuric renal diseases, suggesting that glomerular proteinuria injures the tubules. However, local or systemic inflammation and filtration of abnormal proteins known to directly injure tubules are also present in many of these diseases and animal models; therefore, whether glomerular proteinuria directly causes tubular injury is unknown. Here, we examined the renal response to proteinuria induced by selective podocyte loss. We generated mice that express the diphtheria toxin receptor exclusively in podocytes, allowing reproducible dose-dependent, specific ablation of podocytes by administering diphtheria toxin. Ablation of <20% of podocytes resulted in profound albuminuria that resolved over 1-2 weeks after the re-establishment of normal podocyte morphology. Immediately after the onset of albuminuria, proximal tubule cells underwent a transient burst of proliferation without evidence of tubular damage or increased apoptosis, resulting in an increase in total tubular cell numbers. The proliferative response coincided with detection of the growth factor Gas6 in the urine and phosphorylation of the Gas6 receptor Axl in the apical membrane of renal tubular cells. In contrast, ablation of >40% of podocytes led to progressive glomerulosclerosis, profound tubular injury, and renal failure. These data suggest that glomerular proteinuria in the absence of severe structural glomerular injury activates tubular proliferation, potentially as an adaptive response to minimize the loss of filtered proteins.
Collapse
Affiliation(s)
- Jian-Kan Guo
- Section of Nephrology and Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
No evidence for statin-induced proteinuria in healthy volunteers as assessed by proteomic analysis. J Biomed Biotechnol 2011; 2011:456076. [PMID: 21918593 PMCID: PMC3171927 DOI: 10.1155/2011/456076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 06/14/2011] [Accepted: 07/04/2011] [Indexed: 11/17/2022] Open
Abstract
In clinical studies of statins (class of drugs lowering plasma cholesterol levels), transient low-molecular-weight proteinuria was observed. The causes of statin-induced proteinuria in the patient background of those studies (cardiovascular and kidney disease) are multifactorial and, therefore, a matter of debate. In light of this, it seemed interesting to investigate the effect of statins on the urinary protein concentration and proteome in healthy volunteers. Six healthy volunteers were randomly treated with rosuvastatin (40 mg/day) or pravastatin (80 mg/day) in a double-blinded cross-over study. Total urinary protein concentration and the concentration of albumin/retinol-binding protein were analysed, after which the urinary proteome was investigated. From the results described in this study, it was concluded that statins do not induce major changes in the urinary protein concentration/proteome. High variability in the baseline urinary proteome/proteins among volunteers, however, made it very difficult to find subtle (possibly isolated to individuals) effects of statins.
Collapse
|
49
|
The proximal tubular renin–angiotensin system during albuminuria. J Hypertens 2011; 29:1292-4. [DOI: 10.1097/hjh.0b013e328348f031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol 2011; 7:327-40. [DOI: 10.1038/nrneph.2011.51] [Citation(s) in RCA: 810] [Impact Index Per Article: 57.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|