1
|
Hu Q, Nelson TJ, Seymour RS. Regional femoral bone blood flow rates in laying and non-laying chickens estimated with fluorescent microspheres. J Exp Biol 2021; 224:271048. [PMID: 34312667 PMCID: PMC8407662 DOI: 10.1242/jeb.242597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023]
Abstract
The metabolic rate of vertebrate bone tissue is related to bone growth, repair and homeostasis, which are all dependent on life stage. Bone metabolic rate is difficult to measure directly, but absolute blood flow rate () should reflect local tissue oxygen requirements. A recent ‘foramen technique’ has derived an index of blood flow rate () by measuring nutrient foramen sizes of long bones. is assumed to be proportional to ; however, the assumption has never been tested. This study used fluorescent microsphere infusion to measure femoral bone in anaesthetized non-laying hens, laying hens and roosters. Mean mass-specific cardiac output was 338±38 ml min−1 kg−1, and the two femora received 0.63±0.10% of this. Laying hens had higher wet bone mass-specific to femora (0.23±0.09 ml min−1 g−1) than the non-laying hens (0.12±0.06 ml min−1 g−1) and roosters (0.14±0.04 ml min−1 g−1), presumably associated with higher bone calcium mobilization during eggshell production. Estimated metabolic rate of femoral bone was 0.019 ml O2 min−1 g−1. Femoral increased significantly with body mass, but was not correlated with nutrient foramen radius (r), probably because of a narrow range in foramen radius. Over all 18 chickens, femoral shaft was 1.07±0.30 ml min−1 mm−1. Mean in chickens was significantly higher than predicted by an allometric relationship for adult cursorial bird species, possibly because the birds were still growing. Summary: Femoral bone blood flow, measured using fluorescent microspheres, is approximately two times higher in laying hens than in non-laying hens and roosters. Blood flow values were related to foramen sizes.
Collapse
Affiliation(s)
- Qiaohui Hu
- School of Biological Sciences , University of Adelaide, Adelaide, SA 5005, Australia
| | - Thomas J Nelson
- School of Biological Sciences , University of Adelaide, Adelaide, SA 5005, Australia
| | - Roger S Seymour
- School of Biological Sciences , University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Kunihiro AG, Luis PB, Frye JB, Chew W, Chow HHS, Schneider C, Funk JL. Bone-Specific Metabolism of Dietary Polyphenols in Resorptive Bone Diseases. Mol Nutr Food Res 2020; 64:e2000072. [PMID: 32506808 PMCID: PMC7712627 DOI: 10.1002/mnfr.202000072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/27/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Curcumin prevents bone loss in resorptive bone diseases and inhibits osteoclast formation, a key process driving bone loss. Curcumin circulates as an inactive glucuronide that can be deconjugated in situ by bone's high β-glucuronidase (GUSB) content, forming the active aglycone. Because curcumin is a common remedy for musculoskeletal disease, effects of microenvironmental changes consequent to skeletal development or disease on bone curcumin metabolism are explored. METHODS AND RESULTS Across sexual/skeletal development or between sexes in C57BL/6 mice ingesting curcumin (500 mg kg-1 ), bone curcumin metabolism and GUSB enzyme activity are unchanged, except for >twofold higher (p < 0.05) bone curcumin-glucuronide substrate levels in immature (4-6-week-old) mice. In ovariectomized (OVX) or bone metastasis-bearing female mice, bone substrate levels are also >twofold higher. Aglycone curcumin levels tend to increase proportional to substrate such that the majority of glucuronide distributing to bone is deconjugated, including OVX mice where GUSB decreases by 24% (p < 0.01). GUSB also catalyzes deconjugation of resveratrol and quercetin glucuronides by bone, and a requirement for the aglycones for anti-osteoclastogenic bioactivity, analogous to curcumin, is confirmed. CONCLUSION Dietary polyphenols circulating as glucuronides may require in situ deconjugation for bone-protective effects, a process influenced by bone microenvironmental changes.
Collapse
Affiliation(s)
- Andrew G Kunihiro
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ
| | - Paula B Luis
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | | | - Wade Chew
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - H-H. Sherry Chow
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Claus Schneider
- Department of Pharmacology, Vanderbilt University, Nashville, TN
| | - Janet L Funk
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ
- Department of Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
3
|
Gohin S, Javaheri B, Hopkinson M, Pitsillides AA, Arnett TR, Chenu C. Applied mechanical loading to mouse hindlimb acutely increases skeletal perfusion and chronically enhanced vascular porosity. J Appl Physiol (1985) 2020; 128:838-846. [PMID: 32163331 DOI: 10.1152/japplphysiol.00416.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Blood supply is essential for osteogenesis, yet its relationship to load-related increases in bone mass is poorly defined. Herein, we aim to investigate the link between load-induced osteogenesis and the blood supply (bone perfusion and vascular porosity) using an established osteogenic noninvasive model of axial loading. Accordingly, 12 N mechanical loads were applied to the right tibiae of six male C57BL6 mice at 10-12 wk of age, 3 times/wk for 2 wk. Skeletal perfusion was measured acutely (postloading) and chronically in loaded and contralateral, nonloaded hindlimbs by laser-Doppler imaging. Vascular and lacunar porosity of the cortical bone and tibia load-related changes in trabecular and cortical bone was measured by nanoCT and micro-CT, respectively. We found that the mean skeletal perfusion (loaded: nonloaded limb ratio) increased by 56% immediately following the first loading episode (vs. baseline, P < 0.01), and a similar increase was observed after all loading episodes, demonstrating that these acute responses were conserved for 2 wk of loading. Loading failed, however, to engender any significant chronic changes in mean perfusion between the beginning and the end of the experiment. In contrast, 2 wk of loading engendered an increased vascular canal number in the tibial cortical compartment (midshaft) and, as expected, also increased trabecular and cortical bone volumes and modified tibial architecture in the loaded limb. Our results indicate that each episode of loading both generates acute enhancement in skeletal blood perfusion and also stimulates chronic vascular architectural changes in the bone cortices, which coincide with load-induced increases in bone mass.NEW & NOTEWORTHY This study investigated modifications to the blood supply (bone perfusion and intracortical vascular canals) in mechanoadaptive responses in C57BL6 mice. Each episode of mechanical loading acutely increases skeletal perfusion. Two weeks of mechanical loading increased bone mass and cortical vascular canal number, while there was no chronic increase in hindlimb perfusion. Our findings suggest that the blood supply may participate in the processes that govern load-induced bone formation.
Collapse
Affiliation(s)
- Stephanie Gohin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Behzad Javaheri
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Mark Hopkinson
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | | | - Timothy R Arnett
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Chantal Chenu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
4
|
Aref MW, Akans E, Allen MR. Assessment of regional bone tissue perfusion in rats using fluorescent microspheres. Bone Rep 2017; 6:140-144. [PMID: 28480318 PMCID: PMC5415548 DOI: 10.1016/j.bonr.2017.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/22/2017] [Accepted: 04/25/2017] [Indexed: 01/16/2023] Open
Abstract
Disturbances in bone blood flow have been shown to have deleterious effects on bone properties yet there remain many unanswered questions about skeletal perfusion in health and disease, partially due to the complexity of measurement methodologies. The goal of this study was use fluorescent microspheres in rats to assess regional bone perfusion by adapting mouse-specific fluorescent microsphere protocol. Ten fifteen-week old Sprague Dawley rats were injected with fluorescent microspheres either via cardiac injection (n = 5) or via tail vein injection (n = 5). Femora and tibiae were harvested and processed to determine tissue fluorescence density (TFD) which is proportional to the number of spheres trapped in the tissue capillaries. Right and left total femoral TFD (2.77 ± 0.38 and 2.70 ± 0.24, respectively) and right and left tibial TFD (1.11 ± 0.26 and 1.08 ± 0.34, respectively) displayed bilateral symmetry in flow when assessed in cardiac injected animals. Partitioning of the bone perfusion into three segments along the length of the bone showed the distal femur and proximal tibia received the greatest amount of perfusion within their respective bones. Tail vein injection resulted in unacceptably low TFD levels in the tibia from 4 of the 5 animals. In conclusion this report demonstrates the viability of cardiac injection of fluorescent microspheres to assess bone tissue perfusion in rats.
Collapse
Affiliation(s)
- Mohammad W. Aref
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
| | | | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Biomedical Engineering, Indiana University Purdue University of Indianapolis, Indianapolis, IN, United States
- Roudebush Veterans Administration Medical Center, Indianapolis, IN, United States
| |
Collapse
|
5
|
Abstract
The rising incidence of metabolic diseases worldwide has prompted renewed interest in the study of intermediary metabolism and cellular bioenergetics. The application of modern biochemical methods for quantitating fuel substrate metabolism with advanced mouse genetic approaches has greatly increased understanding of the mechanisms that integrate energy metabolism in the whole organism. Examination of the intermediary metabolism of skeletal cells has been sparked by a series of unanticipated observations in genetically modified mice that suggest the existence of novel endocrine pathways through which bone cells communicate their energy status to other centers of metabolic control. The recognition of this expanded role of the skeleton has in turn led to new lines of inquiry directed at defining the fuel requirements and bioenergetic properties of bone cells. This article provides a comprehensive review of historical and contemporary studies on the metabolic properties of bone cells and the mechanisms that control energy substrate utilization and bioenergetics. Special attention is devoted to identifying gaps in our current understanding of this new area of skeletal biology that will require additional research to better define the physiological significance of skeletal cell bioenergetics in human health and disease.
Collapse
Affiliation(s)
- Ryan C Riddle
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| | - Thomas L Clemens
- Department of Orthopaedic Surgery, The Johns Hopkins University, Baltimore, Maryland; and The Baltimore Veterans Administration Medical Center, Baltimore, Maryland
| |
Collapse
|
6
|
Pereira M, Gohin S, Roux JP, Fisher A, Cleasby ME, Mabilleau G, Chenu C. Exenatide Improves Bone Quality in a Murine Model of Genetically Inherited Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne) 2017; 8:327. [PMID: 29209277 PMCID: PMC5701968 DOI: 10.3389/fendo.2017.00327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is associated with skeletal complications, including an increased risk of fractures. Reduced blood supply and bone strength may contribute to this skeletal fragility. We hypothesized that long-term administration of Exenatide, a glucagon-like peptide-1 receptor agonist, would improve bone architecture and strength of T2DM mice by increasing blood flow to bone, thereby stimulating bone formation. In this study, we used a model of obesity and severe T2DM, the leptin receptor-deficient db/db mouse to assess alterations in bone quality and hindlimb blood flow and to examine the beneficial effects of 4 weeks administration of Exenatide. As expected, diabetic mice showed marked alterations in bone structure, remodeling and strength, and basal vascular tone compared with lean mice. Exenatide treatment improved trabecular bone mass and architecture by increasing bone formation rate, but only in diabetic mice. Although there was no effect on hindlimb perfusion at the end of this treatment, Exenatide administration acutely increased tibial blood flow. While Exenatide treatment did not restore the impaired bone strength, intrinsic properties of the matrix, such as collagen maturity, were improved. The effects of Exenatide on in vitro bone formation were further investigated in primary osteoblasts cultured under high-glucose conditions, showing that Exenatide reversed the impairment in bone formation induced by glucose. In conclusion, Exenatide improves trabecular bone mass by increasing bone formation and could protect against the development of skeletal complications associated with T2DM.
Collapse
Affiliation(s)
- Marie Pereira
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
- *Correspondence: Marie Pereira,
| | - Stephanie Gohin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | | | | | - Mark E. Cleasby
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| | - Guillaume Mabilleau
- GEROM-LHEA UPRES EA 4658, Institut de Biologie en Santé, Université d’Angers, Angers, France
| | - Chantal Chenu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, United Kingdom
| |
Collapse
|
7
|
Gohin S, Carriero A, Chenu C, Pitsillides AA, Arnett TR, Marenzana M. The anabolic action of intermittent parathyroid hormone on cortical bone depends partly on its ability to induce nitric oxide-mediated vasorelaxation in BALB/c mice. Cell Biochem Funct 2016; 34:52-62. [PMID: 26834008 PMCID: PMC4949522 DOI: 10.1002/cbf.3164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/17/2015] [Accepted: 01/01/2016] [Indexed: 11/21/2022]
Abstract
There is strong evidence that vasodilatory nitric oxide (NO) donors have anabolic effects on bone in humans. Parathyroid hormone (PTH), the only osteoanabolic drug currently approved, is also a vasodilator. We investigated whether the NO synthase inhibitor L‐NAME might alter the effect of PTH on bone by blocking its vasodilatory effect. BALB/c mice received 28 daily injections of PTH[1–34] (80 µg/kg/day) or L‐NAME (30 mg/kg/day), alone or in combination. Hindlimb blood perfusion was measured by laser Doppler imaging. Bone architecture, turnover and mechanical properties in the femur were analysed respectively by micro‐CT, histomorphometry and three‐point bending. PTH increased hindlimb blood flow by >30% within 10 min of injection (P < 0.001). Co‐treatment with L‐NAME blocked the action of PTH on blood flow, whereas L‐NAME alone had no effect. PTH treatment increased femoral cortical bone volume and formation rate by 20% and 110%, respectively (P < 0.001). PTH had no effect on trabecular bone volume in the femoral metaphysis although trabecular thickness and number were increased and decreased by 25%, respectively. Co‐treatment with L‐NAME restricted the PTH‐stimulated increase in cortical bone formation but had no clear‐cut effects in trabecular bone. Co‐treatment with L‐NAME did not affect the mechanical strength in femurs induced by iPTH. These results suggest that NO‐mediated vasorelaxation plays partly a role in the anabolic action of PTH on cortical bone. © 2016 The Authors. Cell Biochemistry and Function published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- S Gohin
- Department of Bioengineering, Imperial College London, London, UK.,Department of Cell and Developmental Biology, University College London, London, UK.,Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - A Carriero
- Department of Biomedical Engineering, Florida Institute of Technology, Florida, USA
| | - C Chenu
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - A A Pitsillides
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - T R Arnett
- Department of Cell and Developmental Biology, University College London, London, UK
| | - M Marenzana
- Department of Bioengineering, Imperial College London, London, UK.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
8
|
Abstract
Environmental temperature can have a surprising impact on extremity growth in homeotherms, but the underlying mechanisms have remained elusive for over a century. Limbs of animals raised at warm ambient temperature are significantly and permanently longer than those of littermates housed at cooler temperature. These remarkably consistent lab results closely resemble the ecogeographical tenet described by Allen's "extremity size rule," that appendage length correlates with temperature and latitude. This phenotypic growth plasticity could have adaptive significance for thermal physiology. Shortened extremities help retain body heat in cold environments by decreasing surface area for potential heat loss. Homeotherms have evolved complex mechanisms to maintain tightly regulated internal temperatures in challenging environments, including "facultative extremity heterothermy" in which limb temperatures can parallel ambient. Environmental modulation of tissue temperature can have direct and immediate consequences on cell proliferation, metabolism, matrix production, and mineralization in cartilage. Temperature can also indirectly influence cartilage growth by modulating circulating levels and delivery routes of essential hormones and paracrine regulators. Using an integrated approach, this article synthesizes classic studies with new data that shed light on the basis and significance of this enigmatic growth phenomenon and its relevance for treating human bone elongation disorders. Discussion centers on the vasculature as a gateway to understanding the complex interconnection between direct (local) and indirect (systemic) mechanisms of temperature-enhanced bone lengthening. Recent advances in imaging modalities that enable the dynamic study of cartilage growth plates in vivo will be key to elucidating fundamental physiological mechanisms of long bone growth regulation.
Collapse
Affiliation(s)
- Maria A Serrat
- Department of Anatomy and Pathology, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia
| |
Collapse
|
9
|
Vogt S, Venjakob AJ, Stöckl K, Tischer T, Jost PJ, Imhoff AB, Thein E, Anetzberger H. Evidence of an autoregulatory mechanism of regional bone blood flow at hypotension. Arch Orthop Trauma Surg 2013; 133:1233-41. [PMID: 23832129 DOI: 10.1007/s00402-013-1801-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Blood flow in various organs is determined by an autoregulatory mechanism that guarantees constant organ perfusion over a wide range of arterial blood pressure changes. This physiological principle has been proven for the kidney, brain and intestinal tract, but so far not for bone. This study was carried out to determine whether there is an autoregulatory mechanism of bone or not. METHODS The fluorescent microsphere reference sample method was used to determine blood flow within the bone and kidneys. Eight anesthetized female New Zealand rabbits received left ventricular injections of fluorescent microspheres over a wide range of arterial pressure levels prior to removal of kidney, femur and tibia. Blood flow values were calculated by measurement of fluorescence intensity in kidney and bone and correlated to fluorescence intensity in the peripheral blood (reference sample). RESULTS Despite a reduction of mean arterial pressure from 100 to 80 mmHg bone blood flow remained constant. Further reduction of mean arterial pressure results in a linear decrease in bone blood flow. CONCLUSION The correlation between arterial pressure and organ perfusion in the bone is similar to blood flow within the kidney, indicating the presence of an autoregulated blood flow mechanism within the bone tissue.
Collapse
Affiliation(s)
- Stephan Vogt
- Department of Orthopaedic Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Roche B, Vanden-Bossche A, Normand M, Malaval L, Vico L, Lafage-Proust MH. Validated Laser Doppler protocol for measurement of mouse bone blood perfusion - response to age or ovariectomy differs with genetic background. Bone 2013; 55:418-26. [PMID: 23571049 DOI: 10.1016/j.bone.2013.03.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/15/2013] [Accepted: 03/30/2013] [Indexed: 12/29/2022]
Abstract
The physiological role of bone vascularization in bone metabolism begins to be understood; however, its involvement in pathological situations remains poorly explored. Bone blood supply depends on both vascular density and blood flow. However, in mice, the specific evaluation of perfusion in bone suffers from a lack of easy-handling measurement tools. In the present study, we first developed a Laser Doppler Perfusion Measurement (LDPM) protocol in mouse tibia, which we validated with ex vivo and in vivo experiments. Then we carried out a study associating both structural (vascular quantitative histomorphometry) and functional (LDPM) approaches. We studied the effects of aging in 4, 7 and 17 month-old male mice and the early effects of ovariectomy in 4 month-old females. Both studies were carried out in inbred mice (C57BL/6) and in mice of mixed background (129sv/CD1). The significant differences we observed between strains in unchallenged 4 month-old animals concerned both perfusion and vascular density and depended on gender. Additionally, the age-related bone loss observed in male mice was not temporally associated with vascular changes in either strain. Between 7 and 17 months, we did not find any decrease in bone vascular density or perfusion. In contrast, ovariectomy triggered early vascular structural and functional adaptations which differed between genetic backgrounds. We observed that bone vessel density did not generally account for bone perfusion levels. In conclusion, we describe here a LDPM-based experimental protocol which provides a reproducible quantitative evaluation of bone perfusion in mouse tibia, hence allowing intergroup comparisons. This integrative structural and functional approach of bone vascularization showed that bone vascular adaptation occurs during aging or after ovariectomy and is affected by the genetic background.
Collapse
Affiliation(s)
- Bernard Roche
- INSERM U1059, Université de Lyon, Saint-Etienne F-42023, France.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Fluorescent microspheres are commonly used to assess bone blood supply in large animals, but the technique is not widely used in smaller mammals, as traditional methods such as reference blood sampling, ventilation and catheterization are not easily applied. This protocol describes a viable alternative for measuring bone and organ perfusion in mice using modified fluorescent microsphere techniques. Microspheres are injected directly into the left heart and a reference tissue is used to calculate relative bone and organ blood supply. On the basis of a sample of 15 mice with 5 tissues each, the entire protocol takes 140.5 h to complete from animal preparation through statistical analysis. This timing includes 72 h of mandated pauses for bone decalcification and digestion, as well as 48 h for data analysis. Exclusive of pauses or additional analyses that could increase the time required, this protocol takes 20.5 h bench time to complete.
Collapse
|
12
|
Temperature regulates limb length in homeotherms by directly modulating cartilage growth. Proc Natl Acad Sci U S A 2008; 105:19348-53. [PMID: 19047632 DOI: 10.1073/pnas.0803319105] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allen's Rule documents a century-old biological observation that strong positive correlations exist among latitude, ambient temperature, and limb length in mammals. Although genetic selection for thermoregulatory adaptation is frequently presumed to be the primary basis of this phenomenon, important but frequently overlooked research has shown that appendage outgrowth is also markedly influenced by environmental temperature. Alteration of limb blood flow via vasoconstriction/vasodilation is the current default hypothesis for this growth plasticity, but here we show that tissue perfusion does not fully account for differences in extremity elongation in mice. We show that peripheral tissue temperature closely reflects housing temperature in vivo, and we demonstrate that chondrocyte proliferation and extracellular matrix volume strongly correlate with tissue temperature in metatarsals cultured without vasculature in vitro. Taken together, these data suggest that vasomotor changes likely modulate extremity growth indirectly, via their effects on appendage temperature, rather than vascular nutrient delivery. When combined with classic evolutionary theory, especially genetic assimilation, these results provide a potentially comprehensive explanation of Allen's Rule, and may substantially impact our understanding of phenotypic variation in living and extinct mammals, including humans.
Collapse
|
13
|
Dayan L, Keidar Z, Israel O, Milloul V, Sachs J, Jacob G. SPECT/CT-plethysmography--non-invasive quantitation of bone and soft tissue blood flow. J Orthop Surg Res 2008; 3:36. [PMID: 18710528 PMCID: PMC2527489 DOI: 10.1186/1749-799x-3-36] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 08/18/2008] [Indexed: 11/22/2022] Open
Abstract
Preserved blood flow to bone and soft tissue is essential for their normal function. To date only numerous methods are suitable for direct bone blood flow (BBF) measurement. Here, we introduce a novel quantitative method for bone and soft tissue blood flow (BBF and SBF, respectively) measurement. It involves a combination of SPECT/CT imaging for blood pool localization in a specific region of interest ("soft" and "hard" tissues composing a limb) with veno-occlusive plethysmography. Using it, we measured BBF and SBF in the four limbs of 10 healthy subjects. At steady state blood flow measurements in the four limbs were similar, ranging between 5.5 – 6.5 and 1.87–2.48 ml per 100 ml of tissue per minute for BBF and SBF, respectively. Our results are comparable to those in the literature. We concluded that SPECT/CT-plethysmography appears to be a readily available and easy to use method to measure BBF and SBF, and can be added to the armamentarium of methods for BBF measurements.
Collapse
Affiliation(s)
- Lior Dayan
- Ortopedic B and Recanati Autonomic Dysfunction Center, Medicine A, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
14
|
Mandu-Hrit M, Seifert E, Kotsiopriftis M, Lauzier D, Haque T, Rohlicek C, Tabrizian M, Hamdy RC. OP-1 injection increases VEGF expression but not angiogenesis in a rabbit model of distraction osteogenesis. Growth Factors 2008; 26:143-51. [PMID: 18569022 DOI: 10.1080/08977190802106154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have previously shown that a single injection of rhBMP-7 (OP-1) applied to the regenerate early during distraction accelerates bone consolidation in a rabbit model of distraction osteogenesis. In the present study, we hypothesised that the injection of OP-1 improves bone consolidation by increasing blood flow to the distracted site. Blood flow into the regenerate of a rabbit model was measured and vascular endothelial growth factor (VEGF) expression was tested using semi-quantitative PCR. Immunohistochemistry was used for assessing the temporal and spatial expression of platelet endothelial cell adhesion molecule (PECAM), VEGF and its receptors following OP-1 injection. We observed a higher expression of VEGF and its receptors in the regenerate with OP-1 treatment. However, there was no difference in the increase in bone blood flow nor PECAM expression between the treated and control groups of animals. Interestingly, the increased expression of VEGF and its receptors was associated with chondrocyte and fibroblast-like cells, but not with endothelial cells. These results suggest that accelerated ossification by OP-1 may depend on a non-vascular mechanism, possibly involving a non-angiogenic function of VEGF signalling.
Collapse
|
15
|
Näslund J, Waldén M, Lindberg LG. Decreased pulsatile blood flow in the patella in patellofemoral pain syndrome. Am J Sports Med 2007; 35:1668-73. [PMID: 17567822 DOI: 10.1177/0363546507303115] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Anterior knee pain without clinical and radiologic abnormalities has primarily been explained from a purely structural view. A recently proposed biologic and homeostatic explanation questions the malalignment theory. No objective measurement of the pathophysiology responsible for changes in local homeostasis has been presented. HYPOTHESIS Flexing the knee joint interferes with the perfusion of the patellar bone in patellofemoral pain syndrome. STUDY DESIGN Case control study; Level of evidence, 4. METHODS Pulsatile blood flow in the patella was measured continuously and noninvasively using photoplethysmography. Measurements were made with the patient in a resting position with knee flexion of 20 degrees and after passive knee flexion to 90 degrees. In total, 22 patients with patellofemoral pain syndrome were examined bilaterally, and 33 subjects with healthy knees served as controls. RESULTS The pulsatile blood flow in the patient group decreased after passive knee flexion from 20 degrees to 90 degrees (systematic change in position, or relative position [RP] = -0.32; 95% confidence interval for RP, -0.48 to -0.17), while the response in the control group showed no distinct pattern (RP = 0.17; 95% confidence interval for RP, -0.05 to 0.31). The difference between the groups was significant (P = .0002). The median change in patients was -26% (interquartile range, 37). CONCLUSIONS Pulsatile patellar blood flow in patellofemoral pain syndrome patients is markedly reduced when the knee is being flexed, which supports the previous notion of an ischemic mechanism involved in the pathogenesis of this pain syndrome.
Collapse
Affiliation(s)
- Jan Näslund
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
16
|
McKay JC, Prato FS, Thomas AW. A literature review: The effects of magnetic field exposure on blood flow and blood vessels in the microvasculature. Bioelectromagnetics 2007; 28:81-98. [PMID: 17004242 DOI: 10.1002/bem.20284] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of magnetic field (MF) exposure on microcirculation and microvasculature is not clear or widely explored. In the limited body of data that exists, there are contradictions as to the effects of MFs on blood perfusion and pressure. Approximately half of the cited studies indicate a vasodilatory effect of MFs; the remaining half indicate that MFs could trigger either vasodilation or vasoconstriction depending on initial vessel tone. Few studies indicate that MFs cause a decrease in perfusion or no effect. There is a further lack of investigation into the cellular effects of MFs on microcirculation and microvasculature. The role of nitric oxide (NO) in mediating microcirculatory MF effects has been minimally explored and results are mixed, with four studies supporting an increase in NO activity, one supporting a biphasic effect, and five indicating no effect. MF effects on angiogenesis are also reported: seven studies supporting an increase and two a decrease. Possible reasons for these contradictions are explored. This review also considers the effects of magnetic resonance imaging (MRI) and anesthetics on microcirculation. Recommendations for future work include studies aimed at the cellular/mechanistic level, studies involving perfusion measurements both during and post-exposure, studies testing the effect of MFs on anesthetics, and investigation into the microcirculatory effects of MRI.
Collapse
Affiliation(s)
- Julia C McKay
- Bioelectromagnetics, Imaging Program, Lawson Health Research Institute, London, Ontario, Canada
| | | | | |
Collapse
|
17
|
Näslund J, Pettersson J, Lundeberg T, Linnarsson D, Lindberg LG. Non-invasive continuous estimation of blood flow changes in human patellar bone. Med Biol Eng Comput 2006; 44:501-9. [PMID: 16937201 DOI: 10.1007/s11517-006-0070-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 05/04/2006] [Indexed: 10/24/2022]
Abstract
A photoplethysmographic (PPG) technique to assess blood flow in bone tissue has been developed and tested. The signal detected by the PPG consists of a constant-level (DC) component-which is related to the relative vascularization of the tissue-and a pulsatile (AC) component-which is synchronous with the pumping action of the heart. The PPG probe was applied on the skin over the patella. The probe uses near-infrared (804 nm) and green (560 nm) light sources and the AC component of the PPG signals of the two wavelengths was used to monitor pulsatile blood flow in the patellar bone and the overlying skin, respectively. Twenty healthy subjects were studied and arterial occlusion resulted in elimination of PPG signals at both wavelengths, whereas occlusion of skin blood flow by local surface pressure eliminated only the PPG signal at 560 nm. In a parallel study on a physical model with a rigid tube we showed that the AC component of the PPG signal originates from pulsations of blood flow in a rigid structure and not necessarily from volume pulsations. We conclude that pulsatile blood flow in the patellar bone can be assessed with the present PPG technique.
Collapse
Affiliation(s)
- Jan Näslund
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|