1
|
Oomen PG, Bronsveld I, Hoepelman AI, van Welzen BJ, Mudrikova T. No long-term effect of past Pneumocystis jirovecii pneumonia on pulmonary function in people with HIV. AIDS 2023; 37:1263-1267. [PMID: 36939071 PMCID: PMC10241413 DOI: 10.1097/qad.0000000000003540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/25/2023] [Indexed: 03/21/2023]
Abstract
OBJECTIVE To assess the impact of past Pneumocystis jirovecii pneumonia (PJP) on the pulmonary diffusion capacity in people with HIV (PWH) with a history of advanced immunodeficiency. DESIGN Prospective cross-sectional study. METHODS Adult PWH with past PJP >1 year ago were included as the study group. The control group consisted of PWH with a nadir CD4 + lymphocyte count <200 cells/mm 3 , matched by age, sex, smoking status and time since HIV diagnosis. All PWH completed a pulmonary function test (PFT) consisting of pre-bronchodilation spirometry, body plethysmography and single-breath carbon monoxide transfer factor (TLCO) measurement. TLCO, diffusion impairment (defined as a TLCO Z -score <-1.645), total lung capacity (TLC) and forced expiratory volume in one second/forced vital capacity (FEV1/FVC) Z -scores were assessed. Multivariable regression analyses were conducted with Z -scores and odds of diffusion impairment as outcomes. RESULTS PFTs of 102 participants were analyzed, 51 of whom had past PJP with a median of 10 years since PJP. Mean TLCO Z -score and diffusion impairment rate did not differ significantly between groups ( P = 0.790; P = 0.650). Past PJP was not independently associated with TLCO Z -score [ β = 0.14; 95% confidence interval (CI) -0.30-0.57], diffusion impairment (odds ratio 1.00; 95% CI 0.36-2.75) nor TLC or FEV1/FVC Z -scores, whereas current (vs. never) smoking was associated with more diffusion impairment and lower TLCO Z -scores. CONCLUSION In our study, past PJP was not associated with long-term diffusion impairment. Our findings suggest that smoking plays a more important role in persistent pulmonary function impairment whereas PJP-related changes seem to be reversible.
Collapse
Affiliation(s)
| | - Inez Bronsveld
- Department of Pulmonary Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | | | | |
Collapse
|
2
|
De Santis F, Lopez AB, Virtuoso S, Poerio N, Saccomandi P, Olimpieri T, Duca L, Henrici De Angelis L, Aquilano K, D'Andrea MM, Aquaro S, Borsetti A, Ceccherini-Silberstein F, Fraziano M. Phosphatidylcholine Liposomes Down-Modulate CD4 Expression Reducing HIV Entry in Human Type-1 Macrophages. Front Immunol 2022; 13:830788. [PMID: 35663973 PMCID: PMC9160374 DOI: 10.3389/fimmu.2022.830788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
A strategy adopted to combat human immunodeficiency virus type-1 (HIV-1) infection is based on interfering with virus entry into target cells. In this study, we found that phosphatidylcholine (PC) liposomes reduced the expression of the CD4 receptor in human primary type-1 macrophages but not in CD4+ T cells. The down-regulation was specific to CD4, as any effect was not observed in CCR5 membrane expression. Moreover, the reduction of membrane CD4 expression required the Ca2+-independent protein kinase C (PKC), which in turn mediated serine phosphorylation in the intracytoplasmic tail of the CD4 receptor. Serine phosphorylation of CD4 was also associated with its internalization and degradation in acidic compartments. Finally, the observed CD4 downregulation induced by PC liposomes in human primary macrophages reduced the entry of both single-cycle replication and replication competent R5 tropic HIV-1. Altogether, these results show that PC liposomes reduce HIV entry in human macrophages and may impact HIV pathogenesis by lowering the viral reservoir.
Collapse
Affiliation(s)
- Federica De Santis
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Roma, Italy
| | - Ana Borrajo Lopez
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Tor Vergata", Roma, Italy
| | - Sara Virtuoso
- Centro Nazionale per la ricerca su HIV/AIDS, Istituto Superiore di Sanità, Roma, Italy
| | - Noemi Poerio
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Roma, Italy
| | - Patrizia Saccomandi
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Tor Vergata", Roma, Italy
| | - Tommaso Olimpieri
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Roma, Italy
| | - Leonardo Duca
- Dipartimento di Medicina Sperimentale, Università degli Studi di Roma "Tor Vergata", Roma, Italy
| | - Lucia Henrici De Angelis
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Roma, Italy.,Dipartimento di Biotecnologie Mediche, Università di Siena, Siena, Italy
| | - Katia Aquilano
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Roma, Italy
| | - Marco Maria D'Andrea
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Roma, Italy
| | - Stefano Aquaro
- Dipartimento di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Rende, Italy
| | - Alessandra Borsetti
- Centro Nazionale per la ricerca su HIV/AIDS, Istituto Superiore di Sanità, Roma, Italy
| | | | - Maurizio Fraziano
- Dipartimento di Biologia, Università degli Studi di Roma "Tor Vergata", Roma, Italy
| |
Collapse
|
3
|
Kottom TJ, Carmona EM, Limper AH. Current State of Carbohydrate Recognition and C-Type Lectin Receptors in Pneumocystis Innate Immunity. Front Immunol 2021; 12:798214. [PMID: 34975910 PMCID: PMC8716372 DOI: 10.3389/fimmu.2021.798214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
Pneumocystis jirovecii is one of the most common fungal pathogens in immunocompromised individuals. Pneumocystis jirovecii pneumonia (PJP) causes a significant host immune response that is driven greatly by the organism’s cell wall components including β-glucans and major surface glycoprotein (Msg). These ligands interact with a number of C-type lectin receptors (CLRs) leading to downstream activation of proinflammatory signaling pathways. This minireview provides a brief overview summarizing known CLR/Pneumocystis interactions.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Theodore J. Kottom,
| | - Eva M. Carmona
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Andrew H. Limper
- Thoracic Diseases Research Unit, Departments of Medicine and Biochemistry, Mayo Clinic, Rochester, MN, United States
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Cañadas O, Sáenz A, de Lorenzo A, Casals C. Pulmonary surfactant inactivation by β-D-glucan and protective role of surfactant protein A. Colloids Surf B Biointerfaces 2021; 210:112237. [PMID: 34836708 DOI: 10.1016/j.colsurfb.2021.112237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022]
Abstract
Pulmonary fungal infections lead to damage of the endogenous lung surfactant system. However, the molecular mechanism underlying surfactant inhibition is unknown. β-D-glucan is the major component of pathogenic fungal cell walls and is also present in organic dust, which increases the risk of respiratory diseases. The objective of this study was to characterize the interaction of this D-glucopyranose polymer with pulmonary surfactant. Our results show that β-D-glucan induced a concentration-dependent inhibition of the surface adsorption, respreading, and surface tension-lowering activity of surfactant preparations containing surfactant proteins SP-B and SP-C. Our data support a new mechanism of surfactant inhibition that consists in the extraction of phospholipid molecules from surfactant membranes by β-D-glucan. As a result, surfactant membranes became more fluid, as demonstrated by fluorescence anisotropy, and showed decreased Tm and transition enthalpy. Surfactant preparations containing surfactant protein A (SP-A) were more resistant to β-D-glucan inhibition. SP-A bound to different β-D-glucans with high affinity (Kd = 1.5 ± 0.1 nM), preventing and reverting β-D-glucan inhibitory effects on surfactant interfacial adsorption and partially abrogating β-D-glucan inhibitory effects on surfactant's reduction of surface tension. We conclude that β-D-glucan inhibits the biophysical function of surfactant preparations lacking SP-A by subtraction of phospholipids from surfactant bilayers and monolayers. The increased resistance of SP-A-containing surfactant preparations to β-D-glucan reinforces its use in surfactant replacement therapy.
Collapse
Affiliation(s)
- Olga Cañadas
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alejandra Sáenz
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Alba de Lorenzo
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, 28040 Madrid, Spain
| | - Cristina Casals
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, 28040 Madrid, Spain.
| |
Collapse
|
5
|
Detection of Cytokines and Collectins in Bronchoalveolar Fluid Samples of Patients Infected with Histoplasma capsulatum and Pneumocystis jirovecii. J Fungi (Basel) 2021; 7:jof7110938. [PMID: 34829225 PMCID: PMC8623738 DOI: 10.3390/jof7110938] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Histoplasmosis and pneumocystosis co-infections have been reported mainly in immunocompromised humans and in wild animals. The immunological response to each fungal infection has been described primarily using animal models; however, the host response to concomitant infection is unknown. The present work aimed to evaluate the pulmonary immunological response of patients with pneumonia caused either by Histoplasma capsulatum, Pneumocystis jirovecii, or their co-infection. We analyzed the pulmonary collectin and cytokine patterns of 131 bronchoalveolar lavage samples, which included HIV and non-HIV patients infected with H. capsulatum, P. jirovecii, or both fungi, as well as healthy volunteers and HIV patients without the studied fungal infections. Our results showed an increased production of the surfactant protein-A (SP-A) in non-HIV patients with H. capsulatum infection, contrasting with HIV patients (p < 0.05). Significant differences in median values of SP-A, IL-1β, TNF-α, IFN-γ, IL-18, IL-17A, IL-33, IL-13, and CXCL8 were found among all the groups studied, suggesting that these cytokines play a role in the local inflammatory processes of histoplasmosis and pneumocystosis. Interestingly, non-HIV patients with co-infection and pneumocystosis alone showed lower levels of SP-A, IL-1β, TNF-α, IFN-γ, IL-18, IL-17A, and IL-23 than histoplasmosis patients, suggesting an immunomodulatory ability of P. jirovecii over H. capsulatum response.
Collapse
|
6
|
Jin H, Ciechanowicz AK, Kaplan AR, Wang L, Zhang PX, Lu YC, Tobin RE, Tobin BA, Cohn L, Zeiss CJ, Lee PJ, Bruscia EM, Krause DS. Surfactant protein C dampens inflammation by decreasing JAK/STAT activation during lung repair. Am J Physiol Lung Cell Mol Physiol 2018; 314:L882-L892. [PMID: 29345196 DOI: 10.1152/ajplung.00418.2017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Surfactant protein C (SPC), a key component of pulmonary surfactant, also plays a role in regulating inflammation. SPC deficiency in patients and mouse models is associated with increased inflammation and delayed repair, but the key drivers of SPC-regulated inflammation in response to injury are largely unknown. This study focuses on a new mechanism of SPC as an anti-inflammatory molecule using SPC-TK/SPC-KO (surfactant protein C-thymidine kinase/surfactant protein C knockout) mice, which represent a novel sterile injury model that mimics clinical acute respiratory distress syndrome (ARDS). SPC-TK mice express the inducible suicide gene thymidine kinase from by the SPC promoter, which targets alveolar type 2 (AT2) cells for depletion in response to ganciclovir (GCV). We compared GCV-induced injury and repair in SPC-TK mice that have normal endogenous SPC expression with SPC-TK/SPC-KO mice lacking SPC expression. In contrast to SPC-TK mice, SPC-TK/SPC-KO mice treated with GCV exhibited more severe inflammation, resulting in over 90% mortality; there was only 8% mortality of SPC-TK animals. SPC-TK/SPC-KO mice had highly elevated inflammatory cytokines and granulocyte infiltration in the bronchoalveolar lavage (BAL) fluid. Consistent with a proinflammatory phenotype, immunofluorescence revealed increased phosphorylated signal transduction and activation of transcription 3 (pSTAT3), suggesting enhanced Janus kinase (JAK)/STAT activation in inflammatory and AT2 cells of SPC-TK/SPC-KO mice. The level of suppressor of cytokine signaling 3, an anti-inflammatory mediator that decreases pSTAT3 signaling, was significantly decreased in the BAL fluid of SPC-TK/SPC-KO mice. Hyperactivation of pSTAT3 and inflammation were rescued by AZD1480, a JAK1/2 inhibitor. Our findings showing a novel role for SPC in regulating inflammation via JAK/STAT may have clinical applications.
Collapse
Affiliation(s)
- Huiyan Jin
- Department of Cell Biology, Yale School of Medicine , New Haven, Connecticut.,Yale Stem Cell Center, Yale University , New Haven, Connecticut
| | - Andrzej K Ciechanowicz
- Department of Regenerative Medicine, Centre for Preclinical Research and Technology, Medical University of Warsaw , Warsaw , Poland
| | - Alanna R Kaplan
- Department of Pathology, Yale School of Medicine , New Haven, Connecticut
| | - Lin Wang
- Yale Stem Cell Center, Yale University , New Haven, Connecticut.,Department of Laboratory Medicine, Yale School of Medicine , New Haven, Connecticut
| | - Ping-Xia Zhang
- Yale Stem Cell Center, Yale University , New Haven, Connecticut.,Department of Laboratory Medicine, Yale School of Medicine , New Haven, Connecticut
| | - Yi-Chien Lu
- Yale Stem Cell Center, Yale University , New Haven, Connecticut.,Department of Laboratory Medicine, Yale School of Medicine , New Haven, Connecticut
| | - Rachel E Tobin
- Yale Stem Cell Center, Yale University , New Haven, Connecticut.,Department of Laboratory Medicine, Yale School of Medicine , New Haven, Connecticut
| | - Brooke A Tobin
- Yale Stem Cell Center, Yale University , New Haven, Connecticut.,Department of Laboratory Medicine, Yale School of Medicine , New Haven, Connecticut
| | - Lauren Cohn
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine , New Haven, Connecticut
| | - Caroline J Zeiss
- Department of Comparative Medicine, Yale School of Medicine , New Haven, Connecticut
| | - Patty J Lee
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine , New Haven, Connecticut
| | - Emanuela M Bruscia
- Department of Pediatrics, Yale School of Medicine , New Haven, Connecticut
| | - Diane S Krause
- Department of Cell Biology, Yale School of Medicine , New Haven, Connecticut.,Yale Stem Cell Center, Yale University , New Haven, Connecticut.,Department of Pathology, Yale School of Medicine , New Haven, Connecticut.,Department of Laboratory Medicine, Yale School of Medicine , New Haven, Connecticut
| |
Collapse
|
7
|
Staitieh BS, Egea EE, Guidot DM. Pulmonary Innate Immune Dysfunction in Human Immunodeficiency Virus. Am J Respir Cell Mol Biol 2017; 56:563-567. [PMID: 27911588 PMCID: PMC5449488 DOI: 10.1165/rcmb.2016-0213tr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
The advent of antiretroviral therapy has transformed infection by the type 1 human immunodeficiency virus (HIV) from a rapidly fatal disease to a chronic illness with excellent long-term survival rates. Although HIV primarily targets the adaptive arm of host immunity, it simultaneously impacts the innate immune system, and has profound implications for lung health, even when viral suppression is achieved with antiretroviral therapy. The lung has evolved a unique array of innate immune defenses, and the pathophysiological interactions between HIV and the pulmonary innate immune system deserve particular attention. In this review, we discuss work that elucidates how the components of innate immunity both respond to and are perturbed by infection with HIV.
Collapse
Affiliation(s)
- Bashar S. Staitieh
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Eduardo E. Egea
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - David M. Guidot
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; and
- the Atlanta Veterans Administration Medical Center, Decatur, Georgia
| |
Collapse
|
8
|
Griese M, Kirmeier HG, Liebisch G, Rauch D, Stückler F, Schmitz G, Zarbock R. Surfactant lipidomics in healthy children and childhood interstitial lung disease. PLoS One 2015; 10:e0117985. [PMID: 25692779 PMCID: PMC4333572 DOI: 10.1371/journal.pone.0117985] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 01/06/2015] [Indexed: 11/19/2022] Open
Abstract
Background Lipids account for the majority of pulmonary surfactant, which is essential for normal breathing. We asked if interstitial lung diseases (ILD) in children may disrupt alveolar surfactant and give clues for disease categorization. Methods Comprehensive lipidomics profiles of broncho-alveolar lavage fluid were generated in 115 children by electrospray ionization tandem mass spectrometry (ESI-MS/MS). Two reference populations were compared to a broad range of children with ILD. Results Class and species composition in healthy children did not differ from that in children with ILD related to diffuse developmental disorders, chronic tachypnoe of infancy, ILD related to lung vessels and the heart, and ILD related to reactive lymphoid lesions. As groups, ILDs related to the alveolar surfactant region, ILD related to unclear respiratory distress syndrome in the mature neonate, or in part ILD related to growth abnormalities reflecting deficient alveolarisation, had significant alterations of some surfactant specific phospholipids. Additionally, lipids derived from inflammatory processes were identified and differentiated. In children with ABCA3-deficiency from two ILD causing mutations saturated and monounsaturated phosphatidylcholine species with 30 and 32 carbons and almost all phosphatidylglycerol species were severely reduced. In other alveolar disorders lipidomic profiles may be of less diagnostic value, but nevertheless may substantiate lack of significant involvement of mechanisms related to surfactant lipid metabolism. Conclusions Lipidomic profiling may identify specific forms of ILD in children with surfactant alterations and characterized the molecular species pattern likely to be transported by ABCA3 in vivo.
Collapse
Affiliation(s)
- Matthias Griese
- Department of Pediatric Pulmonology, Hauner Children’s Hospital, Ludwig Maximilians University, Member of the German Center for Lung Research (DZL), Lindwurmstr. 4a, D-80337 Munich, Germany
- * E-mail:
| | - Hannah G. Kirmeier
- Department of Pediatric Pulmonology, Hauner Children’s Hospital, Ludwig Maximilians University, Member of the German Center for Lung Research (DZL), Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Gerhard Liebisch
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Daniela Rauch
- Department of Pediatric Pulmonology, Hauner Children’s Hospital, Ludwig Maximilians University, Member of the German Center for Lung Research (DZL), Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Ferdinand Stückler
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Gerd Schmitz
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Ralf Zarbock
- Department of Pediatric Pulmonology, Hauner Children’s Hospital, Ludwig Maximilians University, Member of the German Center for Lung Research (DZL), Lindwurmstr. 4a, D-80337 Munich, Germany
| | | |
Collapse
|
9
|
Abstract
Since its initial misidentification as a trypanosome some 100 years ago, Pneumocystis has remained recalcitrant to study. Although we have learned much, we still do not have definitive answers to such basic questions as, where is the reservoir of infection, how does Pneumocystis reproduce, what is the mechanism of infection, and are there true species of Pneumocystis? The goal of this review is to provide the reader the most up to date information available about the biology of Pneumocystis and the disease it produces.
Collapse
Affiliation(s)
- Francis Gigliotti
- Department of Pediatrics, University of Rochester Medical School, Rochester, New York 14642
| | - Andrew H Limper
- Pulmonary and Critical Care Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Terry Wright
- Department of Pediatrics, University of Rochester Medical School, Rochester, New York 14642
| |
Collapse
|
10
|
Lacoste-Collin L, Martin-Blondel G, Basset-Léobon C, Lauwers-Cancès V, d'Aure D, Aziza J, Berry A, Marchou B, Delisle MB, Courtade-Saïdi M. Investigation of the significance of Oil Red O-positive macrophage excess in bronchoalveolar lavage fluid during HIV infection. Cytopathology 2011; 23:114-9. [PMID: 21320187 DOI: 10.1111/j.1365-2303.2011.00851.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To assess the significance of increased levels of Oil Red O-positive macrophages (ORO-PM) in bronchoalveolar lavage fluids (BALFs) from HIV-positive patients. METHODS Cytological data for seventy BALF samples from 66 consecutive HIV-infected patients were analysed according to antiretroviral therapy regimen, presence of Pneumocystis jiroveci infection, blood CD4(+) T cell count, HIV-1 viral load and plasma lipid levels. Non-parametric tests were used to compare the values between groups. RESULTS The percentages of ORO-PM were high in this group: 40% [6-80] (median [interquartile range]). They were positively correlated with the BALF total cell count, 21% [5-48.5] for <300 cells/mm(3) and 60% [26.5-80] for >300 cells/mm(3) (P<0.01) but inversely correlated with the percentage of BALF lymphocytes, 50% [20-80] for <15% lymphocytes and 11.5% [2-47] for ≥15% lymphocytes (P<0.01). Antiretroviral therapy with or without protease inhibitors, plasma lipid levels, HIV-1 viral load, blood CD4(+) T cell count or presence of a Pneumocystis jiroveci infection were not correlated with the ORO-PM status. CONCLUSION Significantly increased numbers of ORO-PM were correlated with high total cell counts and low lymphocyte counts in BALF, irrespective of disease activity or treatment. Extended work on a larger series of patients needs to be conducted.
Collapse
Affiliation(s)
- L Lacoste-Collin
- Department of Pathology and Histology-Cytology, Toulouse Rangueil Hospital, Toulouse Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Ito Y, Mason RJ. The effect of interleukin-13 (IL-13) and interferon-γ (IFN-γ) on expression of surfactant proteins in adult human alveolar type II cells in vitro. Respir Res 2010; 11:157. [PMID: 21067601 PMCID: PMC2992502 DOI: 10.1186/1465-9921-11-157] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 11/10/2010] [Indexed: 01/13/2023] Open
Abstract
Background Surfactant proteins are produced predominantly by alveolar type II (ATII) cells, and the expression of these proteins can be altered by cytokines and growth factors. Th1/Th2 cytokine imbalance is suggested to be important in the pathogenesis of several adult lung diseases. Recently, we developed a culture system for maintaining differentiated adult human ATII cells. Therefore, we sought to determine the effects of IL-13 and IFN-γ on the expression of surfactant proteins in adult human ATII cells in vitro. Additional studies were done with rat ATII cells. Methods Adult human ATII cells were isolated from deidentified organ donors whose lungs were not suitable for transplantation and donated for medical research. The cells were cultured on a mixture of Matrigel and rat-tail collagen for 8 d with differentiation factors and human recombinant IL-13 or IFN-γ. Results IL-13 reduced the mRNA and protein levels of surfactant protein (SP)-C, whereas IFN-γ increased the mRNA level of SP-C and proSP-C protein but not mature SP-C. Neither cytokine changed the mRNA level of SP-B but IFN-γ slightly decreased mature SP-B. IFN-γ reduced the level of the active form of cathepsin H. IL-13 also reduced the mRNA and protein levels of SP-D, whereas IFN-γ increased both mRNA and protein levels of SP-D. IL-13 did not alter SP-A, but IFN-γ slightly increased the mRNA levels of SP-A. Conclusions We demonstrated that IL-13 and IFN-γ altered the expression of surfactant proteins in human adult ATII cells in vitro. IL-13 decreased SP-C and SP-D in human ATII cells, whereas IFN-γ had the opposite effect. The protein levels of mature SP-B were decreased by IFN-γ treatment, likely due to the reduction in active form cathpesin H. Similarly, the active form of cathepsin H was relatively insufficient to fully process proSP-C as IFN-γ increased the mRNA levels for SP-C and proSP-C protein, but there was no increase in mature SP-C. These observations suggest that in disease states with an overexpression of IL-13, there would be some deficiency in mature SP-C and SP-D. In disease states with an excess of IFN-γ or therapy with IFN-γ, these data suggest that there might be incomplete processing of SP-B and SP-C.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA.
| | | |
Collapse
|
12
|
Squadrito GL, Postlethwait EM, Matalon S. Elucidating mechanisms of chlorine toxicity: reaction kinetics, thermodynamics, and physiological implications. Am J Physiol Lung Cell Mol Physiol 2010; 299:L289-300. [PMID: 20525917 PMCID: PMC2951076 DOI: 10.1152/ajplung.00077.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/02/2010] [Indexed: 12/18/2022] Open
Abstract
Industrial and transport accidents, accidental releases during recreational swimming pool water treatment, household accidents due to mixing bleach with acidic cleaners, and, in recent years, usage of chlorine during war and in acts of terror, all contribute to the general and elevated state of alert with regard to chlorine gas. We here describe chemical and physical properties of Cl(2) that are relevant to its chemical reactivity with biological molecules, including water-soluble small-molecular-weight antioxidants, amino acid residues in proteins, and amino-phospholipids such as phosphatidylethanolamine and phosphatidylserine that are present in the lining fluid layers covering the airways and alveolar spaces. We further conduct a Cl(2) penetration analysis to assess how far Cl(2) can penetrate the surface of the lung before it reacts with water or biological substrate molecules. Our results strongly suggest that Cl(2) will predominantly react directly with biological molecules in the lung epithelial lining fluid, such as low-molecular-weight antioxidants, and that the hydrolysis of Cl(2) to HOCl (and HCl) can be important only when these biological molecules have been depleted by direct chemical reaction with Cl(2). The results from this theoretical analysis are then used for the assessment of the potential benefits of adjuvant antioxidant therapy in the mitigation of lung injury due to inhalation of Cl(2) and are compared with recent experimental results.
Collapse
Affiliation(s)
- Giuseppe L Squadrito
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama 35294-0022, USA.
| | | | | |
Collapse
|
13
|
Do TQ, Moshkani S, Castillo P, Anunta S, Pogosyan A, Cheung A, Marbois B, Faull KF, Ernst W, Chiang SM, Fujii G, Clarke CF, Foster K, Porter E. Lipids including cholesteryl linoleate and cholesteryl arachidonate contribute to the inherent antibacterial activity of human nasal fluid. THE JOURNAL OF IMMUNOLOGY 2008; 181:4177-87. [PMID: 18768875 DOI: 10.4049/jimmunol.181.6.4177] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mucosal surfaces provide first-line defense against microbial invasion through their complex secretions. The antimicrobial activities of proteins in these secretions have been well delineated, but the contributions of lipids to mucosal defense have not been defined. We found that normal human nasal fluid contains all major lipid classes (in micrograms per milliliter), as well as lipoproteins and apolipoprotein A-I. The predominant less polar lipids were myristic, palmitic, palmitoleic, stearic, oleic, and linoleic acid, cholesterol, and cholesteryl palmitate, cholesteryl linoleate, and cholesteryl arachidonate. Normal human bronchioepithelial cell secretions exhibited a similar lipid composition. Removal of less-polar lipids significantly decreased the inherent antibacterial activity of nasal fluid against Pseudomonas aeruginosa, which was in part restored after replenishing the lipids. Furthermore, lipids extracted from nasal fluid exerted direct antibacterial activity in synergism with the antimicrobial human neutrophil peptide HNP-2 and liposomal formulations of cholesteryl linoleate and cholesteryl arachidonate were active against P. aeruginosa at physiological concentrations as found in nasal fluid and exerted inhibitory activity against other Gram-negative and Gram-positive bacteria. These data suggest that host-derived lipids contribute to mucosal defense. The emerging concept of host-derived antimicrobial lipids unveils novel roads to a better understanding of the immunology of infectious diseases.
Collapse
Affiliation(s)
- Thai Q Do
- Department of Biological Sciences, California State University, Los Angeles, CA 90032, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Soni N, Williams P. Positive pressure ventilation: what is the real cost? Br J Anaesth 2008; 101:446-57. [PMID: 18782885 DOI: 10.1093/bja/aen240] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Positive pressure ventilation is a radical departure from the physiology of breathing spontaneously. The immediate physiological consequences of positive pressure ventilation such as haemodynamic changes are recognized, studied, and understood. There are other significant physiological interactions which are less obvious, more insidious, and may only produce complications if ventilation is prolonged. The interaction of positive pressure with airway resistance and alveolar compliance affects distribution of gas flow within the lung. The result is a wide range of ventilation efficacy throughout different areas of the lung, but the pressure differentials between alveolus and interstitium also influence capillary perfusion. The hydrostatic forces across the capillaries associated with the effects of raised venous pressures compound these changes resulting in interstitial fluid sequestration. This is increased by impaired lymphatic drainage which is secondary to raised intrathoracic pressure but also influenced by raised central venous pressure. Ventilation and PEEP promulgate further physiological derangement. In theory, avoiding these physiological disturbances in a rested lung may be better for the lung and other organs. An alternative to positive pressure ventilation might be to investigate oxygen supplementation of a physiologically neutral and rested lung. Abandoning heroic ventilation would be a massive departure from current practice but might be a more rationale approach to future practice.
Collapse
Affiliation(s)
- N Soni
- Imperial College Medical School, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK.
| | | |
Collapse
|
15
|
Tafel O, Latzin P, Paul K, Winter T, Woischnik M, Griese M. Surfactant proteins SP-B and SP-C and their precursors in bronchoalveolar lavages from children with acute and chronic inflammatory airway disease. BMC Pulm Med 2008; 8:6. [PMID: 18405368 PMCID: PMC2364613 DOI: 10.1186/1471-2466-8-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Accepted: 04/11/2008] [Indexed: 01/08/2023] Open
Abstract
Background The surfactant proteins B (SP-B) and C (SP-C) are important for the stability and function of the alveolar surfactant film. Their involvement and down-regulation in inflammatory processes has recently been proposed, but their level during neutrophilic human airway diseases are not yet known. Methods We used 1D-electrophoresis and Western blotting to determine the concentrations and molecular forms of SP-B and SP-C in bronchoalveolar lavage (BAL) fluid of children with different inflammatory airway diseases. 21 children with cystic fibrosis, 15 with chronic bronchitis and 14 with pneumonia were included and compared to 14 healthy control children. Results SP-B was detected in BAL of all 64 patients, whereas SP-C was found in BAL of all but 3 children; those three BAL fluids had more than 80% neutrophils, and in two patients, who were re-lavaged later, SP-C was then present and the neutrophil count was lower. SP-B was mainly present as a dimer, SP-C as a monomer. For both qualitative and quantitative measures of SP-C and SP-B, no significant differences were observed between the four evaluated patient groups. Conclusion Concentration or molecular form of SP-B and SP-C is not altered in BAL of children with different acute and chronic inflammatory lung diseases. We conclude that there is no down-regulation of SP-B and SP-C at the protein level in inflammatory processes of neutrophilic airway disease.
Collapse
Affiliation(s)
- Oliver Tafel
- Lung Research Group, Children's Hospital of Ludwig Maximilian University, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Jambo KC, French N, Zijlstra E, Gordon SB. AIDS patients have increased surfactant protein D but normal mannose binding lectin levels in lung fluid. Respir Res 2007; 8:42. [PMID: 17567900 PMCID: PMC1906751 DOI: 10.1186/1465-9921-8-42] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Accepted: 06/13/2007] [Indexed: 12/28/2022] Open
Abstract
Background Surfactant protein D (SP-D) and Mannose Binding Lectin (MBL) are collectins that have opsonic and immunoregulatory functions, are found in lung fluid and interact with the human immunodeficiency virus (HIV). We compared collectin levels in lung fluid and serum from HIV infected and normal subjects to determine if alterations in lung collectin levels were associated with HIV infection and might result in increased susceptibility to other pulmonary infections. Methods Blood and bronchoalveolar lavage samples were collected from 19 HIV-infected individuals and 17 HIV-uninfected individuals, all with normal chest X ray at time of study. HIV viral loads and peripheral blood CD4+ T cell counts were measured in all subjects. SP-D was measured in lung fluid, and MBL in both lung fluid and serum. Results SP-D levels were not significantly different in lung fluid from HIV-uninfected (median 406.72 ng/ml) and HIV-infected individuals with high CD4 count (CD4 >200) (median 382.60 ng/ml) but were elevated in HIV-infected individuals with low CD4 count (median 577.79 ng/ml; Kruskall Wallis p < 0.05). MBL levels in serum were not significantly different between HIV-uninfected and HIV-infected individuals (median 1782.70 ng/ml vs 2639.73 ng/ml) and were not detectable in lung fluid. Conclusion SP-D levels are increased in lung fluid from AIDS patients but not in patients with early HIV infection. MBL levels are not altered by HIV infection or AIDS. There is no evidence that altered pulmonary collectin levels result in susceptibility to infection in these patients.
Collapse
Affiliation(s)
- Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Neil French
- Wellcome Trust/LEPRA Karonga Prevention Study, London School of Hygiene and Tropical Medicine, Chilumba, Malawi
| | - Ed Zijlstra
- Department of Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | | |
Collapse
|
17
|
Valdivia-Arenas M, Amer A, Henning L, Wewers M, Schlesinger L. Lung infections and innate host defense. ACTA ACUST UNITED AC 2007; 4:73-81. [PMID: 18592001 DOI: 10.1016/j.ddmec.2007.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ma Valdivia-Arenas
- Center for Microbial Interface Biology, Dorothy M. Davis Heart and Lung Research Institute, Divisions of Infectious Diseases and Pulmonary, Allergy, Critical Care & Sleep Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210
| | | | | | | | | |
Collapse
|