1
|
Arteyeva NV, Osadchii OE. Electrocardiographic marker of ventricular action potential triangulation (the simulation study). J Electrocardiol 2025; 89:153857. [PMID: 39752844 DOI: 10.1016/j.jelectrocard.2024.153857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 03/17/2025]
Abstract
BACKGROUND The aim of this simulation was to examine the utility of a novel ECG-based index of cardiac action potential (AP) triangulation, the Tstart-to-Tpeak (TsTp) interval-to-JTstart (JTs) interval ratio, for assessment of changes in AP profile imposed through variations in the duration of the plateau phase and the phase 3 repolarization. METHODS ECGs were simulated using a realistic rabbit model based on experimental data. The AP plateau was measured at APD30, and the phase 3 was assessed as APD90-to-APD30 difference (AP durations at 90 % and 30 % repolarization, respectively). AP triangulation was quantified as (APD90-APD30)-to-APD30 ratio. The baseline durations of AP plateau and phase 3 were modified through (1) 50 % shortening, (2) 50 % to 100 % lengthening, and (3) concurrent, non-uniform lengthening in both the AP plateau and phase 3, replicating the long QT syndrome type 2 (LQT2) and type 3 (LQT3) models. RESULTS When simulating the isolated changes in either the AP plateau or the phase 3 durations, the (APD90-APD30)-to-APD30 ratios were the same for all model cells. The TsTp/JTs ratios calculated from the simulated ECGs closely approximated the (APD90-APD30)-to-APD30 ratios, despite the lead-to‑lead variability in TsTp and JTs intervals. When simulating the concurrent changes in AP plateau and the phase 3, the (APD90-APD30)-to-APD30 ratios were variable in cells from different layers across the ventricular wall. Nevertheless, the TsTp/JTs ratios were found to be within the range of the minimum-to-maximum values for the (APD90-APD30)-to-APD30 ratio. CONCLUSIONS The TsTp interval-to-JTs interval ratio can serve as an electrocardiographic marker of cardiac AP triangulation.
Collapse
Affiliation(s)
- Natalia V Arteyeva
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 50, Pervomayskaya st., Syktyvkar 167982, Russia.
| | - Oleg E Osadchii
- Physiology Unit, Department of Pre-Clinical Sciences, Faculty of Medical Sciences, The University of the West Indies, St. Augustine Campus, Mount Hope Hospital, Building 35, Uriah Butler Highway, Trinidad and Tobago
| |
Collapse
|
2
|
Arteyeva NV, Komarov IA, Azarov JE. Action potential morphology affects T-wave symmetry (simulation study). J Electrocardiol 2023; 81:237-243. [PMID: 37844373 DOI: 10.1016/j.jelectrocard.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND Assessing T-wave symmetry in addition to QT subintervals measurements can provide novel independent data about ventricular repolarization abnormalities linked with arrhythmogenesis. However, the causes of the changes of T-wave symmetry are not completely understood. In silico studies showed that the more symmetrical T-waves were associated with shorter action potential duration (APD) and larger dispersion of ventricular repolarization (DOR). The aim of present simulation was to study the association between T-wave symmetry and action potential (AP) shape. METHODS ECGs were simulated using a cellular automata model shaped as a ventricular wall segment, and two biophysically-detailed models of ventricular AP - the rabbit and the human. The symmetry ratio (SR) was calculated as a T-wave onset-peak to peak-end area ratio. The individual and combined effects of APD, DOR and AP shape on SR were simulated. To study the effect of AP shape, different APs from triangulated to rectangular were simulated. RESULTS The simulations showed that AP shape along with APD and DOR contributes much to T-wave symmetry. APs with a flat phase 3 (triangulated) produced asymmetrical T-waves (SR ≥ 1.5) in all simulations, except the shortest APD range. APs with a rapid phase 3 (rectangular) were associated with more symmetrical T-waves (SR ≤ =1) both at the short and the long APDs. CONCLUSION SR marker in combination with the standard ECG parameters (QT interval, Tpeak-Tend interval) may be useful to identify the proarrhythmic triangulated AP shape.
Collapse
Affiliation(s)
- Natalia V Arteyeva
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 50, Pervomayskaya st, Syktyvkar 167982, Russia.
| | - Ilia A Komarov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 50, Pervomayskaya st, Syktyvkar 167982, Russia
| | - Jan E Azarov
- Department of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 50, Pervomayskaya st, Syktyvkar 167982, Russia; Department of Physiology, Medical Institute of Pitirim Sorokin, Syktyvkar State University, 11, Babushkin st, Syktyvkar 167000, Russia
| |
Collapse
|
3
|
El Harchi A, Hancox JC. hERG agonists pose challenges to web-based machine learning methods for prediction of drug-hERG channel interaction. J Pharmacol Toxicol Methods 2023; 123:107293. [PMID: 37468081 DOI: 10.1016/j.vascn.2023.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Pharmacological blockade of the IKr channel (hERG) by diverse drugs in clinical use is associated with the Long QT Syndrome that can lead to life threatening arrhythmia. Various computational tools including machine learning models (MLM) for the prediction of hERG inhibition have been developed to facilitate the throughput screening of drugs in development and optimise thus the prediction of hERG liabilities. The use of MLM relies on large libraries of training compounds for the quantitative structure-activity relationship (QSAR) modelling of hERG inhibition. The focus on inhibition omits potential effects of hERG channel agonist molecules and their associated QT shortening risk. It is instructive, therefore, to consider how known hERG agonists are handled by MLM. Here, two highly developed online computational tools for the prediction of hERG liability, Pred-hERG and HergSPred were probed for their ability to detect hERG activator drug molecules as hERG interactors. In total, 73 hERG blockers were tested with both computational tools giving overall good predictions for hERG blockers with reported IC50s below Pred-hERG and HergSPred cut-off threshold for hERG inhibition. However, for compounds with reported IC50s above this threshold such as disopyramide or sotalol discrepancies were observed. HergSPred identified all 20 hERG agonists selected as interacting with the hERG channel. Further studies are warranted to improve online MLM prediction of hERG related cardiotoxicity, by explicitly taking into account channel agonism as well as inhibition.
Collapse
Affiliation(s)
- Aziza El Harchi
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Jules C Hancox
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
4
|
Molecular Determinants for the High-Affinity Blockade of Human Ether-à-go-go-Related Gene K + Channel by Tolterodine. J Cardiovasc Pharmacol 2022; 80:679-689. [PMID: 35881423 DOI: 10.1097/fjc.0000000000001336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Tolterodine is a first-line antimuscarinic drug used to treat overactive bladder. Adverse cardiac effects including tachycardia and palpitations have been observed, presumably because of its inhibition of the human ether-à-go-go-related gene (hERG) K + channel. However, the molecular mechanism of hERG channel inhibition by tolterodine is largely unclear. In this study, we performed molecular docking to identify potential binding sites of tolterodine in hERG channel, and two-microelectrode voltage-clamp to record the currents of hERG and its mutants expressed in Xenopus oocytes. The results of computational modeling demonstrated that phenylalanine at position 656 (F656) and tyrosine at position 652 (Y652) on the S6 helix of hERG channel are the most favorable binding residues of tolterodine, which was validated by electrophysiological recordings on Y652A and F656A hERG mutants. The Y652A and F656A mutations decreased inhibitory potency of tolterodine 345-fold and 126-fold, respectively. The Y652A mutation significantly altered the voltage dependence of channel inhibition by tolterodine. For both the wild-type and the mutant channels, tolterodine reduced the currents in a time-dependent manner, and the blockade occurred with the channel activated. Tolterodine did not interfere with hERG channel deactivation, whereas channel inactivation greatly impaired its blocking effect. The inhibition of hERG channel by tolterodine is independent of its action on muscarinic acetylcholine receptors. In conclusion, tolterodine is an open-state blocker of hERG K + channel with nanomolar potency. Y652 and F656, 2 aromatic residues on the inner S6 helix, are responsible for the high-affinity binding of tolterodine to hERG channel.
Collapse
|
5
|
New Insights into Ion Channels: Predicting hERG-Drug Interactions. Int J Mol Sci 2022; 23:ijms231810732. [PMID: 36142644 PMCID: PMC9503154 DOI: 10.3390/ijms231810732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Drug-induced long QT syndrome can be a very dangerous side effect of existing and developmental drugs. In this work, a model proposed two decades ago addressing the ion specificity of potassium channels is extended to the human ether-à-gogo gene (hERG). hERG encodes the protein that assembles into the potassium channel responsible for the delayed rectifier current in ventricular cardiac myocytes that is often targeted by drugs associated with QT prolongation. The predictive value of this model can guide a rational drug design decision early in the drug development process and enhance NCE (New Chemical Entity) retention. Small molecule drugs containing a nitrogen that can be protonated to afford a formal +1 charge can interact with hERG to prevent the repolarization of outward rectifier currents. Low-level ab initio calculations are employed to generate electronic features of the drug molecules that are known to interact with hERG. These calculations were employed to generate structure–activity relationships (SAR) that predict whether a small molecule drug containing a protonated nitrogen has the potential to interact with and inhibit the activity of the hERG potassium channels of the heart. The model of the mechanism underlying the ion specificity of potassium channels offers predictive value toward optimizing drug design and, therefore, minimizes the effort and expense invested in compounds with the potential for life-threatening inhibitory activity of the hERG potassium channel.
Collapse
|
6
|
Su S, Sun J, Wang Y, Xu Y. Cardiac hERG K + Channel as Safety and Pharmacological Target. Handb Exp Pharmacol 2021; 267:139-166. [PMID: 33829343 DOI: 10.1007/164_2021_455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The human ether-á-go-go related gene (hERG, KCNH2) encodes the pore-forming subunit of the potassium channel responsible for a fast component of the cardiac delayed rectifier potassium current (IKr). Outward IKr is an important determinant of cardiac action potential (AP) repolarization and effectively controls the duration of the QT interval in humans. Dysfunction of hERG channel can cause severe ventricular arrhythmias and thus modulators of the channel, including hERG inhibitors and activators, continue to attract intense pharmacological interest. Certain inhibitors of hERG channel prolong the action potential duration (APD) and effective refractory period (ERP) to suppress premature ventricular contraction and are used as class III antiarrhythmic agents. However, a reduction of the hERG/IKr current has been recognized as a predominant mechanism responsible for the drug-induced delayed repolarization known as acquired long QT syndromes (LQTS), which is linked to an increased risk for "torsades de pointes" (TdP) ventricular arrhythmias and sudden cardiac death. Many drugs of different classes and structures have been identified to carry TdP risk. Hence, assessing hERG/IKr blockade of new drug candidates is mandatory in the drug development process according to the regulatory agencies. In contrast, several hERG channel activators have been shown to enhance IKr and shorten the APD and thus might have potential antiarrhythmic effects against pathological LQTS. However, these activators may also be proarrhythmic due to excessive shortening of APD and the ERP.
Collapse
Affiliation(s)
- Shi Su
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Jinglei Sun
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yi Wang
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China
| | - Yanfang Xu
- Department of Pharmacology, Hebei Medical University, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei, China.
| |
Collapse
|
7
|
Wiśniowska B, Bielecka ZM, Polak S. How circadian variability of the heart rate and plasma electrolytes concentration influence the cardiac electrophysiology - model-based case study. J Pharmacokinet Pharmacodyn 2021; 48:387-399. [PMID: 33666801 PMCID: PMC8144092 DOI: 10.1007/s10928-021-09744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/24/2021] [Indexed: 11/24/2022]
Abstract
The circadian rhythm of cardiac electrophysiology is dependent on many physiological and biochemical factors. Provided, that models describing the circadian patterns of cardiac activity and/or electrophysiology which have been verified to the acceptable level, modeling and simulation can give answers to many of heart chronotherapy questions. The aim of the study was to assess the performance of the circadian models implemented in Cardiac Safety Simulator v 2.2 (Certara, Sheffield, UK) (CSS), as well as investigate the influence ofcircadian rhythms on the simulation results in terms of cardiac safety. The simulations which were run in CSS accounted for inter-individual and intra-individual variability. Firstly, the diurnal variations in QT interval length in a healthy population were simulated accounting for heart rate (HR) circadian changes alone, or with concomitant diurnal variations of plasma ion concentrations. Next, tolterodine was chosen as an exemplary drug for PKPD modelling exercise to assess the role of circadian rhythmicity in the prediction of drug effects on QT interval. The results of the simulations were in line with clinical observations, what can serve as a verification of the circadian models implemented in CSS. Moreover, the results have suggested that the circadian variability of the electrolytes balance is the main factor influencing QT circadian pattern. The fluctuation of ion concentration increases the intra-subject variability of predicted drug-triggered QT corrected for HR (QTc) prolongation effect and, in case of modest drug effect on QTc interval length, allows to capture this effect.
Collapse
Affiliation(s)
- Barbara Wiśniowska
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland.
| | - Zofia M Bielecka
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| | - Sebastian Polak
- Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland
- Simcyp Division, Certara UK Limited, Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK
| |
Collapse
|
8
|
Garrido A, Lepailleur A, Mignani SM, Dallemagne P, Rochais C. hERG toxicity assessment: Useful guidelines for drug design. Eur J Med Chem 2020; 195:112290. [PMID: 32283295 DOI: 10.1016/j.ejmech.2020.112290] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023]
Abstract
All along the drug development process, one of the most frequent adverse side effects, leading to the failure of drugs, is the cardiac arrhythmias. Such failure is mostly related to the capacity of the drug to inhibit the human ether-à-go-go-related gene (hERG) cardiac potassium channel. The early identification of hERG inhibition properties of biological active compounds has focused most of attention over the years. In order to prevent the cardiac side effects, a great number of in silico, in vitro and in vivo assays have been performed. The main goal of these studies is to understand the reasons of these effects, and then to give information or instructions to scientists involved in drug development to avoid the cardiac side effects. To evaluate anticipated cardiovascular effects, early evaluation of hERG toxicity has been strongly recommended for instance by the regulatory agencies such as U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA). Thus, following an initial screening of a collection of compounds to find hits, a great number of pharmacomodulation studies on the novel identified chemical series need to be performed including activity evaluation towards hERG. We provide in this concise review clear guidelines, based on described examples, illustrating successful optimization process to avoid hERG interactions as cases studies and to spur scientists to develop safe drugs.
Collapse
Affiliation(s)
- Amanda Garrido
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Alban Lepailleur
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Serge M Mignani
- UMR 860, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique, Université Paris Descartes, PRES Sorbonne Paris Cité, CNRS, 45 rue des Saints Pères, 75006, Paris, France; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Portugal
| | - Patrick Dallemagne
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France
| | - Christophe Rochais
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), Caen, France.
| |
Collapse
|
9
|
Seo MS, An JR, Jung HS, Jung WK, Choi IW, Na SH, Park H, Bae YM, Park WS. The muscarinic receptor antagonist tolterodine inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells. Eur J Pharmacol 2020; 870:172921. [DOI: 10.1016/j.ejphar.2020.172921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/03/2019] [Accepted: 01/10/2020] [Indexed: 11/17/2022]
|
10
|
Novel method for action potential measurements from intact cardiac monolayers with multiwell microelectrode array technology. Sci Rep 2019; 9:11893. [PMID: 31417144 PMCID: PMC6695445 DOI: 10.1038/s41598-019-48174-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 07/26/2019] [Indexed: 01/09/2023] Open
Abstract
The cardiac action potential (AP) is vital for understanding healthy and diseased cardiac biology and drug safety testing. However, techniques for high throughput cardiac AP measurements have been limited. Here, we introduce a novel technique for reliably increasing the coupling of cardiomyocyte syncytium to planar multiwell microelectrode arrays, resulting in a stable, label-free local extracellular action potential (LEAP). We characterized the reliability and stability of LEAP, its relationship to the field potential, and its efficacy for quantifying AP morphology of human induced pluripotent stem cell derived and primary rodent cardiomyocytes. Rise time, action potential duration, beat period, and triangulation were used to quantify compound responses and AP morphology changes induced by genetic modification. LEAP is the first high throughput, non-invasive, label-free, stable method to capture AP morphology from an intact cardiomyocyte syncytium. LEAP can accelerate our understanding of stem cell models, while improving the automation and accuracy of drug testing.
Collapse
|
11
|
Shah RR, Stonier PD. Withdrawal of prenylamine: perspectives on pharmacological, clinical and regulatory outcomes following the first QT-related casualty. Ther Adv Drug Saf 2018; 9:475-493. [PMID: 30364900 PMCID: PMC6199680 DOI: 10.1177/2042098618780854] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/14/2018] [Indexed: 12/31/2022] Open
Abstract
Prenylamine, an antianginal agent marketed since early 1960, became the first casualty of QT interval related proarrhythmias in 1988 when it was withdrawn from the market. The period of its synthesis and marketing is of particular interest since it antedated, first, any serious clinical safety concern regarding drug-induced prolongation of the QT interval which was, in fact, believed to be an efficient antiarrhythmic mechanism; second, the first description of torsade de pointes as a unique proarrhythmia, typically associated with prolonged QT interval; and third, the discovery and recognition of calcium antagonism as an important cardiovascular therapeutic strategy. This review, 30 years almost to the day following its withdrawal, provides interesting perspectives on clinical, pharmacological and regulatory outcomes that followed. Prenylamine underscored torsadogenic potential of other early antianginal drugs on the market at that time and identified QT-related proarrhythmias as a much wider major public health issue of clinical and regulatory concern. This resulted in various guidelines for early identification of this potentially fatal risk. Application of these guidelines would have readily identified its proarrhythmic potential. Prenylamine also emphasized differences in drug responses between men and women which subsequently galvanized extensive research into sex-related differences in pharmacology. More importantly, however, investigations into the mechanisms of its action paved the way to developing modern safe and effective calcium antagonists that are so widely used today in cardiovascular pharmacotherapy.
Collapse
Affiliation(s)
- Rashmi R. Shah
- Pharmaceutical Consultant, 8 Birchdale, Gerrards
Cross, Buckinghamshire, UK
| | - Peter D. Stonier
- Institute of Pharmaceutical Science, Faculty of
Life Sciences & Medicine, King’s College, London, UK
| |
Collapse
|
12
|
Qu Y, Page G, Abi-Gerges N, Miller PE, Ghetti A, Vargas HM. Action Potential Recording and Pro-arrhythmia Risk Analysis in Human Ventricular Trabeculae. Front Physiol 2018; 8:1109. [PMID: 29354071 PMCID: PMC5760531 DOI: 10.3389/fphys.2017.01109] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/14/2017] [Indexed: 01/20/2023] Open
Abstract
To assess drug-induced pro-arrhythmic risk, especially Torsades de Pointe (TdP), new models have been proposed, such as in-silico modeling of ventricular action potential (AP) and stem cell-derived cardiomyocytes (SC-CMs). Previously we evaluated the electrophysiological profile of 15 reference drugs in hESC-CMs and hiPSC-CMs for their effects on intracellular AP and extracellular field potential, respectively. Our findings indicated that SC-CMs exhibited immature phenotype and had the propensity to generate false positives in predicting TdP risk. To expand our knowledge with mature human cardiac tissues for drug-induced pro-arrhythmic risk assessment, human ventricular trabeculae (hVT) from ethically consented organ donors were used to evaluate the effects of the same 15 drugs (8 torsadogenic, 5 non-torsadogenic, and 2 discovery molecules) on AP parameters at 1 and 2 Hz. Each drug was tested blindly with 4 concentrations in duplicate trabeculae from 2 hearts. To identify the pro-arrhythmic risk of each drug, a pro-arrhythmic score was calculated as the weighted sum of percent drug-induced changes compared to baseline in various AP parameters, including AP duration and recognized pro-arrhythmia predictors such as triangulation, beat-to-beat variability and incidence of early-afterdepolarizations, at each concentration. In addition, to understand the translation of this preclinical hVT AP-based model to clinical studies, a ratio that relates each testing concentration to the human therapeutic unbound Cmax (Cmax) was calculated. At a ratio of 10, for the 8 torsadogenic drugs, 7 were correctly identified by the pro-arrhythmic score; 1 was mislabeled. For the 5 non-torsadogenic drugs, 4 were correctly identified as safe; 1 was mislabeled. Calculation of sensitivity, specificity, positive predictive value, and negative predictive value indicated excellent performance. For example, at a ratio of 10, scores for sensitivity, specificity, positive predictive value and negative predictive values were 0.88, 0.8, 0.88 and 0.8, respectively. Thus, the hVT AP-based model combined with the integrated analysis of pro-arrhythmic score can differentiate between torsadogenic and non-torsadogenic drugs, and has a greater predictive performance when compared to human SC-CM models.
Collapse
Affiliation(s)
- Yusheng Qu
- Integrated Discovery and Safety Pharmacology, Amgen Inc., Thousand Oaks, CA, United States
| | - Guy Page
- AnaBios Corporation, San Diego, CA, United States
| | | | | | - Andre Ghetti
- AnaBios Corporation, San Diego, CA, United States
| | - Hugo M. Vargas
- Integrated Discovery and Safety Pharmacology, Amgen Inc., Thousand Oaks, CA, United States
| |
Collapse
|
13
|
Lee W, Windley MJ, Vandenberg JI, Hill AP. In Vitro and In Silico Risk Assessment in Acquired Long QT Syndrome: The Devil Is in the Details. Front Physiol 2017; 8:934. [PMID: 29201009 PMCID: PMC5696636 DOI: 10.3389/fphys.2017.00934] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/03/2017] [Indexed: 12/16/2022] Open
Abstract
Acquired long QT syndrome, mostly as a result of drug block of the Kv11. 1 potassium channel in the heart, is characterized by delayed cardiac myocyte repolarization, prolongation of the T interval on the ECG, syncope and sudden cardiac death due to the polymorphic ventricular arrhythmia Torsade de Pointes (TdP). In recent years, efforts are underway through the Comprehensive in vitro proarrhythmic assay (CiPA) initiative, to develop better tests for this drug induced arrhythmia based in part on in silico simulations of pharmacological disruption of repolarization. However, drug binding to Kv11.1 is more complex than a simple binary molecular reaction, meaning simple steady state measures of potency are poor surrogates for risk. As a result, there is a plethora of mechanistic detail describing the drug/Kv11.1 interaction—such as drug binding kinetics, state preference, temperature dependence and trapping—that needs to be considered when developing in silico models for risk prediction. In addition to this, other factors, such as multichannel pharmacological profile and the nature of the ventricular cell models used in simulations also need to be considered in the search for the optimum in silico approach. Here we consider how much of mechanistic detail needs to be included for in silico models to accurately predict risk and further, how much of this detail can be retrieved from protocols that are practical to implement in high throughout screens as part of next generation of preclinical in silico drug screening approaches?
Collapse
Affiliation(s)
- William Lee
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Monique J Windley
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Jamie I Vandenberg
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Adam P Hill
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
14
|
Huang H, Pugsley MK, Fermini B, Curtis MJ, Koerner J, Accardi M, Authier S. Cardiac voltage-gated ion channels in safety pharmacology: Review of the landscape leading to the CiPA initiative. J Pharmacol Toxicol Methods 2017; 87:11-23. [PMID: 28408211 DOI: 10.1016/j.vascn.2017.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 03/27/2017] [Accepted: 04/06/2017] [Indexed: 12/15/2022]
Abstract
Voltage gated ion channels are central in defining the fundamental properties of the ventricular cardiac action potential (AP), and are also involved in the development of drug-induced arrhythmias. Many drugs can inhibit cardiac ion currents, including the Na+ current (INa), L-type Ca2+ current (Ica-L), and K+ currents (Ito, IK1, IKs, and IKr), and thereby affect AP properties in a manner that can trigger or sustain cardiac arrhythmias. Since publication of ICH E14 and S7B over a decade ago, there has been a focus on drug effects on QT prolongation clinically, and on the rapidly activating delayed rectifier current (IKr), nonclinically, for evaluation of proarrhythmic risk. This focus on QT interval prolongation and a single ionic current likely impacted negatively some drugs that lack proarrhythmic liability in humans. To rectify this issue, the Comprehensive in vitro proarrhythmia assay (CiPA) initiative has been proposed to integrate drug effects on multiple cardiac ionic currents with in silico modelling of human ventricular action potentials, and in vitro data obtained from human stem cell-derived ventricular cardiomyocytes to estimate proarrhythmic risk of new drugs with improved accuracy. In this review, we present the physiological functions and the molecular basis of major cardiac ion channels that contribute to the ventricle AP, and discuss the CiPA paradigm in drug development.
Collapse
Affiliation(s)
- Hai Huang
- CiToxLAB North America, 445, Armand-Frappier Boul, Laval H7V 4B3, QC, Canada
| | - Michael K Pugsley
- Department of Toxicology, Purdue Pharma L.P., Cranbury, NJ 08512, USA
| | | | - Michael J Curtis
- Cardiovascular Division, Faculty of Life Sciences & Medicine, King's College London, Rayne Institute, St Thomas' Hospital, London SE17EH, UK
| | - John Koerner
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Michael Accardi
- CiToxLAB North America, 445, Armand-Frappier Boul, Laval H7V 4B3, QC, Canada
| | - Simon Authier
- CiToxLAB North America, 445, Armand-Frappier Boul, Laval H7V 4B3, QC, Canada.
| |
Collapse
|
15
|
Wang C, Wang LL, Zhang C, Cao ZZ, Luo AT, Zhang PH, Fan XR, Ma JH. Tolterodine reduces veratridine-augmented late I Na, reverse-I NCX and early afterdepolarizations in isolated rabbit ventricular myocytes. Acta Pharmacol Sin 2016; 37:1432-1441. [PMID: 27569391 DOI: 10.1038/aps.2016.76] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/12/2016] [Indexed: 12/19/2022]
Abstract
AIM The augmentation of late sodium current (INa.L) not only causes intracellular Na+ accumulation, which results in intracellular Ca2+ overload via the reverse mode of the Na+/Ca2+ exchange current (reverse-INCX), but also prolongs APD and induces early afterdepolarizations (EAD), which can lead to arrhythmia and cardiac dysfunction. Thus, the inhibition of INa.L is considered to be a potential way for therapeutic intervention in ischemia and heart failure. In this study we investigated the effects of tolterodine (Tol), a competitive muscarinic receptor antagonist, on normal and veratridine (Ver)-augmented INa.L, reverse-INCX and APD in isolated rabbit ventricular myocytes, which might contribute to its cardioprotective activity. METHODS Rabbit ventricular myocytes were prepared. The INa.L and reverse-INCX were recorded in voltage clamp mode, whereas action potentials and Ver-induced early afterdepolarizations (EADs) were recorded in current clamp mode. Drugs were applied via superfusion. RESULTS Tol (3-120 nmol/L) concentration-dependently inhibited the normal and Ver-augmented INa.L with IC50 values of 32.08 nmol/L and 42.47 nmol/L, respectively. Atropine (100 μmol/L) did not affect the inhibitory effects of Tol (30 nmol/L) on Ver-augmented INa.L. In contrast, much high concentrations of Tol was needed to inhibit the transient sodium current (INa.T) with an IC50 value of 183.03 μmol/L. In addition, Tol (30 nmol/L) significantly shifted the inactivation curve of INa.T toward a more depolarizing membrane potential without affecting its activation characteristics. Moreover, Tol (30 nmol/L) significantly decreased Ver-augmented reverse-INCX. Tol (30 nmol/L) increased the action potential duration (APD) by 16% under the basal conditions. Ver (20 μmol/L) considerably extended the APD and evoked EADs in 18/24 cells (75%). In the presence of Ver, Tol (30 nmol/L) markedly decreased the APD and eliminated EADs (0/24 cells). CONCLUSION Tol inhibits normal and Ver-augmented INaL and decreases Ver-augmented reverse-INCX. In addition, Tol reverses the prolongation of the APD and eliminates the EADs induced by Ver, thus prevents Ver-induced arrhythmia.
Collapse
|
16
|
Disturbances of cardiac wavelength and repolarization precede Torsade de Pointes and ventricular fibrillation in Langendorff perfused rabbit hearts. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:3-10. [DOI: 10.1016/j.pbiomolbio.2016.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/04/2016] [Accepted: 03/10/2016] [Indexed: 11/20/2022]
|
17
|
Wiśniowska B, Mendyk A, Szlęk J, Kołaczkowski M, Polak S. Enhanced QSAR models for drug-triggered inhibition of the main cardiac ion currents. J Appl Toxicol 2015; 35:1030-9. [DOI: 10.1002/jat.3095] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/27/2014] [Accepted: 10/31/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Barbara Wiśniowska
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Medical College; Jagiellonian University; Krakow Poland
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical College; Jagiellonian University; Krakow Poland
| | - Jakub Szlęk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical College; Jagiellonian University; Krakow Poland
| | - Michał Kołaczkowski
- Building and Structure Physics Division, Institute of Building Materials and Structures, Faculty of Civil Engineering; Cracow University of Technology; Krakow Poland
| | - Sebastian Polak
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Medical College; Jagiellonian University; Krakow Poland
| |
Collapse
|
18
|
Clements M, Thomas N. High-throughput multi-parameter profiling of electrophysiological drug effects in human embryonic stem cell derived cardiomyocytes using multi-electrode arrays. Toxicol Sci 2014; 140:445-61. [PMID: 24812011 DOI: 10.1093/toxsci/kfu084] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Human stem cell derived cardiomyocytes (hESC-CM) provide a potential model for development of improved assays for pre-clinical predictive drug safety screening. We have used multi-electrode array (MEA) analysis of hESC-CM to generate multi-parameter data to profile drug impact on cardiomyocyte electrophysiology using a panel of 21 compounds active against key cardiac ion channels. Our study is the first to apply multi-parameter phenotypic profiling and clustering techniques commonly used for high-content imaging and microarray data to the analysis of electrophysiology data obtained by MEA analysis. Our data show good correlations with previous studies in stem cell derived cardiomyocytes and demonstrate improved specificity in compound risk assignment over convention single-parametric approaches. These analyses indicate great potential for multi-parameter MEA data acquired from hESC-CM to enable drug electrophysiological liabilities to be assessed in pre-clinical cardiotoxicity assays, facilitating informed decision making and liability management at the optimum point in drug development.
Collapse
Affiliation(s)
| | - Nick Thomas
- GE Healthcare Life Sciences, Cardiff CF14 7YT, UK
| |
Collapse
|
19
|
Coi A, Bianucci AM. Combining structure- and ligand-based approaches for studies of interactions between different conformations of the hERG K+ channel pore and known ligands. J Mol Graph Model 2013; 46:93-104. [PMID: 24185260 DOI: 10.1016/j.jmgm.2013.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 11/13/2022]
Abstract
Drug-induced insurgence of cardiotoxic effects signaled by the prolongation of the QT interval in the electrocardiogram, has the potential to evolve into a characteristic arrhythmic event named Torsade de Pointes (TdP). Although several different mechanisms can theoretically lead to prolonged QT interval, most of drugs showing this side effect, prolong the cardiac repolarization time through the inhibition of the rapid component of the delayed repolarizing current (IKr) which in humans is carried by a K(+) channel protein encoded by hERG. In this study, four 3D-models, representing different conformational states of hERG K(+) channel, were built by a homology-based technique. A dataset of 59 compounds was collected from the literature and rationally selected according to the availability of IC50 values derived from whole-cell patch clamp performed at 37 °C on HEK cells. Molecular docking was carried out on each one of the four conformations of the channel, hundreds of docking-based molecular descriptors were obtained and used, together with other 2D and 3D molecular descriptors, to develop QSAR models. The statistical parameters describing the accordance between predicted and experimental data and the interpretation of the QSAR models enabled us to assess the reliability of the four 3D-models of the channel pore, thus allowing to look in more depth at binding modes and key features of the interactions occurring between the hERG K(+) channel and ligands endowed of blocking activity.
Collapse
Affiliation(s)
- Alessio Coi
- INSTM (Consorzio National Interuniversity Consortium of Materials Science and Technology), Via Giusti 9, 50121 Firenze, Italy
| | | |
Collapse
|
20
|
Jonsson MK, van Veen TA, Goumans MJ, Vos MA, Duker G, Sartipy P. Improvement of cardiac efficacy and safety models in drug discovery by the use of stem cell-derived cardiomyocytes. Expert Opin Drug Discov 2013; 4:357-72. [PMID: 23485039 DOI: 10.1517/17460440902794912] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The pharmaceutical industry suffers from high attrition rates during late phases of drug development. Improved models for early evaluation of drug efficacy and safety are needed to address this problem. Recent developments have illustrated that human stem cell-derived cardiomyocytes are attractive for using as a model system for different cardiac diseases and as a model for screening, safety pharmacology and toxicology. OBJECTIVE In this review, we discuss contemporary drug discovery models and their characteristics for cardiac efficacy testing and safety assessment. Additionally, we evaluate various sources of stem cells and how these cells could potentially improve early screening and safety models. CONCLUSION We conclude that human stem cells offer a source of physiologically relevant cells that show great potential as a future tool in cardiac drug discovery. However, some technical challenges related to cell differentiation and production and also to validation of improved platforms remain and must be overcome before successful application can become a reality.
Collapse
Affiliation(s)
- Malin Kb Jonsson
- University Medical Center Utrecht, Division Heart & Lungs, Department of Medical Physiology, Yalelaan 50, 3584 CM Utrecht, The Netherlands +46 31 7065571 ; +46 31 7763766 ;
| | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Zhang W, Roederer MW, Chen WQ, Fan L, Zhou HH. Pharmacogenetics of drugs withdrawn from the market. Pharmacogenomics 2012; 13:223-31. [PMID: 22256871 DOI: 10.2217/pgs.11.137] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The safety and efficacy of candidate compounds are critical factors during the development of drugs, and most drugs have been withdrawn from the market owing to severe adverse reactions. Individuals/populations with different genetic backgrounds may show significant differences in drug metabolism and efficacy, which can sometimes manifest as severe adverse drug reactions. With an emphasis on the mechanisms underlying abnormal drug effects caused by genetic mutations, pharmacogenetic studies may enhance the safety and effectiveness of drug use, provide more comprehensive delineations of the scope of usage, and change the fates of drugs withdrawn from the market.
Collapse
Affiliation(s)
- Wei Zhang
- Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, Hunan 410078, China
| | | | | | | | | |
Collapse
|
23
|
Guo X, Gao X, Wang Y, Peng L, Zhu Y, Wang S. IKs protects from ventricular arrhythmia during cardiac ischemia and reperfusion in rabbits by preserving the repolarization reserve. PLoS One 2012; 7:e31545. [PMID: 22384037 PMCID: PMC3285162 DOI: 10.1371/journal.pone.0031545] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/10/2012] [Indexed: 11/26/2022] Open
Abstract
Introduction The function of the repolarization reserve in the prevention of ventricular arrhythmias during cardiac ischemia/reperfusion and the impact of ischemia on slowly activated delayed rectifier potassium current (IKs) channel subunit expression are not well understood. Methods and Results The responses of monophasic action potential duration (MAPD) prolongation and triangulation were investigated following an L-768,673-induced blockade of IKs with or without ischemia/reperfusion in a rabbit model of left circumflex coronary artery occlusion/reperfusion. Ischemia/reperfusion and IKs blockade were found to significantly induce MAPD90 prolongation and increase triangulation at the epicardial zone at 45 min, 60 min, and 75 min after reperfusion, accompanied with an increase in premature ventricular beats (PVBs) during the same period. Additionally, IKs channel subunit expression was examined following transient ischemia or permanent infarction and changes in monophasic action potential (MAP) waveforms challenged by β-adrenergic stimulation were evaluated using a rabbit model of transient or chronic cardiac ischemia. The epicardial MAP in the peri-infarct zone of hearts subjected to infarction for 2 days exhibited increased triangulation under adrenergic stimulation. KCNQ1 protein, the α subunit of the IKs channel, was downregulated in the same group. Both findings were consistent with an increased incidence of PVBs. Conclusion Blockade of IKs caused MAP triangulation, which precipitated ventricular arrhythmias. Chronic ischemia increased the incidence of ventricular arrhythmias under adrenergic stimulation and was associated with increased MAP triangulation of the peri-infarct zone. Downregulation of KCNQ1 protein may be the underlying cause of these changes.
Collapse
Affiliation(s)
- Xiaogang Guo
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiuren Gao
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail: (X. Gao); (SW)
| | - Yesong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Longyun Peng
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yingying Zhu
- Intensive Care Unit, Central Hospital, Tai'an, China
| | - Shenming Wang
- Department of Vascular Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail: (X. Gao); (SW)
| |
Collapse
|
24
|
Möller C. Keeping the rhythm: hERG and beyond in cardiovascular safety pharmacology. Expert Rev Clin Pharmacol 2012; 3:321-9. [PMID: 22111613 DOI: 10.1586/ecp.10.24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Following its involvement in life-threatening cardiac arrhythmias, the catchword 'hERG' has become infamous in the drug discovery community. The blockade of the ion channel coded by the human ether-á-go-go-related gene (hERG) has been correlated to a prolongation of the QT interval in the ECG, which again is correlated to a potential risk of a life-threatening polymorphic ventricular tachycardia - torsades de pointes (TdP). Therefore, in vitro investigations for blockade of this ion channel have become a standard, starting early in most drug discovery projects and often accompanying the whole project; at some stage, scientists in many medicinal chemistry programs have to deal with hERG channel liabilities. Data for the compound effects on hERG channel activity are generally part of the safety pharmacology risk assessment in regulatory submissions and, at this stage, are ideally conducted in compliance with good laboratory practice. With the withdrawal of clobutinol from the market, owing to its perceived risk of introducing TdP, the importance of the hERG channel has very recently been reconfirmed. Despite being of such importance for drug discovery, the relevance and impact of hERG data are sometimes misinterpreted, as there are drugs that block the hERG-coded ion channel but do not cause TdP, and drugs that cause TdP but do not block the hERG channel. This review aims to provide an overview of TdP, including the cardiac action potential and the ion channels involved in it, as well as on the relevance and interpretation of in vitro hERG channel data and their impact for drug discovery projects. Finally, novel cardiac safety test systems beyond in vitro hERG channel screening are discussed.
Collapse
Affiliation(s)
- Clemens Möller
- Evotec AG, Discovery Alliances, Schnackenburgallee 114, Hamburg, Germany.
| |
Collapse
|
25
|
Andersson KE, Campeau L, Olshansky B. Cardiac effects of muscarinic receptor antagonists used for voiding dysfunction. Br J Clin Pharmacol 2012; 72:186-96. [PMID: 21595741 DOI: 10.1111/j.1365-2125.2010.03813.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Antimuscarinic agents are the main drugs used to treat patients with the overactive bladder (OAB) syndrome, defined as urgency, with or without urgency incontinence, usually with increased daytime frequency and nocturia. Since the treatment is not curative and since OAB is a chronic disease, treatment may be life-long. Antimuscarinics are generally considered to be ‘safe’ drugs, but among the more serious concerns related to their use is the risk of cardiac adverse effects, particularly increases in heart rate (HR) and QT prolongation and induction of polymorphic ventricular tachycardia (torsade de pointes). An elevated resting HR has been linked to overall increased morbidity and mortality, particularly in patients with cardiovascular diseases. QT prolongation and its consequences are not related to blockade of muscarinic receptors, but rather linked to inhibition of the hERG potassium channel in the heart. However, experience with terodiline, an antimuscarinic drug causing torsade de pointes in patients, has placed the whole drug class under scrutiny. The potential of the different antimuscarinic agents to increase HR and/or prolong the QT time has not been extensively explored for all agents in clinical use. Differences between drugs cannot be excluded, but risk assessments based on available evidence are not possible.
Collapse
Affiliation(s)
- Karl-Erik Andersson
- Wake Forest Institute for Regenerative Medicine,Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157, USA.
| | | | | |
Collapse
|
26
|
Möller C, Witchel H. Automated electrophysiology makes the pace for cardiac ion channel safety screening. Front Pharmacol 2011; 2:73. [PMID: 22131974 PMCID: PMC3222877 DOI: 10.3389/fphar.2011.00073] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 11/06/2011] [Indexed: 01/14/2023] Open
Abstract
The field of automated patch-clamp electrophysiology has emerged from the tension between the pharmaceutical industry’s need for high-throughput compound screening versus its need to be conservative due to regulatory requirements. On the one hand, hERG channel screening was increasingly requested for new chemical entities, as the correlation between blockade of the ion channel coded by hERG and torsades de pointes cardiac arrhythmia gained increasing attention. On the other hand, manual patch-clamping, typically quoted as the “gold-standard” for understanding ion channel function and modulation, was far too slow (and, consequently, too expensive) for keeping pace with the numbers of compounds submitted for hERG channel investigations from pharmaceutical R&D departments. In consequence it became more common for some pharmaceutical companies to outsource safety pharmacological investigations, with a focus on hERG channel interactions. This outsourcing has allowed those pharmaceutical companies to build up operational flexibility and greater independence from internal resources, and allowed them to obtain access to the latest technological developments that emerged in automated patch-clamp electrophysiology – much of which arose in specialized biotech companies. Assays for nearly all major cardiac ion channels are now available by automated patch-clamping using heterologous expression systems, and recently, automated action potential recordings from stem-cell derived cardiomyocytes have been demonstrated. Today, most of the large pharmaceutical companies have acquired automated electrophysiology robots and have established various automated cardiac ion channel safety screening assays on these, in addition to outsourcing parts of their needs for safety screening.
Collapse
Affiliation(s)
- Clemens Möller
- InViTe Research Institute, Albstadt-Sigmaringen University Sigmaringen, Germany
| | | |
Collapse
|
27
|
Drug-Induced QTC Prolongation Dangerously Underestimates Proarrhythmic Potential: Lessons From Terfenadine. J Cardiovasc Pharmacol 2011; 57:589-97. [DOI: 10.1097/fjc.0b013e3182135e91] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Grilo LS, Carrupt PA, Abriel H. Stereoselective Inhibition of the hERG1 Potassium Channel. Front Pharmacol 2010; 1:137. [PMID: 21833176 PMCID: PMC3153011 DOI: 10.3389/fphar.2010.00137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 11/03/2010] [Indexed: 12/11/2022] Open
Abstract
A growing number of drugs have been shown to prolong cardiac repolarization, predisposing individuals to life-threatening ventricular arrhythmias known as Torsades de Pointes. Most of these drugs are known to interfere with the human ether à-gogo related gene 1 (hERG1) channel, whose current is one of the main determinants of action potential duration. Prolonged repolarization is reflected by lengthening of the QT interval of the electrocardiogram, as seen in the suitably named drug-induced long QT syndrome. Chirality (presence of an asymmetric atom) is a common feature of marketed drugs, which can therefore exist in at least two enantiomers with distinct three-dimensional structures and possibly distinct biological fates. Both the pharmacokinetic and pharmacodynamic properties can differ between enantiomers, as well as also between individuals who take the drug due to metabolic polymorphisms. Despite the large number of reports about drugs reducing the hERG1 current, potential stereoselective contributions have only been scarcely investigated. In this review, we present a non-exhaustive list of clinically important molecules which display chiral toxicity that may be related to hERG1-blocking properties. We particularly focus on methadone cardiotoxicity, which illustrates the importance of the stereoselective effect of drug chirality as well as individual variations resulting from pharmacogenetics. Furthermore, it seems likely that, during drug development, consideration of chirality in lead optimization and systematic assessment of the hERG1 current block with all enantiomers could contribute to the reduction of the risk of drug-induced LQTS.
Collapse
Affiliation(s)
- Liliana Sintra Grilo
- School of Pharmaceutical Sciences, University of Geneva, University of LausanneGeneva, Switzerland
- Department of Clinical Research, University of BernBern, Switzerland
| | - Pierre-Alain Carrupt
- School of Pharmaceutical Sciences, University of Geneva, University of LausanneGeneva, Switzerland
| | - Hugues Abriel
- Department of Clinical Research, University of BernBern, Switzerland
| |
Collapse
|
29
|
Abstract
The myocardium is the target of toxicity for a number of drugs. Based on pharmacological evidence, cellular targets for drugs that produce adverse reactions can be categorized into a number of sites that include the cell membrane-bound receptors, the second messenger system, ionic channels, ionic pumps, and intracellular organelles. Additionally, interference with the neuronal input to the heart can also present a global site where adverse drug effects can manifest themselves. Simply, a drug can interfere with the normal cardiac action by modifying an ion channel function at the plasma membrane level leading to abnormal repolarization and/or depolarization of the heart cells thus precipitating a disruption in the rhythm and causing dysfunction in contractions and/or relaxations of myocytes. It is now recognized that toxic actions of drugs against the myocardium are not exclusive to the antitumor or the so-called cardiac drugs, and many other drugs with diverse chemical structures, such as antimicrobial, antimalarial, antihistamines, psychiatric, and gastrointestinal medications, seem to be capable of severely compromising myocardium function. At present, great emphasis in terms of drug safety is being placed on the interaction of many classes of drugs with the hERG potassium channel in cardiac tissue. The interest in the latter channel stems from the simplified view that drugs that block the hERG potassium channel cause prolongation of the QT interval, and this can cause life-threatening cardiac arrhythmias. Based on the evidence in the current literature, this concept does not seem to always hold true.
Collapse
Affiliation(s)
- Reza Tabrizchi
- Division of BioMedical Sciences, Memorial University of Newfoundland, Health Sciences Centre, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
30
|
Polak S, Wiśniowska B, Brandys J. Collation, assessment and analysis of literature in vitro data on hERG receptor blocking potency for subsequent modeling of drugs' cardiotoxic properties. J Appl Toxicol 2009; 29:183-206. [PMID: 18988205 DOI: 10.1002/jat.1395] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The assessment of the torsadogenic potency of a new chemical entity is a crucial issue during lead optimization and the drug development process. It is required by the regulatory agencies during the registration process. In recent years, there has been a considerable interest in developing in silico models, which allow prediction of drug-hERG channel interaction at the early stage of a drug development process. The main mechanism underlying an acquired QT syndrome and a potentially fatal arrhythmia called torsades de pointes is the inhibition of potassium channel encoded by hERG (the human ether-a-go-go-related gene). The concentration producing half-maximal block of the hERG potassium current (IC(50)) is a surrogate marker for proarrhythmic properties of compounds and is considered a test for cardiac safety of drugs or drug candidates. The IC(50) values, obtained from data collected during electrophysiological studies, are highly dependent on experimental conditions (i.e. model, temperature, voltage protocol). For the in silico models' quality and performance, the data quality and consistency is a crucial issue. Therefore the main objective of our work was to collect and assess the hERG IC(50) data available in accessible scientific literature to provide a high-quality data set for further studies.
Collapse
Affiliation(s)
- Sebastian Polak
- Toxicology Department, Faculty of Pharmacy, Medical Collage, Jagiellonian University, Poland.
| | | | | |
Collapse
|
31
|
Hondeghem LM. Use and abuse of QT and TRIaD in cardiac safety research: Importance of study design and conduct. Eur J Pharmacol 2008; 584:1-9. [DOI: 10.1016/j.ejphar.2008.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2007] [Revised: 12/19/2007] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
|
32
|
Christ T, Wettwer E, Wuest M, Braeter M, Donath F, Champeroux P, Richard S, Ravens U. Electrophysiological profile of propiverine--relationship to cardiac risk. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:431-40. [PMID: 18092154 DOI: 10.1007/s00210-007-0231-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2007] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
Abstract
Drugs that prolong the QT interval by blocking human ether-a-go-go (HERG) channels may enhance the risk of ventricular arrhythmia. The spasmolytic drug propiverine is widely used for the therapy of overactive bladder (OAB). Here, we have investigated the effects of propiverine on cardiac ion channels and action potentials as well as on contractile properties of cardiac tissue, in order to estimate its cardiac safety profile, because other drugs used in this indication had to be withdrawn due to safety reasons. Whole-cell patch clamp technique was used to record the following cardiac ion currents: rapidly and slowly activating delayed rectifier K+ current (I(Kr), I(Ks)), ultra rapidly activating delayed rectifier K+ current (I(Kur)), inwardly rectifying K+ current I(K1), transient outward K+ current (I(to)), and L-type Ca2+ current (I(Ca,L)). Action potentials in cardiac tissue biopsies were recorded with conventional microelectrodes. The torsade de pointes screening assay (TDPScreen) was used for drug scoring. Propiverine blocked in a concentration-dependent manner HERG channels expressed in HEK293 cells, as well as native I(Kr) current in ventricular myocytes of guinea pig (IC50 values: 10 microM and 1.8 microM respectively). At high concentrations (100 microM), propiverine suppressed I(Ks). I(K1) and the transient outward current I(to) and I(Kur) were not affected. In guinea-pig ventricular and human atrial myocytes, propiverine also blocked I(Ca,L) (IC50 values: 34.7 microM and 41.7 microM, respectively) and reduced force of contraction. Despite block of I(Kr), action potential duration was not prolonged in guinea-pig and human ventricular tissue, but decreased progressively until excitation failed altogether. Similar effects were observed in dog Purkinje fibers. Propiverine obtained a low score in the TDPScreen. In conclusion, in vitro and in vivo studies of propiverine do not provide evidence for an enhanced cardiovascular safety risk. We propose that lack of torsadogenic risk of propiverine is related to enhancement of repolarization reserve by block of I(Ca,L).
Collapse
Affiliation(s)
- Torsten Christ
- Department of Pharmacology and Toxicology, Medical Faculty, Dresden University of Technology, Fetscherstrasse 74, 01307 Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|