1
|
Villadangos L, Serrador JM. Subcellular Localization Guides eNOS Function. Int J Mol Sci 2024; 25:13402. [PMID: 39769167 PMCID: PMC11678294 DOI: 10.3390/ijms252413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nitric oxide synthases (NOS) are enzymes responsible for the cellular production of nitric oxide (NO), a highly reactive signaling molecule involved in important physiological and pathological processes. Given its remarkable capacity to diffuse across membranes, NO cannot be stored inside cells and thus requires multiple controlling mechanisms to regulate its biological functions. In particular, the regulation of endothelial nitric oxide synthase (eNOS) activity has been shown to be crucial in vascular homeostasis, primarily affecting cardiovascular disease and other pathophysiological processes of importance for human health. Among other factors, the subcellular localization of eNOS plays an important role in regulating its enzymatic activity and the bioavailability of NO. The aim of this review is to summarize pioneering studies and more recent publications, unveiling some of the factors that influence the subcellular compartmentalization of eNOS and discussing their functional implications in health and disease.
Collapse
Affiliation(s)
| | - Juan M. Serrador
- Interactions with the Environment Program, Immune System Development and Function Unit, Centro de Biología Molecular Severo Ochoa (CBM), Consejo Superior de Investigaciones Científicas (CSIC)—Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| |
Collapse
|
2
|
Russo A, Patanè GT, Putaggio S, Lombardo GE, Ficarra S, Barreca D, Giunta E, Tellone E, Laganà G. Mechanisms Underlying the Effects of Chloroquine on Red Blood Cells Metabolism. Int J Mol Sci 2024; 25:6424. [PMID: 38928131 PMCID: PMC11203553 DOI: 10.3390/ijms25126424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Chloroquine (CQ) is a 4-aminoquinoline derivative largely employed in the management of malaria. CQ treatment exploits the drug's ability to cross the erythrocyte membrane, inhibiting heme polymerase in malarial trophozoites. Accumulation of CQ prevents the conversion of heme to hemozoin, causing its toxic buildup, thus blocking the survival of Plasmodium parasites. Recently, it has been reported that CQ is able to exert antiviral properties, mainly against HIV and SARS-CoV-2. This renewed interest in CQ treatment has led to the development of new studies which aim to explore its side effects and long-term outcome. Our study focuses on the effects of CQ in non-parasitized red blood cells (RBCs), investigating hemoglobin (Hb) functionality, the anion exchanger 1 (AE1) or band 3 protein, caspase 3 and protein tyrosine phosphatase 1B (PTP-1B) activity, intra and extracellular ATP levels, and the oxidative state of RBCs. Interestingly, CQ influences the functionality of both Hb and AE1, the main RBC proteins, affecting the properties of Hb oxygen affinity by shifting the conformational structure of the molecule towards the R state. The influence of CQ on AE1 flux leads to a rate variation of anion exchange, which begins at a concentration of 2.5 μM and reaches its maximum effect at 20 µM. Moreover, a significant decrease in intra and extracellular ATP levels was observed in RBCs pre-treated with 10 µM CQ vs. erythrocytes under normal conditions. This effect is related to the PTP-1B activity which is reduced in RBCs incubated with CQ. Despite these metabolic alterations to RBCs caused by exposure to CQ, no signs of variations in oxidative state or caspase 3 activation were recorded. Our results highlight the antithetical effects of CQ on the functionality and metabolism of RBCs, and encourage the development of new research to better understand the multiple potentiality of the drug.
Collapse
Affiliation(s)
| | - Giuseppe Tancredi Patanè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | | | - Silvana Ficarra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Elena Giunta
- Virology and Microbiology AOOR Papardo-Piemonte, 98166 Messina, Italy;
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| | - Giuseppina Laganà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (G.T.P.); (S.P.); (S.F.); (E.T.); (G.L.)
| |
Collapse
|
3
|
Tain YL, Hsu CN. The NOS/NO System in Renal Programming and Reprogramming. Antioxidants (Basel) 2023; 12:1629. [PMID: 37627624 PMCID: PMC10451971 DOI: 10.3390/antiox12081629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Nitric oxide (NO) is a gaseous signaling molecule with renoprotective properties. NO can be produced in NO synthase (NOS)-dependent or -independent manners. NO deficiency plays a decisive role in chronic kidney disease (CKD). Kidney development can be affected in response to adverse intrauterine conditions that induce renal programming, thereby raising the risk of developing CKD in adulthood. Conversely, detrimental programming processes could be postponed or halted prior to the onset of CKD by early treatments, namely reprogramming. The current review provides an overview of the NOS/NO research performed in the context of renal programming and reprogramming. NO deficiency has been increasingly found to interact with the different mechanisms behind renal programming, such as oxidative stress, aberrant function of the renin-angiotensin system, disturbed nutrient-sensing mechanisms, dysregulated hydrogen sulfide signaling, and gut microbiota dysbiosis. The supplementation of NOS substrates, the inhibition of asymmetric dimethylarginine (ADMA), the administration of NO donors, and the enhancement of NOS during gestation and lactation have shown beneficial effects against renal programming in preclinical studies. Although human data on maternal NO deficiency and offspring kidney disease are scarce, experimental data indicate that targeting NO could be a promising reprogramming strategy in the setting of renal programming.
Collapse
Affiliation(s)
- You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
4
|
Tain YL, Yang HW, Hou CY, Chang-Chien GP, Lin S, Hsu CN. Anti-Hypertensive Property of an NO Nanoparticle in an Adenine-Induced Chronic Kidney Disease Young Rat Model. Antioxidants (Basel) 2023; 12:513. [PMID: 36830071 PMCID: PMC9951902 DOI: 10.3390/antiox12020513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Hypertension is the most common complication of chronic kidney disease (CKD) in children but is still poorly controlled. Nitric oxide (NO) deficiency plays a pivotal role in CKD and hypertension. NO is known to have health benefits, while NO typically has a short half-life and is not specifically targeted. In this study, we used a pediatric CKD model, which was induced in young rats by feeding them 0.25% adenine. We investigated two different NO donors, namely S-nitrosoglutathione (GSNO) and diethylenetriamine/NO adduct (DETA NONOate) via intraperitoneal injection at 10 mg/kg/day daily for 3 weeks. GSNO was delivered by Cu2+-doped zeolitic imidazolate framework (Cu/ZIF-8) nanoparticles to generate NO. As a result, we observed Cu/ZIF-8 nanoparticles were successfully loaded with GSNO and were able to release NO. Young rats fed with adenine displayed kidney dysfunction and hypertension at 9 weeks of age, which were prevented by GSNO-loaded nanoparticle or DETA NONOate treatment. GSNO-loaded nanoparticles reduced CKD-induced hypertension, which was related to an enhanced endogenous NO-generating system, reduced renal oxidative stress, and downregulated several components belonging to the classic renin-angiotensin (RAS) system. Our results cast new light on targeting NO delivery through the use of nanoparticles aiming to improve child-focused outcomes related to CKD worthy of clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| | - Hung-Wei Yang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan City 701, Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Guo-Ping Chang-Chien
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Sufan Lin
- Center for Environmental Toxin and Emerging-Contaminant Research, Cheng Shiu University, Kaohsiung 833, Taiwan
- Institute of Environmental Toxin and Emerging-Contaminant, Cheng Shiu University, Kaohsiung 833, Taiwan
- Super Micro Mass Research and Technology Center, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Xu Q, Zhuo K, Cai R, Su X, Zhang L, Liu Y, Zhu L, Ren F, Zhou MS. Activation of Yes-Associated Protein/PDZ-Binding Motif Pathway Contributes to Endothelial Dysfunction and Vascular Inflammation in AngiotensinII Hypertension. Front Physiol 2021; 12:732084. [PMID: 34650444 PMCID: PMC8505766 DOI: 10.3389/fphys.2021.732084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 01/20/2023] Open
Abstract
Yes-associated protein (YAP) and its associated coactivator of PDZ-binding motif (TAZ) are co-transcriptional regulators and down effectors of the Hippo signaling pathway. Recent studies have shown that the Hippo/YAP signaling pathway may play a role in mediating vascular homeostasis. This study investigated the role of YAP/TAZ in endothelial dysfunction and vascular inflammation in angiotensin (Ang)II hypertensive mice. The infusion of AngII (1.1 mg/kg/day by mini-pump) for 3 weeks induced the activation of YAP/TAZ, manifested by decreased cytosolic phosphor-YAP and phosphor-TAZ, and increased YAP/TAZ nuclear translocation, which were prevented by YAP/TAZ inhibitor verteporfin. AngII significantly increased systolic blood pressure (SBP), macrophage infiltration, and expressions of proinflammatory cytokines, and impaired endothelial function in the aorta of the mice. Treatment with verteporfin improved endothelial function and reduced vascular inflammation with a mild reduction in SBP. AngII also induced YAP/TAZ activation in human umbilical vein endothelial cells in vitro, which were prevented by LB-100, an inhibitor of protein phosphatase 2A (PP2A, a major dephosphorylase). Treatment with LB-100 reversed AngII-induced proinflammatory cytokine expression and impairment of phosphor-eNOS expression in vitro. Our results suggest that AngII induces YAP/TAZ activation via PP2A-dependent dephosphorylation, which may contribute to the impairment of endothelial function and the induction of vascular inflammation in hypertension. YAP/TAZ may be a new target for hypertensive vascular injury.
Collapse
Affiliation(s)
- Qian Xu
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Kunping Zhuo
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Ruiping Cai
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Xiaomin Su
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Lu Zhang
- Department of Physiology, Shenyang Medical College, Shenyang, China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Lin Zhu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, China
| | - Fu Ren
- Department of Anatomy, Shenyang Medical College, Shenyang, China
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical College, Shenyang, China
| |
Collapse
|
6
|
Hsu CN, Tain YL. Targeting the Renin-Angiotensin-Aldosterone System to Prevent Hypertension and Kidney Disease of Developmental Origins. Int J Mol Sci 2021; 22:ijms22052298. [PMID: 33669059 PMCID: PMC7956566 DOI: 10.3390/ijms22052298] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/21/2021] [Accepted: 02/23/2021] [Indexed: 02/07/2023] Open
Abstract
The renin-angiotensin-aldosterone system (RAAS) is implicated in hypertension and kidney disease. The developing kidney can be programmed by various early-life insults by so-called renal programming, resulting in hypertension and kidney disease in adulthood. This theory is known as developmental origins of health and disease (DOHaD). Conversely, early RAAS-based interventions could reverse program processes to prevent a disease from occurring by so-called reprogramming. In the current review, we mainly summarize (1) the current knowledge on the RAAS implicated in renal programming; (2) current evidence supporting the connections between the aberrant RAAS and other mechanisms behind renal programming, such as oxidative stress, nitric oxide deficiency, epigenetic regulation, and gut microbiota dysbiosis; and (3) an overview of how RAAS-based reprogramming interventions may prevent hypertension and kidney disease of developmental origins. To accelerate the transition of RAAS-based interventions for prevention of hypertension and kidney disease, an extended comprehension of the RAAS implicated in renal programming is needed, as well as a greater focus on further clinical translation.
Collapse
Affiliation(s)
- Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Correspondence: ; Tel.: +886-975-056-995; Fax: +886-7733-8009
| |
Collapse
|
7
|
Ma X, Zhang J, Wu Z, Wang X. Chicoric acid attenuates hyperglycemia-induced endothelial dysfunction through AMPK-dependent inhibition of oxidative/nitrative stresses. J Recept Signal Transduct Res 2020; 41:378-392. [PMID: 32900249 DOI: 10.1080/10799893.2020.1817076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Endothelial dysfunction is a driving force during the development and progression of cardiovascular complications in diabetes. Targeting endothelial injury may be an attractive avenue for the management of diabetic vascular disorders. Chicoric acid is reported to confer antioxidant and anti-inflammatory properties in various diseases including diabetes. However, the role and mechanism of chicoric acid in hyperglycemia-induced endothelial damage are not well understood. METHODS In the present study, human umbilical vein endothelial cells (HUVECs) were incubated with high glucose/high fat (HG + HF) to induce endothelial cell injury. RESULTS We found that exposure of HUVECs to HG + HF medium promoted the release of cytochrome c (cytc) from mitochondrion into the cytoplasm, stimulated the cleavage of caspase-3 and poly ADP-ribose-polymerase (PARP), then inducing cell apoptosis, the effects that were prevented by administration of chicoric acid. Besides, we found that chicoric acid diminished HG + HF-induced phosphorylation and degradation of IκBα, and subsequent p65 NFκB nuclear translocation, thereby contributing to its anti-inflammatory effects in HUVECs. We also confirmed that chicoric acid mitigated oxidative/nitrative stresses under HG + HF conditions. Studies aimed at exploring the underlying mechanisms found that chicoric acid activated the AMP-activated protein kinase (AMPK) signaling pathway to attenuate HG + HF-triggered injury in HUVECs as AMPK inhibitor Compound C or silencing of AMPKα1 abolished the beneficial effects of chicoric acid in HUVECs. CONCLUSION Collectively, chicoric acid is likely protected against diabetes-induced endothelial dysfunction by activation of the AMPK signaling pathway. Chicoric acid could be a novel candidate for the treatment of the diabetes-associated vascular endothelial injury.
Collapse
Affiliation(s)
- Xiaojuan Ma
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Junli Zhang
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Zejie Wu
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Xia Wang
- School of Medical Laboratory, Sanquan College of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Tehzeeb J, Manzoor A, Ahmed MM. Is Stem Cell Therapy an Answer to Heart Failure: A Literature Search. Cureus 2019; 11:e5959. [PMID: 31803548 PMCID: PMC6874291 DOI: 10.7759/cureus.5959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heart is one of the most industrious organs in the human body. It starts beating in the first few weeks of embryonic life and keeps pumping blood till death. This organ can host a range of diseases as well. Some can hamper the vasculature, while others can affect its electrical activity, the heart valves, etc. All these conditions can lead to end-stage failure where it can no longer meet the requirements of the body’s milieu. This imbalance between supply and demand leads to an array of symptoms. Medical management can reduce these clinical effects and possibly prolong the life expectancy in such patients. However, prescription medications can also have their own adverse effects. This necessitates that each line of treatment should be assessed on a risk vs benefit basis. The conventional approach has been to try and slow down the progression of heart failure (HF). However, the inception of stem cells in the management of HF has the potential for reversal of this pathology. Keeping this in view, many studies and trials are under process. To turn the clock back on the HF, before complications set in or get out of control, is the main focus of the time. This article attempts to evaluate various studies about stem cell therapy (SCT) and highlight the important aspects of this novel modality in changing patients' lives.
Collapse
Affiliation(s)
- Javaria Tehzeeb
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| | - Anam Manzoor
- Internal Medicine, Mayo Hospital, King Edward Medical University, Lahore, PAK
| | - Munis M Ahmed
- Internal Medicine, St Mary Mercy Livonia Hospital, Livonia, USA
| |
Collapse
|
9
|
Plangar AF, Anaeigoudari A, KhajaviRad A, Shafei MN. Beneficial Cardiovascular Effects of Hydroalcoholic Extract from Crocus Sativus in Hypertension Induced by Angiotensin II. J Pharmacopuncture 2019; 22:95-101. [PMID: 31338249 PMCID: PMC6645345 DOI: 10.3831/kpi.2019.22.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/13/2019] [Accepted: 05/20/2019] [Indexed: 12/15/2022] Open
Abstract
Objectives Angiotensin II (AngII), a major product of renin-angiotensin system (RAS) has important role in induction of hypertension and antihypertensive effect of several medicinal plant was mediated by effect on this agent. Therefore, this study examined the possible effect of hydroalcoholic extract of Crocus sativus (C. sativus) on hypertension induced by AngII. Methods Six groups (n = 6) of rats were used as follow: 1) Control, 2) AngII (300 ng/kg), 3) Losartan (Los, 10 mg/kg) + AngII and 4-6) C. sativus extract (10, 20 & 40 mg/kg,) + AngII. The femoral artery and vein were cannulated for recording cardiovascular parameters and drugs administration, respectively. All drugs were injected intravenously (i.v). Los and all doses of C. sativus injected 10 min before AngII. Systolic blood pressure (SBP), mean arterial blood pressure (MAP) and heart rate (HR) were recorded throughout the experiment and those peak changes (Δ) were calculated and compared to control and AngII. Results AngII significantly increased ΔMAP, ΔSBP and ΔHR than control (P < 0. 01 to P < 0.001) and these increments were significantly attenuated by Los. All doses of C. sativus significantly reduced peak ΔMAP, ΔSBP, and ΔHR than AngII group (P < 0. 05 to P < 0.001). In addition, peak ΔMAP, ΔSBP in doses 10 and 20 were significant than Los + AngII group (P < 0.05 to P< 0.01) but in dose 40 only MAP was significant (P < 0.05). Peak ΔHR in all doses of C sativus was not significant than Los+ AngII. Conclusion Regarding the improving effect of the C. sativus extract on AngII induced hypertension, it seems that this ameliorating effect partly mediated through inhibition of RAS.
Collapse
Affiliation(s)
| | - Akbar Anaeigoudari
- Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Abolfazl KhajaviRad
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Lin P, Li H, Yu T, Liu Y. The Effect of Angiotensin-Converting Enzyme Gene Polymorphisms on the Clinical Efficacy of Perindopril Prescribed for Acute Myocardial Infarction in Chinese Han Patients. Genet Test Mol Biomarkers 2019; 23:316-324. [PMID: 30942616 DOI: 10.1089/gtmb.2018.0232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: Perindopril is an angiotensin-converting enzyme (ACE) inhibitor that is commonly used in the treatment of Chinese Han patients with acute myocardial infarction (AMI). However, there have been few studies on whether polymorphisms of the ACE gene affect the efficacy of perindopril or the prognosis of AMI patients. The purpose of this study was to analyze the relationship among the ACE rs121912703 (C>T), rs767880620 (C>A), and rs397514689 (C>T) gene polymorphisms and the prognosis of AMI patients and the clinical efficacy of perindopril in the treatment of AMI. Methods: The ACE genotypes at the rs121912703, rs767880620, and rs397514689 loci in 225 AMI patients treated with perindopril were determined by polymerase chain reaction/Sanger sequencing. Differences in cardiac structure, functional indicators, hemodynamic parameters, and related laboratory indicators were detected before and after treatment. Results: After administration of perindopril, improved ventricular remodeling in AMI patients with wild-type ACE was better than in patients with the ACE rs121912703, rs767880620, and rs397514689 minor variant alleles. The patients harboring wild-type ACE had lower systolic blood pressure and diastolic blood pressure than the patients harboring the minor variant alleles (p < 0.01). The contents of serum ACE and Ang II (angiotensin II) in AMI patients carrying the wild-type ACE alleles were lower than those of patients harboring any of the minor variant alleles (p < 0.01). The 3-year survival time of AMI patients carrying the wild-type ACE alleles was markedly greater compared with AMI patients carrying the mutant genes (p < 0.01). Conclusion: Mutations at the ACE rs121912703, rs767880620, and rs397514689 loci affect the efficacy of perindopril on ventricular remodeling and hemodynamics in Chinese Han AMI patients. The 3-year survival of AMI patients harboring the variant alleles is less than that of the patients harboring the wild-type gene.
Collapse
Affiliation(s)
- Peng Lin
- 1 Department of Intensive Care Unit and Yuhuangding Hospital Affiliated to Qingdao University, Yantai, P.R. China
| | - Haiyong Li
- 2 Department of Emergency, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, P.R. China
| | - Tianhua Yu
- 3 Department of Gynecology and Obstetrics, Penglai Traditional Chinese Medicine Hospital, Yantai, P.R. China
| | - Yuanyuan Liu
- 2 Department of Emergency, Yuhuangding Hospital Affiliated to Qingdao University, Yantai, P.R. China
| |
Collapse
|
11
|
Huang L, Wang A, Hao Y, Li W, Liu C, Yang Z, Zheng F, Zhou MS. Macrophage Depletion Lowered Blood Pressure and Attenuated Hypertensive Renal Injury and Fibrosis. Front Physiol 2018; 9:473. [PMID: 29867533 PMCID: PMC5949360 DOI: 10.3389/fphys.2018.00473] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/16/2018] [Indexed: 01/13/2023] Open
Abstract
Monocyte/macrophage recruitment is closely associated with the degree of hypertensive renal injury. We investigated the direct role of macrophages using liposome-encapsulated clodronate (LEC) to deplete monocytes/macrophages in hypertensive renal injury. C57BL/6 mice were treated with a pressor dose of angiotensin (Ang, 1.4 mg/kg/day) II plus LEC or the PBS-liposome for 2 weeks. Ang II mice developed hypertension, albuminuria, glomerulosclerosis, and renal fibrosis. LEC treatment reduced systolic blood pressure (SBP), albuminuria, and protected against renal structural injury in Ang II mice. Ang II significantly increased renal macrophage infiltration (MOMA2+ cells) and the expression of renal tumor necrosis factor α and interleukin β1, which were significantly reduced in Ang II/LEC mice. Ang II increased renal oxidative stress and the expression of profibrotic factors transforming growth factor (TGF) β1 and fibronectin. Ang II also inhibited the phosphorylation of endothelial nitric oxide synthase [phospho-endothelial nitric oxide synthesis (eNOS), ser1177]. LEC treatment reduced renal oxidative stress and TGFβ1 and fibronectin expressions, and increased phospho-eNOS expression in the Ang II mice. In Dahl rats of salt-sensitive hypertension, LEC treatment for 4 weeks significantly attenuated the elevation of SBP induced by high salt intake and protected against renal injury and fibrosis. Our results demonstrate that renal macrophages play a critical role in the development of hypertension and hypertensive renal injury and fibrosis; the underlying mechanisms may be involved in the reduction in macrophage-driven renal inflammation and restoration of the balance between renal oxidative stress and eNOS. Therefore, macrophages should be considered as a potential therapeutic target to reduce the adverse consequences of hypertensive renal diseases.
Collapse
Affiliation(s)
- Lei Huang
- Department of Physiology, Shenyang Medical University, Shenyang, China.,Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Aimei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Yun Hao
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Weihong Li
- Department of Physiology, Jinzhou Medical University, Jinzhou, China
| | - Chang Liu
- Department of Endocrinology, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhihang Yang
- Department of Physiology, Shenyang Medical University, Shenyang, China
| | - Feng Zheng
- Department of Nephrology, Second Affiliated Hospital of Dalian Medical University, Liaoning, China
| | - Ming-Sheng Zhou
- Department of Physiology, Shenyang Medical University, Shenyang, China.,Department of Physiology, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
12
|
|
13
|
Regulation of protein function by S-nitrosation and S-glutathionylation: processes and targets in cardiovascular pathophysiology. Biol Chem 2017; 398:1267-1293. [DOI: 10.1515/hsz-2017-0150] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023]
Abstract
AbstractDecades of chemical, biochemical and pathophysiological research have established the relevance of post-translational protein modifications induced by processes related to oxidative stress, with critical reflections on cellular signal transduction pathways. A great deal of the so-called ‘redox regulation’ of cell function is in fact mediated through reactions promoted by reactive oxygen and nitrogen species on more or less specific aminoacid residues in proteins, at various levels within the cell machinery. Modifications involving cysteine residues have received most attention, due to the critical roles they play in determining the structure/function correlates in proteins. The peculiar reactivity of these residues results in two major classes of modifications, with incorporation of NO moieties (S-nitrosation, leading to formation of proteinS-nitrosothiols) or binding of low molecular weight thiols (S-thionylation, i.e. in particularS-glutathionylation,S-cysteinylglycinylation andS-cysteinylation). A wide array of proteins have been thus analyzed in detail as far as their susceptibility to either modification or both, and the resulting functional changes have been described in a number of experimental settings. The present review aims to provide an update of available knowledge in the field, with a special focus on the respective (sometimes competing and antagonistic) roles played by proteinS-nitrosations andS-thionylations in biochemical and cellular processes specifically pertaining to pathogenesis of cardiovascular diseases.
Collapse
|
14
|
Li X, Lin Y, Zhou H, Li Y, Wang A, Wang H, Zhou MS. Puerarin protects against endothelial dysfunction and end-organ damage in Ang II-induced hypertension. Clin Exp Hypertens 2017; 39:58-64. [DOI: 10.1080/10641963.2016.1200603] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiaojie Li
- Department of Physiology, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Yuhan Lin
- Department of Physiology, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Hongyu Zhou
- Vagelos Scholars Program of the Molecular Life Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yao Li
- Department of Physiology, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Aimei Wang
- Department of Physiology, Liaoning Medical University, Jinzhou, Liaoning, China
| | - Hongxin Wang
- Department of Pharmacology, Liaoning Medical University; Jinzhou, Liaoning, China
| | - Ming-Sheng Zhou
- Department of Physiology, Liaoning Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
15
|
Dulce RA, Kulandavelu S, Schulman IH, Fritsch J, Hare JM. Nitric Oxide Regulation of Cardiovascular Physiology and Pathophysiology. Nitric Oxide 2017. [DOI: 10.1016/b978-0-12-804273-1.00024-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
16
|
Plasma kallikrein-bradykinin pathway promotes circulatory nitric oxide metabolite availability during hypoxia. Nitric Oxide 2016; 55-56:36-44. [DOI: 10.1016/j.niox.2016.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/03/2016] [Accepted: 02/29/2016] [Indexed: 12/24/2022]
|
17
|
Cocoa consumption dose-dependently improves flow-mediated dilation and arterial stiffness decreasing blood pressure in healthy individuals. J Hypertens 2016; 33:294-303. [PMID: 25380152 DOI: 10.1097/hjh.0000000000000412] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Cocoa flavonoids exert beneficial vascular effects and reduce the risk of cardiovascular morbidity and mortality. Nevertheless, the involved mechanisms have not been clarified and no study has yet focused on the dose-response effects. OBJECTIVES We aimed to investigate the effects of different doses of cocoa flavonoids on flow-mediated dilation (FMD), endothelin-1 (ET-1), pulse wave velocity (PWV), and SBP and DBP. DESIGN According to a randomized, double-blind, controlled, cross-over design, 20 healthy volunteers (1.5% improvement in FMD in 20 individuals: 0.99 at alpha = 0.05) were assigned to receive either five treatments with daily intake of 10 g cocoa (0, 80, 200, 500 and 800 mg cocoa flavonoids/day) in five periods lasting 1 week each. RESULTS Cocoa dose-dependently increased FMD from 6.2% (control) to 7.3, 7.6, 8.1 and 8.2% after the different flavonoid doses, respectively (P < 0.0001). Compared with the control, even 80 mg cocoa flavonoids per day increased FMD (P < 0.0001). Cocoa dose-dependently decreased PWV (P < 0.0001). Cocoa intake decreased office blood pressure (BP) (SBP: -4.8 ± 1.03 mmHg, P < 0.0001; DBP: -3.03 ± 1.07 mmHg, P = 0.0011). With respect to control, cocoa ingestion decreased 24-h (P = 0.05) and daytime (P = 0.038) SBP, and 24-h (P = 0.0064), daytime (P = 0.0088) and night-time (P = 0.0352) pulse pressure. Compared with the control, cocoa dose-dependently decreased ET-1 levels [from 17.1 (control) to 15.2, 14.5, 14.2 and 14.1 pg/ml, after the different flavonoid doses, respectively (P for treatment <0.05)]. Compared with the control, significant changes were observed for all doses of flavonoids (ET-1; P < 0.05). CONCLUSION Our study showed for the first time that cocoa dose-dependently improved FMD and decreased PWV and ET-1 also by ameliorating office and monitored BP. Our findings are clinically relevant, suggesting cocoa, with very low calorie intake, might be reasonably incorporated into a dietary approach, representing a consistent tool in cardiovascular prevention.
Collapse
|
18
|
Vahidinia A, Heshmatian B, Salehi I, Zarei M. Garlic Powder Effect on Plasma Renin Activity, and Cardiovascular Effects of Intravenous Angiotensin I and Angiotensin II in Normotensive and Hypertensive Male Rats. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2015. [DOI: 10.17795/ajmb-28581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
19
|
Premer C, Blum A, Bellio MA, Schulman IH, Hurwitz BE, Parker M, Dermarkarian CR, DiFede DL, Balkan W, Khan A, Hare JM. Allogeneic Mesenchymal Stem Cells Restore Endothelial Function in Heart Failure by Stimulating Endothelial Progenitor Cells. EBioMedicine 2015; 2:467-75. [PMID: 26137590 PMCID: PMC4485912 DOI: 10.1016/j.ebiom.2015.03.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Endothelial dysfunction, characterized by diminished endothelial progenitor cell (EPC) function and flow-mediated vasodilation (FMD), is a clinically significant feature of heart failure (HF). Mesenchymal stem cells (MSCs), which have pro-angiogenic properties, have the potential to restore endothelial function. Accordingly, we tested the hypothesis that MSCs increase EPC function and restore flow-mediated vasodilation (FMD). METHODS Idiopathic dilated and ischemic cardiomyopathy patients were randomly assigned to receive autologous (n = 7) or allogeneic (n = 15) MSCs. We assessed EPC-colony forming units (EPC-CFUs), FMD, and circulating levels of vascular endothelial growth factor (VEGF) in patients before and three months after MSC transendocardial injection (n = 22) and in healthy controls (n = 10). FINDINGS EPC-colony forming units (CFUs) were markedly reduced in HF compared to healthy controls (4 ± 3 vs. 25 ± 16 CFUs, P < 0.0001). Similarly, FMD% was impaired in HF (5.6 ± 3.2% vs. 9.0 ± 3.3%, P = 0.01). Allogeneic, but not autologous, MSCs improved endothelial function three months after treatment (Δ10 ± 5 vs. Δ1 ± 3 CFUs, P = 0.0067; Δ3.7 ± 3% vs. Δ-0.46 ± 3% FMD, P = 0.005). Patients who received allogeneic MSCs had a reduction in serum VEGF levels three months after treatment, while patients who received autologous MSCs had an increase (P = 0.0012), and these changes correlated with the change in EPC-CFUs (P < 0.0001). Lastly, human umbilical vein endothelial cells (HUVECs) with impaired vasculogenesis due to pharmacologic nitric oxide synthase inhibition, were rescued by allogeneic MSC conditioned medium (P = 0.006). INTERPRETATION These findings reveal a novel mechanism whereby allogeneic, but not autologous, MSC administration results in the proliferation of functional EPCs and improvement in vascular reactivity, which in turn restores endothelial function towards normal in patients with HF. These findings have significant clinical and biological implications for the use of MSCs in HF and other disorders associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Courtney Premer
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL, USA
| | - Arnon Blum
- Department of Medicine and Cardiology, Baruch Padeh Poria Hospital, Bar Ilan University, Lower Galilee 15208, Israel
| | - Michael A Bellio
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL, USA
| | | | - Barry E Hurwitz
- Department of Psychology, University of Miami Miller School of Medicine, FL, USA
| | - Meela Parker
- Department of Psychology, University of Miami Miller School of Medicine, FL, USA
| | | | - Darcy L DiFede
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL, USA
| | - Wayne Balkan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL, USA
| | - Aisha Khan
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL, USA
| | - Joshua M Hare
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, FL, USA
| |
Collapse
|
20
|
Johnson SA, Figueroa A, Navaei N, Wong A, Kalfon R, Ormsbee LT, Feresin RG, Elam ML, Hooshmand S, Payton ME, Arjmandi BH. Daily blueberry consumption improves blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension: a randomized, double-blind, placebo-controlled clinical trial. J Acad Nutr Diet 2015; 115:369-377. [PMID: 25578927 DOI: 10.1016/j.jand.2014.11.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 10/27/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Postmenopausal women have a high prevalence of hypertension and often develop arterial stiffness thereby increasing cardiovascular disease risk. Although antihypertensive drug therapies exist, increasing numbers of people prefer natural therapies. In vivo studies and a limited number of clinical studies have demonstrated the antihypertensive and vascular-protective effects of blueberries. OBJECTIVE To examine the effects of daily blueberry consumption for 8 weeks on blood pressure and arterial stiffness in postmenopausal women with pre- and stage 1-hypertension. DESIGN This was an 8-week, randomized, double-blind, placebo-controlled clinical trial. PARTICIPANTS/SETTING Forty-eight postmenopausal women with pre- and stage 1-hypertension recruited from the greater Tallahassee, FL, area participated. INTERVENTION Participants were randomly assigned to receive either 22 g freeze-dried blueberry powder or 22 g control powder. MAIN OUTCOME MEASURES Resting brachial systolic and diastolic blood pressures were evaluated and arterial stiffness was assessed using carotid-femoral pulse wave velocity and brachial-ankle pulse wave velocity. C-reactive protein, nitric oxide, and superoxide dismutase were measured at baseline, 4 weeks, and 8 weeks. STATISTICAL ANALYSES PERFORMED Statistical analysis was performed using a split plot model of repeated measures analysis of variance. RESULTS After 8 weeks, systolic blood pressure and diastolic blood pressure (131±17 mm Hg [P<0.05] and 75±9 mm Hg [P<0.01], respectively) and brachial-ankle pulse wave velocity (1,401±122 cm/second; P<0.01) were significantly lower than baseline levels (138±14 mm Hg, 80±7 mm Hg, and 1,498±179 cm/second, respectively), with significant (P<0.05) group×time interactions in the blueberry powder group, whereas there were no changes in the group receiving the control powder. Nitric oxide levels were greater (15.35±11.16 μmol/L; P<0.01) in the blueberry powder group at 8 weeks compared with baseline values (9.11±7.95 μmol/L), whereas there were no changes in the control group. CONCLUSIONS Daily blueberry consumption may reduce blood pressure and arterial stiffness, which may be due, in part, to increased nitric oxide production.
Collapse
|
21
|
Kojima G, Bell CL, Chen R, Ross GW, Abbott RD, Launer L, Lui F, Masaki K. Low dietary vitamin D in mid-life predicts total mortality in men with hypertension: the Honolulu heart program. J Am Coll Nutr 2014; 33:129-35. [PMID: 24724770 DOI: 10.1080/07315724.2013.875363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Vitamin D deficiency was associated with total mortality in previous epidemiological studies. Little is known about the effects of dietary vitamin D intake on mortality. We examined the association between mid-life dietary vitamin D intake and 45-year total mortality. METHODS The Honolulu Heart Program is a longitudinal cohort study of 8006 Japanese American men in Hawaii aged 45 to 68 at baseline (1965-1968). Mid-life dietary vitamin D intake was calculated from 24-hour dietary recall using Nutritionist IV v3 software. We divided subjects into quartiles of dietary vitamin D. Total mortality data were available over 45 years through 2010. RESULTS Age-adjusted total mortality rates were higher in the lower quartiles of dietary vitamin D intake compared to the highest (p for trend = 0.011). Using Cox regression, low dietary vitamin D was significantly associated with total mortality; quartile (Q) 1 hazard ratio (HR) = 1.14, 95% confidence interval (95% CI) = 1.07-1.22, p < 0.001; Q2 HR = 1.11, 95% CI = 1.04-1.18, p = 0.002; and Q3 HR = 1.08, 95% CI = 1.01-1.15, p = 0.027; Q4 = reference. After adjusting for age, kilocalories, cardiovascular risk factors, and prevalent chronic diseases, only Q2 remained significant (HR = 1.08, 95% CI = 1.00-1.15, p = 0.037). Among hypertensive subjects only, those in the lower 2 quartiles had higher total mortality; Q1 HR = 1.12, 95% CI = 1.01-1.25, p = 0.039, and Q2 HR = 1.13, 95% CI = 1.02-1.26, p = 0.025, compared to Q4. There was no significant relationship in subjects without hypertension. CONCLUSIONS Low dietary vitamin D intake in mid-life was a weak predictor of total mortality over 45 years of follow-up. We found a significant association between low dietary vitamin D intake and higher total mortality only among hypertensive subjects. Vitamin D may have cardioprotective effects.
Collapse
Affiliation(s)
- Gotaro Kojima
- a The John A. Hartford Foundation Center of Excellence in Geriatrics, Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Rubio-Ruiz ME, Pérez-Torres I, Soto ME, Pastelín G, Guarner-Lans V. Aging in blood vessels. Medicinal agents FOR systemic arterial hypertension in the elderly. Ageing Res Rev 2014; 18:132-47. [PMID: 25311590 DOI: 10.1016/j.arr.2014.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 10/01/2014] [Accepted: 10/02/2014] [Indexed: 12/12/2022]
Abstract
Aging impairs blood vessel function and leads to cardiovascular disease. The mechanisms underlying the age-related endothelial, smooth muscle and extracellular matrix vascular dysfunction are discussed. Vascular dysfunction is caused by: (1) Oxidative stress enhancement. (2) Reduction of nitric oxide (NO) bioavailability, by diminished NO synthesis and/or augmented NO scavenging. (3) Production of vasoconstrictor/vasodilator factor imbalances. (4) Low-grade pro-inflammatory environment. (5) Impaired angiogenesis. (6) Endothelial cell senescence. The aging process in vascular smooth muscle is characterized by: (1) Altered replicating potential. (2) Change in cellular phenotype. (3) Changes in responsiveness to contracting and relaxing mediators. (4) Changes in intracellular signaling functions. Systemic arterial hypertension is an age-dependent disorder, and almost half of the elderly human population is hypertensive. The influence of hypertension on the aging cardiovascular system has been studied in models of hypertensive rats. Treatment for hypertension is recommended in the elderly. Lifestyle modifications, natural compounds and hormone therapies are useful for initial stages and as supporting treatment with medication but evidence from clinical trials in this population is needed. Since all antihypertensive agents can lower blood pressure in the elderly, therapy should be based on its potential side effects and drug interactions.
Collapse
Affiliation(s)
- María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", México, DF, Mexico
| | - Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", México, DF, Mexico
| | - María Elena Soto
- Department of Immunology, Instituto Nacional de Cardiología "Ignacio Chávez", México, DF, Mexico
| | - Gustavo Pastelín
- Department of Pharmacology, Instituto Nacional de Cardiología "Ignacio Chávez", México, DF, Mexico
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", México, DF, Mexico.
| |
Collapse
|
23
|
Blockade of renin-angiotensin system prevents micturition dysfunction in renovascular hypertensive rats. Eur J Pharmacol 2014; 738:285-92. [PMID: 24881522 DOI: 10.1016/j.ejphar.2014.05.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/21/2022]
Abstract
Association between hypertension and bladder symptoms has been described. We hypothesized that micturition dysfunction may be associated with renin-angiotensin system (RAS) acting in urethra. The effects of the anti-hypertensive drugs losartan (AT1 antagonist) and captopril (angiotensin-converting enzyme inhibitor) in comparison with atenolol (β1-adrenoceptor antagonist independently of RAS blockade) have been investigated in bladder and urethral dysfunctions during renovascular hypertension in rats. Two kidney-1 clip (2K-1C) rats were treated with losartan (30 mg/kg/day), captopril (50mg/kg/day) or atenolol (90 mg/kg/day) for eight weeks. Cystometric study, bladder and urethra smooth muscle reactivities, measurement of cAMP levels and p38 MAPK phosphorylation in urinary tract were determined. Losartan and captopril markedly reduced blood pressure in 2K-1C rats. The increases in non-voiding contractions, voiding frequency and bladder capacity in 2K-1C rats were prevented by treatments with both drugs. Likewise, losartan and captopril prevented the enhanced bladder contractions to electrical-field stimulation (EFS) and carbachol, along with the impaired relaxations to β-adrenergic-cAMP stimulation. Enhanced neurogenic contractions and impaired nitrergic relaxations were observed in urethra from 2K-1C rats. Angiotensin II also produced greater urethral contractions that were accompanied by higher phosphorylation of p38 MAPK in urethral tissues of 2K-1C rats. Losartan and captopril normalized the urethral dysfunctions in 2K-1C rats. In contrast, atenolol treatment largely reduced the blood pressure in 2K-1C rats but failed to affect the urinary tract smooth muscle dysfunction. The urinary tract smooth muscle dysfunction in 2K-1C rats takes place by local RAS activation irrespective of levels of arterial blood pressure.
Collapse
|
24
|
Gammon CS, Kruger R, Brown SJ, Conlon CA, von Hurst PR, Stonehouse W. Daily kiwifruit consumption did not improve blood pressure and markers of cardiovascular function in men with hypercholesterolemia. Nutr Res 2014; 34:235-40. [PMID: 24655490 DOI: 10.1016/j.nutres.2014.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 02/05/2023]
Abstract
Increasing fruit and vegetable consumption is a key lifestyle modification in the prevention and treatment of hypertension. Kiwifruit has previously been shown to have favorable effects on blood pressure (BP), likely through inhibiting angiotensin I-converting enzyme activity. We hypothesized that the replacement of 2 fruit servings in a healthy diet with 2 green kiwifruit a day would significantly improve BP and other markers of cardiovascular function, including heart rate, stroke volume, cardiac output, and total peripheral resistance, in a group of hypercholesterolemic men. Using a controlled cross-over study design, 85 subjects completed a 4-week healthy diet run-in period before randomization to one of two 4-week intervention sequences in which they either consumed 2 green kiwifruit a day plus a healthy diet (intervention) or consumed a healthy diet alone (control). Blood pressure and other measures of cardiovascular function (using a Finometer MIDI [Finapres Medical Systems B.V, Amsterdam, The Netherlands] and standard oscillometric device) and anthropometric measurements were taken before and at the end of the treatment periods. A physical activity questionnaire was completed during the last visit. Subjects were found to be predominantly normotensive (43.5%) or prehypertensive (50.6%) and quite physically active (>30 minutes of moderate to vigorous physical activity/day in >80% subjects). No significant differences were seen for BP or any of the other markers, including heart rate, stroke volume, cardiac output, and total peripheral resistance. In conclusion, in this hypercholesterolemic, nonhypertensive group, no beneficial effects on BP or other markers of cardiovascular function were seen when consuming 2 kiwifruit a day against the background of a healthy diet.
Collapse
Affiliation(s)
- Cheryl S Gammon
- Institute of Food, Nutrition and Human Health, Massey University, Auckland, New Zealand
| | - Rozanne Kruger
- Institute of Food, Nutrition and Human Health, Massey University, Auckland, New Zealand.
| | - Stephen J Brown
- School of Health Sciences, University of Ballarat, Ballarat, VIC, Australia
| | - Cathryn A Conlon
- Institute of Food, Nutrition and Human Health, Massey University, Auckland, New Zealand
| | - Pamela R von Hurst
- Institute of Food, Nutrition and Human Health, Massey University, Auckland, New Zealand
| | - Welma Stonehouse
- Institute of Food, Nutrition and Human Health, Massey University, Auckland, New Zealand; CSIRO Animal, Food and Health Sciences, Adelaide, SA, Australia
| |
Collapse
|
25
|
Thompson CS. Diabetic nephropathy: Treatment with phosphodiesterase type 5 inhibitors. World J Diabetes 2013; 4:124-129. [PMID: 23961322 PMCID: PMC3746084 DOI: 10.4239/wjd.v4.i4.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/03/2013] [Accepted: 06/20/2013] [Indexed: 02/05/2023] Open
Abstract
The importance of nitric oxide (NO) in vascular physiology is irrefutable; it stimulates the intracellular production of cyclic guanosine monophosphate (cGMP), initiating vascular smooth muscle relaxation. This biochemical process increases the diameter of small arteries, regulating blood flow distribution between arterioles and the microvasculature. The kidney is no exception, since NO predominantly dilates the glomerular afferent arterioles. It is now evident that the vascular production of cGMP can be augmented by inhibitors of phosphodiesterase type 5 (PDE 5), the enzyme which breakdowns this cyclic nucleotide. This has clinical relevance, since diabetic nephropathy (DN) a major microvascular complication of diabetes mellitus and the most common cause of end-stage renal disease, increases intraglomerular capillary pressure, leading to glomerular hypertension. PDE 5 inhibitors may have, therefore, the potential to reduce glomerular hypertension. This review describes the use of PDE 5 inhibitors to improve the metabolic, haemodynamic and inflammatory pathways/responses, all of which are dysfunctional in DN.
Collapse
|
26
|
Zicha J, Dobešová Z, Vokurková M, Rauchová H, Hojná S, Kadlecová M, Behuliak M, Vaněčková I, Kuneš J. Age-dependent salt hypertension in Dahl rats: fifty years of research. Physiol Res 2013; 61:S35-S87. [PMID: 22827876 DOI: 10.33549/physiolres.932363] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Fifty years ago, Lewis K. Dahl has presented a new model of salt hypertension - salt-sensitive and salt-resistant Dahl rats. Twenty years later, John P. Rapp has published the first and so far the only comprehensive review on this rat model covering numerous aspects of pathophysiology and genetics of salt hypertension. When we summarized 25 years of our own research on Dahl/Rapp rats, we have realized the need to outline principal abnormalities of this model, to show their interactions at different levels of the organism and to highlight the ontogenetic aspects of salt hypertension development. Our attention was focused on some cellular aspects (cell membrane function, ion transport, cell calcium handling), intra- and extrarenal factors affecting renal function and/or renal injury, local and systemic effects of renin-angiotensin-aldosterone system, endothelial and smooth muscle changes responsible for abnormal vascular contraction or relaxation, altered balance between various vasoconstrictor and vasodilator systems in blood pressure maintenance as well as on the central nervous and peripheral mechanisms involved in the regulation of circulatory homeostasis. We also searched for the age-dependent impact of environmental and pharmacological interventions, which modify the development of high blood pressure and/or organ damage, if they influence the salt-sensitive organism in particular critical periods of development (developmental windows). Thus, severe self-sustaining salt hypertension in young Dahl rats is characterized by pronounced dysbalance between augmented sympathetic hyperactivity and relative nitric oxide deficiency, attenuated baroreflex as well as by a major increase of residual blood pressure indicating profound remodeling of resistance vessels. Salt hypertension development in young but not in adult Dahl rats can be attenuated by preventive increase of potassium or calcium intake. On the contrary, moderate salt hypertension in adult Dahl rats is attenuated by superoxide scavenging or endothelin-A receptor blockade which do not affect salt hypertension development in young animals.
Collapse
Affiliation(s)
- J Zicha
- Centre for Cardiovascular Research, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Ertemi H, Lau DH, Mikhailidis DP, Mumtaz FH, Thompson CS. Angiotensin II Increases Corpus Cavernosal Contractility and Oxidative Stress in Partial Bladder Outlet Obstructed Rabbits: Relevance to Erectile Dysfunction. J Sex Med 2013; 10:1251-8. [DOI: 10.1111/j.1743-6109.2012.02768.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Yu H, Shao H, Yan J, Tsoukias NM, Zhou MS. Bone marrow transplantation improves endothelial function in hypertensive Dahl salt-sensitive rats. ACTA ACUST UNITED AC 2013; 6:331-7. [PMID: 22995801 DOI: 10.1016/j.jash.2012.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/06/2012] [Accepted: 08/14/2012] [Indexed: 11/16/2022]
Abstract
Bone marrow-derived endothelial progenitor cells (EPCs) constitute an important endogenous system in the maintenance of endothelial integrity and vascular homeostasis. Cardiovascular risk factors are associated with a reduced number and functional capacity of EPCs. Here we investigated the effect of transplantation of bone marrow-derived cells from Dahl salt-resistant rat into age-matched Dahl salt-sensitive (DS) rat on blood pressure, endothelial function, and circulating EPC number. The recipient DS rats were fed a normal (0.5% NaCl, NS) or high-salt (4% NaCl, HS) diet for 6 weeks after bone marrow transplantation (BMT). DS rats on a NS or a HS diet without BMT were used as controls. Hypertensive DS (HS-DS) rat (systolic blood pressure: 213 ± 4 mm Hg vs. 152 ± 4 mm Hg in NS, P < .05) manifested impaired endothelium-dependent relaxation to acetylcholine (EDR), increased gene expression of vascular oxidative stress and proinflamamtory cytokines, and decreased eNOS expression. BMT on HS-DS rat significantly improved EDR and eNOS expression, reduced oxidative stress without reduction in SBP (206 ± 6 mm Hg). Flow cytometry analysis showed that there was no difference in the number of circulating EPCs, demonstrated by expression of EPC markers CD34, cKit, and vascular endothelial growth factor, between hypertensive and normotensive rats. Surprisingly, BMT resulted in a 5- to 10-fold increase in the previously mentioned EPC markers in hypertensive, but not normotensive rat. These results suggest that DS rat has an impaired ability to increase bone marrow-derived EPCs in response to HS diet challenge, which may contribute to endothelial dysfunction.
Collapse
Affiliation(s)
- Hong Yu
- Department of Cardiology, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | | | | | | | | |
Collapse
|
30
|
Vasdev S, Stuckless J, Richardson V. Role of the immune system in hypertension: modulation by dietary antioxidants. Int J Angiol 2012. [PMID: 23204821 DOI: 10.1055/s-0031-1288941] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypertension is a major health problem worldwide. Individuals with hypertension are at an increased risk for stroke, heart disease, and kidney failure. Although the etiology of essential hypertension has a genetic component, lifestyle factors such as diet play an important role. Insulin resistance is a common feature of hypertension in both humans and animal models affecting glucose and lipid metabolism producing excess aldehydes including methylglyoxal. These aldehydes react with proteins to form conjugates called advanced glycation end products (AGEs). This alters protein structure and function and can affect vascular and immune cells leading to their activation and secretion of inflammatory cytokines. AGEs also act via receptors for advanced glycation end products on these cells altering the function of antioxidant and metabolic enzymes, and ion channels. This results in an increase in cytosolic free calcium, decrease in nitric oxide, endothelial dysfunction, oxidative stress, peripheral vascular resistance, and infiltration of vascular and kidney tissue with inflammatory cells leading to hypertension. Supplementation with dietary antioxidants including vitamins C, E, or B(6), thiols such as cysteine and lipoic acid, have been shown to lower blood pressure and plasma inflammatory cytokines in animal models and humans with essential hypertension. A well-balanced diet rich in antioxidants that includes vegetables, fruits, low fat dairy products, low salt, and includes whole grains, poultry, fish and nuts, lowers blood pressure and vascular inflammation. These antioxidants may achieve their antihypertensive and anti-inflammatory/immunomodulatory effects by reducing AGEs and improving insulin resistance and associated alterations. Dietary supplementation with antioxidants may be a beneficial, inexpensive, front-line alterative treatment modality for hypertension.
Collapse
Affiliation(s)
- Sudesh Vasdev
- Discipline of Medicine, Health Sciences Centre, Memorial University, St. John's, Newfoundland, Canada
| | | | | |
Collapse
|
31
|
Constantinides A, Kerstens MN, Dikkeschei BD, van Pelt LJ, Tellis CC, Tselepis AD, Dullaart RPF. Plasma Lp-PLA(2) mass and apoB-lipoproteins that carry Lp-PLA(2) decrease after sodium. Eur J Clin Invest 2012; 42:1235-43. [PMID: 22957745 DOI: 10.1111/j.1365-2362.2012.02719.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Lipoprotein-associated phospholipase A(2) (Lp-PLA(2) ) is a novel cardiovascular risk marker, which is predominantly complexed to apolipoprotein (apo) B-containing lipoproteins in human plasma. As increasing dietary sodium intake may decrease plasma apoB-containing lipoproteins, we tested whether a sodium challenge lowers plasma Lp-PLA(2) mass, as well as the levels of apoB-containing lipoprotein particles carrying Lp-PLA(2) (apoB-Lp-PLA(2) ), employing a newly developed enzyme-linked immunosorbent assay. MATERIALS AND METHODS In 45 women and 31 men (mean age 44 ± 14 years), plasma Lp-PLA(2) mass (turbidimetric immunoassay), the level of apoB-Lp-PLA(2) , expressed in apoB concentration and lipoproteins were measured in response to a 3-day challenge with 9 g sodium chloride tablets daily. RESULTS Urinary sodium excretion increased from 165 ± 60 to 321 ± 70 mmol/24 h (P<0.001) after salt loading. Plasma Lp-PLA(2) mass decreased from 618 (493-719) to 588 (465-698) μg/L (P<0.001), and apoB-Lp-PLA(2) decreased from 0.276 (0.200-0.351) to 0.256 (0.189-0.328) g LDL protein/L (P=0.004) in response to the sodium challenge together with decreases in plasma total cholesterol, nonhigh-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, apolipoprotein B and the total cholesterol/HDL cholesterol ratio (P<0.01 for all). Changes in plasma Lp-PLA(2) mass were correlated positively with changes in total cholesterol, LDL cholesterol and non-HDL cholesterol (r=0.260-0.276, P<0.05 to P<0.02), whereas changes in apoB-Lp-PLA(2) were correlated positively with changes in non-HDL cholesterol and in the total cholesterol/HDL cholesterol ratio (r=0.232-0.385, P<0.05-0.01). CONCLUSION Both plasma Lp-PLA(2) mass levels and apoB-Lp-PLA(2) decrease in response to a short-term oral sodium challenge.
Collapse
Affiliation(s)
- Alexander Constantinides
- Department of Endocrinology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Bond V, Millis RM, Campbell A, Harrell J, Goring KL, Reeves I, Johnson SM, Adams RG. Exaggerated vasopressor response to exercise and cerebral blood flow velocity. Clin Exp Hypertens 2012; 34:370-6. [PMID: 22500813 DOI: 10.3109/10641963.2012.665537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We studied 10 young adults, normotensive at rest, comprising a control group (n = 5) with normal blood pressure responsiveness to exercise and an experimental group exhibiting greater percentage of body fat and body mass index (BMI) than the controls, with exaggerated blood pressure (vasopressor) responsiveness to exercise (EEBPR) (n = 5). Lower absolute and varying oxygen consumption/body weight normalized units of middle cerebral arterial blood flow velocity (MCAV) were found during exercise in the experimental group (P < .01). These findings support the hypothesis that the combination of EEBPR and high BMI is associated with low MCAV that may put such individuals at risk for cerebral hypoperfusion and cognitive deficits.
Collapse
Affiliation(s)
- Vernon Bond
- Department of Health, Human Performance & Leisure Studies, The Graduate School of Arts & Sciences, Howard University, Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Vascular stiffening is a hallmark of the aging process. Improvements in the methods used to measure central stiffness, particularly applanation tonometry, and their use as therapeutic targets have generated great interest. RECENT FINDINGS Vascular stiffness is associated with increases in pulse pressure (PP), aortic augmentation index, and pulse wave velocity (PWV). This last has emerged as the gold standard for evaluation of vascular stiffness, as it is an independent predictor of coronary heart disease, stroke, and mortality. Angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and calcium-channel blockers with or without diuretics are all commonly used to ameliorate vascular stiffness; however, selective β-1 blockers (β-blockers) may actually worsen aortic PP and aortic augmentation index. SUMMARY Serial measurements of vascular stiffness, including PWV, augmentation index, and PP, may be especially beneficial in older patients to supplement brachial blood pressure. At present, given the lack of universally accepted normal values for vascular stiffness as measured by applanation tonometry, serial measurements over time may be more helpful than a single isolated value. In patients with suspected vascular stiffening, therapy should include inhibition of the renin-angiotensin-aldosterone system with ACE inhibitors or ARBs, calcium-channel blockers, and diuretics as needed to normalize blood pressure. β-Blockers should be reserved for patients with a history of myocardial infarction or congestive heart disease. It remains to be established whether β-blockers with vasodilator properties could improve the assessment of vascular compliance.
Collapse
|
34
|
Ertemi H, Mumtaz FH, Howie AJ, Mikhailidis DP, Thompson CS. Effect of Angiotensin II and its Receptor Antagonists on Human Corpus Cavernous Contractility and Oxidative Stress: Modulation of Nitric Oxide Mediated Relaxation. J Urol 2011; 185:2414-20. [DOI: 10.1016/j.juro.2011.02.2645] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Indexed: 02/07/2023]
Affiliation(s)
- Hani Ertemi
- Division of Interventional Science, Departments of Clinical Biochemistry and General Surgery, University College London Medical School, Royal Free Campus, Enfield, United Kingdom
| | - Faiz H. Mumtaz
- Department of Urology, Chase Farm Hospital, Enfield, United Kingdom
| | - Alexander J. Howie
- Department of Pathology, University College London Medical School, Royal Free Campus, Enfield, United Kingdom
| | - Dimitri P. Mikhailidis
- Division of Interventional Science, Departments of Clinical Biochemistry and General Surgery, University College London Medical School, Royal Free Campus, Enfield, United Kingdom
| | - Cecil S. Thompson
- Division of Interventional Science, Departments of Clinical Biochemistry and General Surgery, University College London Medical School, Royal Free Campus, Enfield, United Kingdom
| |
Collapse
|
35
|
Schulman IH, Hare JM. Regulation of cardiovascular cellular processes by S-nitrosylation. Biochim Biophys Acta Gen Subj 2011; 1820:752-62. [PMID: 21536106 DOI: 10.1016/j.bbagen.2011.04.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 04/07/2011] [Indexed: 12/27/2022]
Abstract
BACKGROUND Nitric oxide (NO), a highly versatile signaling molecule, exerts a broad range of regulatory influences in the cardiovascular system that extends from vasodilation to myocardial contractility, angiogenesis, inflammation, and energy metabolism. Considerable attention has been paid to deciphering the mechanisms for such diversity in signaling. S-nitrosylation of cysteine thiols is a major signaling pathway through which NO exerts its actions. An emerging concept of NO pathophysiology is that the interplay between NO and reactive oxygen species (ROS), the nitroso/redox balance, is an important regulator of cardiovascular homeostasis. SCOPE OF REVIEW ROS react with NO, limit its bioavailability, and compete with NO for binding to the same thiol in effector molecules. The interplay between NO and ROS appears to be tightly regulated and spatially confined based on the co-localization of specific NO synthase (NOS) isoforms and oxidative enzymes in unique subcellular compartments. NOS isoforms are also in close contact with denitrosylases, leading to crucial regulation of S-nitrosylation. MAJOR CONCLUSIONS Nitroso/redox balance is an emerging regulatory pathway for multiple cells and tissues, including the cardiovascular system. Studies using relevant knockout models, isoform specific NOS inhibitors, and both in vitro and in vivo methods have provided novel insights into NO- and ROS-based signaling interactions responsible for numerous cardiovascular disorders. GENERAL SIGNIFICANCE An integrated view of the role of nitroso/redox balance in cardiovascular pathophysiology has significant therapeutic implications. This is highlighted by human studies where pharmacologic manipulation of oxidative and nitrosative pathways exerted salutary effects in patients with advanced heart failure. This article is part of a Special Issue entitled Regulation of Cellular Processes by S-nitrosylation.
Collapse
Affiliation(s)
- Ivonne Hernandez Schulman
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | | |
Collapse
|
36
|
Pfister SL, Nithipatikom K, Campbell WB. Role of superoxide and thromboxane receptors in acute angiotensin II-induced vasoconstriction of rabbit vessels. Am J Physiol Heart Circ Physiol 2011; 300:H2064-71. [PMID: 21460202 DOI: 10.1152/ajpheart.01135.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study explored the hypothesis that a portion of angiotensin II-induced contractions is dependent on superoxide generation and release of a previously unidentified arachidonic acid metabolite that activates vascular smooth muscle thromboxane receptors. Treatment of rabbit aorta or mesentery artery with the thromboxane receptor antagonist SQ29548 (10 μM) reduced angiotensin II-induced contractions (maximal contraction in aorta; control vs. SQ29548: 134 ± 16 vs. 93 ± 10%). A subset of rabbits deficient in vascular thromboxane receptors also displayed decreased contractions to angiotensin II. The superoxide dismutase mimetic Tiron (30 mM) attenuated angiotensin II-induced contractions only in rabbits with functional vascular thromboxane receptors (maximal contraction in aorta; control vs. Tiron: 105 ± 5 vs. 69 ± 11%). Removal of the endothelium or treatment with a nitric oxide synthase inhibitor, nitro-l-arginine (30 μM) did not alter angiotensin II-induced contractions. Tiron and SQ29548 decreased angiotensin II-induced contractions in the denuded aortas by a similar percentage as that observed in intact vessels. The cyclooxygenase inhibitor indomethacin (10 μM) or thromboxane synthase inhibitor dazoxiben (10 μM) had no effect on angiotensin II-induced contractions indicating that the vasoconstrictor was not thromboxane. Angiotensin II increased the formation of a 15-series isoprostane. Isoprostanes are free radical-derived products of arachidonic acid. The unidentified isoprostane increased when vessels were incubated with the superoxide-generating system xanthine/xanthine oxidase. Pretreatment of rabbit aorta with the isoprostane isolated from aortic incubations enhanced angiotensin II-induced contractions. Results suggest the factor activating thromboxane receptors and contributing to angiotensin II vasoconstriction involves the superoxide-mediated generation of a 15-series isoprostane.
Collapse
Affiliation(s)
- Sandra L Pfister
- Dept. of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | | | |
Collapse
|
37
|
Polichnowski AJ, Lu L, Cowley AW. Renal injury in angiotensin II+L-NAME-induced hypertensive rats is independent of elevated blood pressure. Am J Physiol Renal Physiol 2011; 300:F1008-16. [PMID: 21270093 DOI: 10.1152/ajprenal.00354.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The balance between angiotensin II (ANG II) and nitric oxide plays an important role in renal function and is thought to contribute to the progression of renal injury in experimental hypertension. In the present study, we investigated the extent of blood pressure (BP)-dependent and BP-independent pathways of renal injury following 2 wk of hypertension produced by intravenous infusion of ANG II (5 ng·kg⁻¹·min⁻¹)+N(ω)-nitro-l-arginine methyl ester (l-NAME; 1.4 μg·kg⁻¹·min⁻¹) in male Sprague-Dawley rats. An aortic balloon occluder was positioned between the renal arteries to maintain (24 h/day) BP to the left kidney (servo-controlled) at baseline levels, whereas the right kidney (uncontrolled) was chronically exposed to elevated BP. Over the 14-day experimental protocol, the average BP to uncontrolled kidneys (152.7 ± 1.8 mmHg) was significantly elevated compared with servo-controlled (113.0 ± 0.2 mmHg) kidneys and kidneys from sham rats (108.3 ± 0.1 mmHg). ANG II+l-NAME infusion led to renal injury that was focal in nature and mainly confined to the outer medulla. Despite the differences in BP between servo-controlled and uncontrolled kidneys, there was a similar ~3.5-fold increase in renal outer medullary tubular injury, ~2-fold increase in outer medullary interstitial fibrosis, ~2-fold increase in outer medullary macrophage infiltration, and a significant increase in renal oxidative stress, all of which are indicative of BP-independent mediated pathways. The results of this study have important implications regarding the pathogenesis of renal injury in various experimental models of hypertension and provide novel insights regarding the variable association observed between hypertension and renal injury in some human populations.
Collapse
Affiliation(s)
- Aaron J Polichnowski
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | |
Collapse
|
38
|
Sanchez-Cruz P, Garcia C, Alegria AE. Role of quinones in the ascorbate reduction rates of S-nitrosoglutathione. Free Radic Biol Med 2010; 49:1387-94. [PMID: 20691779 PMCID: PMC2952480 DOI: 10.1016/j.freeradbiomed.2010.07.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 07/02/2010] [Accepted: 07/27/2010] [Indexed: 11/26/2022]
Abstract
Quinones are one of the largest classes of antitumor agents approved for clinical use, and several antitumor quinones are in various stages of clinical and preclinical development. Many of these are metabolites of, or are, environmental toxins. Because of their chemical structure they are known to enhance electron transfer processes such as ascorbate oxidation and NO reduction. The paraquinones 2,6-dimethyl-1,4-benzoquinone (DMBQ), 1,4-benzoquinone, methyl-1,4-benzoquinone, 2,6-dimethoxy-1,4-benzoquinone, 2-hydroxymethyl-6-methoxy-1,4-benzoquinone, trimethyl-1,4-benzoquinone, tetramethyl-1,4-benzoquinone, and 2,3-dimethoxy-5-methyl-1,4-benzoquinone; the paranaphthoquinones 1,4-naphthoquinone, menadione, 1,4-naphthoquinone-2-sulfonate, 2-ethylsulfanyl-3-methyl-1,4-naphthoquinone and juglone; and phenanthraquinone (PHQ) all enhance the anaerobic rate of ascorbate reduction of GSNO to produce NO and GSH. Rates of this reaction were much larger for p-benzoquinones and PHQ than for p-naphthoquinone derivatives with similar one-electron redox potentials. The quinone DMBQ also enhances the rate of NO production from S-nitrosylated bovine serum albumin upon ascorbate reduction. Density functional theory calculations suggest that stronger interactions between p-benzo- or phenanthrasemiquinones and GSNO than between p-naphthosemiquinones and GSNO are the major causes of these differences. Thus, quinones, and especially p-quinones and PHQ, could act as enhancers of NO release from GSNO in biomedical systems in the presence of ascorbate. Because quinones are exogenous toxins that could enter the human body via a chemotherapeutic application or as an environmental contaminant, they could boost the release of NO from S-nitrosothiol storages in the body in the presence of ascorbate and thus enhance the responses elicited by a sudden increase in NO levels.
Collapse
Affiliation(s)
- Pedro Sanchez-Cruz
- Department of Chemistry, University of Puerto Rico, Humacao, Puerto Rico 00791
| | - Carmelo Garcia
- Department of Chemistry, University of Puerto Rico, Humacao, Puerto Rico 00791
| | - Antonio E. Alegria
- Department of Chemistry, University of Puerto Rico, Humacao, Puerto Rico 00791
| |
Collapse
|
39
|
Drenjančević-Perić I, Jelaković B, Lombard JH, Kunert MP, Kibel A, Gros M. High-salt diet and hypertension: focus on the renin-angiotensin system. Kidney Blood Press Res 2010; 34:1-11. [PMID: 21071956 DOI: 10.1159/000320387] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A high-salt diet is one of the major risk factors in the development and maintenance of hypertension. Numerous experimental and observational studies have confirmed the association of sodium intake with blood pressure levels. The effects of a high-salt diet are related to the function of the renin-angiotensin system, which is normally suppressed by a high-salt diet. Endothelial dysfunction probably plays an important role in the influence of high sodium intake on blood pressure, although the exact mechanisms remain elusive. Genetic factors are known to be very important, and various consomic and congenic rat strains as animal models have proven to be very useful in bringing us a step closer to understanding the interaction between salt intake and hypertension. In this article, experimental data obtained in studies on animals and humans, as well as epidemiological data are reviewed.
Collapse
Affiliation(s)
- I Drenjančević-Perić
- University Josip Juraj Strossmayer Osijek, School of Medicine Osijek, Osijek, Croatia.
| | | | | | | | | | | |
Collapse
|
40
|
Tousoulis D, Papageorgiou N, Androulakis E, Paroutoglou K, Stefanadis C. Novel therapeutic strategies targeting vascular endothelium in essential hypertension. Expert Opin Investig Drugs 2010; 19:1395-1412. [PMID: 20923260 DOI: 10.1517/13543784.2010.522989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
IMPORTANCE OF THE FIELD Several studies have demonstrated the high prevalence of hypertension and the crucial role of the association between endothelial function and hypertension. Thus, in depth investigation of the pathophysiological mechanisms linking endothelial dysfunction and hypertension, as well as evaluation of the efficacy of therapeutic approaches targeting vascular endothelium in states of essential hypertension seems to be of great interest. AREAS COVERED IN THIS REVIEW The association of essential hypertension and endothelial function are discussed in depth. In addition to the classical anti-hypertensive agents, agents such as statins, tetrahydrobiopterin, l-arginine, antioxidants, sildenafil, third generation beta blockers and NO-release related agents have been found to be beneficial by improving endothelial dysfunction in essential hypertension. WHAT THE READER WILL GAIN Important aspects regarding the association of hypertension and endothelial dysfunction will be highlighted. In addition, classical and novel agents especially, will be reported thoroughly according to their effects on endothelial function in hypertension. TAKE HOME MESSAGE There is a strong bidirectional association between essential hypertension and endothelial dysfunction. Moreover, novel agents appear to be beneficial and promising in improving endothelial function in states of hypertension. However, more studies are required to evaluate their role, as the literature lacks large scale studies.
Collapse
Affiliation(s)
- Dimitris Tousoulis
- Athens University Medical School, Hippokration Hospital, First Cardiology Unit, Athens, Greece.
| | | | | | | | | |
Collapse
|
41
|
Manucha W, Kurbán F, Mazzei L, Benardón ME, Bocanegra V, Tosi MR, Vallés P. eNOS/Hsp70 interaction on rosuvastatin cytoprotective effect in neonatal obstructive nephropathy. Eur J Pharmacol 2010; 650:487-95. [PMID: 20940012 DOI: 10.1016/j.ejphar.2010.09.059] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 02/07/2023]
Abstract
There is growing evidence that statins may exert renoprotective effects beyond cholesterol reduction. The cholesterol-independent or "pleiotropic" effects of statins include the upregulation of endothelial nitric oxide synthase (eNOS). Here we determined whether eNOS associated with Hsp70 expression is involved in rosuvastatin resistance to obstruction-induced oxidative stress and cell death. Neonatal rats subjected to unilateral ureteral obstruction (UUO) within two days of birth and controls were treated daily with vehicle or rosuvastatin (10 mg/kg/day) for 14 days. Decreased endogenous nitric oxide (NO) and lower mRNA and protein eNOS expression associated with downregulation of heat shock factor 1 (Hsf1) mRNA and Hsp70 protein levels were observed in the obstructed kidney cortex. Increased nicotinamide adenine dinucleotide phosphate (NADHP) oxidase activity and apoptosis induction, regulated by mitochondrial signal pathway through an increased pro-apoptotic Bax/BcL(2) ratio and caspase 3 activity, were demonstrated. Conversely, in cortex membrane fractions from rosuvastatin-treated UUO rats, marked upregulation of eNOS expression at transcriptional and posttranscriptional levels linked to increased Hsf1 mRNA expression and enhanced mRNA and protein Hsp70 expression, were observed. Consequently, there was an absence of apoptotic response and transiently decreased NADPH oxidase activity. In addition, interaction between eNOS and Hsp70 was determined by communoprecipitation in cortex membrane fractions, showing an increased ratio of both proteins, after rosuvastatin treatment in obstructed kidney. In summary, our data demonstrate that the effect of rosuvastatin on eNOS interacting with Hsp70, results in the capacity of both to prevent mitochondrial apoptotic pathway and oxidative stress in neonatal early kidney obstruction.
Collapse
Affiliation(s)
- Walter Manucha
- Área de Fisiopatología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
42
|
Sardo MA, Mandraffino G, Riggio S, D’Ascola A, Alibrandi A, Saitta C, Imbalzano E, Castaldo M, Cinquegrani M, Saitta A. Effects of the angiotensin II receptor blocker losartan on the monocyte expression of biglycan in hypertensive patients. Clin Exp Pharmacol Physiol 2010; 37:933-8. [PMID: 20497421 DOI: 10.1111/j.1440-1681.2010.05407.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Androulakis ES, Tousoulis D, Papageorgiou N, Tsioufis C, Kallikazaros I, Stefanadis C. Essential hypertension: is there a role for inflammatory mechanisms? Cardiol Rev 2009; 17:216-221. [PMID: 19690472 DOI: 10.1097/crd.0b013e3181b18e03] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Inflammation is a key feature in the initiation, progression, and clinical implications of cardiovascular disorders, including essential hypertension. Increasing evidence shows that activation of renin-angiotensin-aldosterone system and enhanced local production of angiotensin II have been implicated in the pathophysiology of inflammation. Besides being a potent vasoactive peptide, angiotensin II regulates the inflammatory process. Specifically, it increases vascular permeability, participates in the recruitment of inflammatory cells and their adhesion to the activated endothelium, and regulates cell growth and fibrosis. Reactive oxygen species are implicated at every stage in inflammation and activate multiple intracellular signaling molecules and transcription factors associated with inflammatory responses, such as nuclear factor-kappa B and activator protein-1. Other components of the renin-angiotensin-aldosterone system, including aldosterone and/or mineralocorticoid receptor, induce the production of reactive oxygen species and participate in vascular inflammation. Several studies suggest a role of endothelin-1 as an important mediator of chronic inflammation and there is an increasing interest in the relationship between endothelin-1 and reactive oxygen species. These data may have great impact on future therapeutic strategies.
Collapse
Affiliation(s)
- Emmanuel S Androulakis
- First Cardiology Unit, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
OBJECTIVES Flavonoids may protect against cardiovascular disease. Tea is a major source of dietary flavonoids. Studies indicate black tea improves endothelial function but data on arterial haemodynamics, blood pressure (BP) and insulin resistance are equivocal. Inconsistency may be due to flaws in study design or flavonoid doses tested. Further, no study has evaluated the dose-response curve. Our study aimed to test the effects of various doses of black tea on vascular function, BP and insulin resistance. METHODS According to a randomized, double-blind, controlled, cross-over design, 19 healthy men were assigned to receive either five treatments with a twice daily intake of black tea (0, 100, 200, 400 and 800 mg tea flavonoids/day) in five periods lasting 1 week each. RESULTS Black tea dose dependently increased flow-mediated dilation (FMD) from 7.8% (control) to 9.0, 9.1, 9.6 and 10.3% after the different flavonoid doses, respectively (P = 0.0001). Already 100 mg/day (less than 1 cup of tea) increased FMD compared with control (P = 0.0113). FMD improvement after 800 mg/day was significant compared with control (P < 0.0001) but also to 100 mg/day (P = 0.0121) and 200 mg/day (P = 0.0275). Black tea intake decreased office systolic (-2.6 mmHg, P = 0.0007) and diastolic (-2.2 mmHg, P = 0.006) BP as well as stiffness index (P = 0.0159) without changes in other parameters studied. CONCLUSION Our study is the first showing black tea ingestion dose dependently improved FMD and decreased peripheral arterial stiffness in healthy volunteers. Our data suggest that worldwide all tea drinkers could benefit from protective cardiovascular effects exerted by tea.
Collapse
|
45
|
Abstract
The endothelial cell layer plays a major role in the development and progression of atherosclerosis. Endothelial NO synthase (eNOS) produces nitric oxide (NO) from L-arginine. NO can rapidly react with reactive oxygen species to form peroxynitrite. This reduces NO availability, impairs vasodilatation, and mediates proinflammatory and prothrombotic processes such as leukocyte adhesion and platelet aggregation. In the vessel wall, specific NAD(P)H oxidase complexes are major sources of reactive oxygen species. These NAD(P)H oxidases can transfer electrons across membranes to oxygen and generate superoxide anions. The short-lived superoxide anion rapidly dismutates to hydrogen peroxide, which can further increase the production of reactive oxygen species. This can lead to uncoupling of eNOS switching enzymatic activity from NO to superoxide production. This review describes the structure and regulation of different NAD(P)H oxidase complexes. We will also focus on NO/superoxide anion balance as modulated by hemodynamic forces, vasoconstrictors, and oxidized low-density lipoprotein. We will then summarize the recent advances defining the role of nitric oxide and NAD(P)H oxidase-derived reactive oxygen species in the development and progression of atherosclerosis. In conclusion, novel mechanisms affecting the vascular NO/superoxide anion balance will allow the development of therapeutic strategies in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Gregor Muller
- Department of Vascular Endothelium and Microcirculation, University of Technology Dresden, Dresden, Germany
| | | |
Collapse
|
46
|
Robinson E, Grieve DJ. Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. Pharmacol Ther 2009; 122:246-63. [PMID: 19318113 DOI: 10.1016/j.pharmthera.2009.03.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 03/03/2009] [Indexed: 01/12/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear transcription factors that belong to the nuclear receptor superfamily. Three isoforms of PPAR have been identified, alpha, delta and gamma, which play distinct roles in the regulation of key metabolic processes, such as glucose and lipid redistribution. PPARalpha is expressed predominantly in the liver, kidney and heart, and is primarily involved in fatty acid oxidation. PPARgamma is mainly associated with adipose tissue, where it controls adipocyte differentiation and insulin sensitivity. PPARdelta is abundantly and ubiquitously expressed, but as yet its function has not been clearly defined. Activators of PPARalpha (fibrates) and gamma (thiazolidinediones) have been used clinically for a number of years in the treatment of hyperlipidaemia and to improve insulin sensitivity in diabetes. More recently, PPAR activation has been found to confer additional benefits on endothelial function, inflammation and thrombosis, suggesting that PPAR agonists may be good candidates for the treatment of cardiovascular disease. In this regard, it has been demonstrated that PPAR activators are capable of reducing blood pressure and attenuating the development of atherosclerosis and cardiac hypertrophy. This review will provide a detailed discussion of the current understanding of basic PPAR physiology, with particular reference to the cardiovascular system. It will also examine the evidence supporting the involvement of the different PPAR isoforms in cardiovascular disease and discuss the current and potential future clinical applications of PPAR activators.
Collapse
Affiliation(s)
- Emma Robinson
- Centre for Vision and Vascular Science, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 3rd Floor, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL UK
| | | |
Collapse
|
47
|
Schulman IH, Zhou MS. Vascular insulin resistance: a potential link between cardiovascular and metabolic diseases. Curr Hypertens Rep 2009; 11:48-55. [PMID: 19146801 DOI: 10.1007/s11906-009-0010-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The physiologic actions of insulin in the vasculature serve to couple regulation of metabolic and hemodynamic homeostasis. Insulin activation of the phosphatidylinositol-3-kinase (PI3K) pathway promotes glucose uptake in insulin-responsive tissues and nitric oxide (NO) production in the endothelium. NO induces vasodilation and inhibits platelet aggregation and vascular smooth muscle cell growth. In contrast, insulin activation of the mitogen-activated protein kinase (MAPK) leads to vasoconstriction and pathologic vascular cellular growth. In states of insulin resistance, insulin activation of PI3K is selectively impaired, whereas the MAPK pathway is spared and activated normally. In the endothelium, selective impairment of insulin-mediated NO production may contribute to the development of hypertension, endothelial dysfunction, atherogenesis, and insulin resistance. This article reviews experimental and clinical data elucidating the physiologic and pathophysiologic role of insulin in the vasculature and the mechanisms contributing to the development of vascular and metabolic diseases.
Collapse
Affiliation(s)
- Ivonne Hernandez Schulman
- Vascular Biology Institute, University of Miami Miller School of Medicine, Veterans Affairs Medical Center, Nephrology-Hypertension Section, 1201 Northwest 16th Street, Miami, FL 33125, USA.
| | | |
Collapse
|
48
|
Schulman IH, Raij L. The angiotensin II type 2 receptor: what is its clinical significance? Curr Hypertens Rep 2009; 10:188-93. [PMID: 18765088 DOI: 10.1007/s11906-008-0036-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Angiotensin (Ang) II exerts its important physiologic functions through two distinct receptor subtypes, the type 1 (AT1) and type 2 (AT2) receptors. AT1 and AT2 receptors have demonstrated counterregulatory interactions in the cardiovascular and renal systems. The cross-talk between AT1 and AT2 receptors has been suggested to participate in regulating blood pressure, cardiovascular growth, fibrosis, and remodeling, as well as renal blood flow, growth, fibrosis, and sodium excretion. The AT1 receptor is distributed ubiquitously and abundantly in adult tissues, whereas expression of the AT2 receptor is high in the fetus but low in adult tissues. However, mounting evidence indicates that AT2 receptor cardiovascular expression increases in response to injury and AT1 receptor blocker therapy. This article reviews recent experimental and clinical data elucidating the role of the AT2 receptor in cardiovascular and renal homeostasis.
Collapse
Affiliation(s)
- Ivonne Hernandez Schulman
- University of Miami Miller School of Medicine, Nephrology-Hypertension Section, Veterans Affairs Medical Center, 1201 Northwest 16 Street, Room A-1009, Miami, FL 33125, USA.
| | | |
Collapse
|
49
|
Alegría AE, Dejesús-Andino FJ, Sanchez-Cruz P. Quinone-enhanced sonochemical production of nitric oxide from s-nitrosoglutathione. ULTRASONICS SONOCHEMISTRY 2009; 16:190-6. [PMID: 18595761 PMCID: PMC2561187 DOI: 10.1016/j.ultsonch.2008.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 04/18/2008] [Accepted: 05/17/2008] [Indexed: 05/26/2023]
Abstract
Sonolysis at 75 kHz of argon- and air-saturated aqueous solutions at pH 7.4 containing s-nitrosogluthathione (GSNO) enhances the production rate of nitric oxide (NO). The quinones, anthraquinone-2-sulfonate (AQ2S) and anthraquinone-2,7-disulfonate (AQ27S) further enhance the NO production over that produced in quinone-depleted sonicated solutions. In contrast, the hydrophobic quinones juglone (JQ) and 1,4-naphthoquinone (NQ) inhibit ultrasound-induced NO detection as compared to quinone-depleted solutions. Larger sonolytical decomposition of the hydrophobic quinones NQ and JQ, as compared to AQ2S and AQ27S, is detected which correlates with a larger production of pyrolysis-derived carbon-centered radicals. Reaction of those radicals with NO could explain NQ and JQ inhibition. This work suggests that sulfonated quinones could be used to enhance NO release from GSNO in tissues undergoing ultrasound irradiation.
Collapse
Affiliation(s)
- Antonio E Alegría
- Department of Chemistry, CUH Station, University of Puerto Rico at Humacao, Humacao, PR 00791.
| | | | | |
Collapse
|
50
|
Forman JP, Fisher NDL, Pollak MR, Cox DG, Tonna S, Curhan GC. Renin-angiotensin system polymorphisms and risk of hypertension: influence of environmental factors. J Clin Hypertens (Greenwich) 2008; 10:459-66. [PMID: 18550936 DOI: 10.1111/j.1751-7176.2008.08007.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Renin-angiotensin system (RAS) polymorphisms have been studied as candidate risk factors for hypertension with inconsistent results, possibly due to heterogeneity among various environmental factors. We analyzed the association between RAS candidate gene polymorphisms and risk of hypertension among 2722 women and also explored whether these associations varied according to menopausal status, body mass index, and dietary factors. In a main-effects analysis of all 2722 women adjusted for age and race, homozygosity for the AT1R A1166C polymorphism was associated with hypertension (odds ratio, 1.35; 95% confidence interval [CI], 1.03-1.78). We also found that a novel nonsense polymorphism in the aminopeptidase-A gene was associated with hypertension among postmenopausal women (hazard ratio, 1.54; 95% CI, 1.01-2.37), women with inadequate calcium intake (hazard ratio, 2.47; 95% CI, 1.29-4.72) and, marginally, women with inadequate vitamin D intake. In addition, angiotensin-converting enzyme and AT1R A1166C polymorphisms were associated or marginally associated with incident hypertension among postmenopausal women and those with inadequate calcium and vitamin D intakes. These data suggest that demographic and dietary factors may influence the associations between RAS polymorphisms and hypertension and could explain heterogeneity in prior studies.
Collapse
Affiliation(s)
- John P Forman
- Renal Division, the Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | | | | | | | | | | |
Collapse
|