1
|
Meng X, Wen K, Zhao J, Han Y, Ghandhi SA, Kaur SP, Brenner DJ, Turner HC, Amundson SA, Lin Q. Microfluidic measurement of intracellular mRNA with a molecular beacon probe towards point-of-care radiation triage. SENSORS & DIAGNOSTICS 2024; 3:1344-1352. [PMID: 39129862 PMCID: PMC11308381 DOI: 10.1039/d4sd00079j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024]
Abstract
In large-scale radiation exposure events, the ability to triage potential victims by the received radiation dosage is crucial. This can be evaluated by radiation-induced biological changes. Radiation-responsive mRNA is a class of biomarkers that has been explored for dose-dependency with methods such as RT-qPCR. However, these methods are challenging to implement for point-of-care devices. We have designed and used molecular beacons as probes for the measurement of radiation-induced changes of intracellular mRNA in a microfluidic device towards determining radiation dosage. Our experiments, in which fixed TK6 cells labeled with a molecular beacon specific to BAX mRNA exhibited dose-dependent fluorescence in a manner consistent with RT-qPCR analysis, demonstrate that such intracellular molecular probes can potentially be used in point-of-care radiation biodosimetry. This proof of concept could readily be extended to any RNA-based test to provide direct measurements at the bedside.
Collapse
Affiliation(s)
- Xin Meng
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Kechun Wen
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Jingyang Zhao
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Yaru Han
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| | - Shanaz A Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Salan P Kaur
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - David J Brenner
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Helen C Turner
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Sally A Amundson
- Center for Radiological Research, Columbia University Irving Medical Center New York New York 10032 USA
| | - Qiao Lin
- Department of Mechanical Engineering, Columbia University New York NY 10027 USA
| |
Collapse
|
2
|
Park JI, Jung SY, Song KH, Lee DH, Ahn J, Hwang SG, Jung IS, Lim DS, Song JY. Predictive DNA damage signaling for low‑dose ionizing radiation. Int J Mol Med 2024; 53:56. [PMID: 38695243 DOI: 10.3892/ijmm.2024.5380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Numerous studies have attempted to develop biological markers for the response to radiation for broad and straightforward application in the field of radiation. Based on a public database, the present study selected several molecules involved in the DNA damage repair response, cell cycle regulation and cytokine signaling as promising candidates for low‑dose radiation‑sensitive markers. The HuT 78 and IM‑9 cell lines were irradiated in a concentration‑dependent manner, and the expression of these molecules was analyzed using western blot analysis. Notably, the activation of ataxia telangiectasia mutated (ATM), checkpoint kinase 2 (CHK2), p53 and H2A histone family member X (H2AX) significantly increased in a concentration‑dependent manner, which was also observed in human peripheral blood mononuclear cells. To determine the radioprotective effects of cinobufagin, as an ATM and CHK2 activator, an in vivo model was employed using sub‑lethal and lethal doses in irradiated mice. Treatment with cinobufagin increased the number of bone marrow cells in sub‑lethal irradiated mice, and slightly elongated the survival of lethally irradiated mice, although the difference was not statistically significant. Therefore, KU60019, BML‑277, pifithrin‑α, and nutlin‑3a were evaluated for their ability to modulate radiation‑induced cell death. The use of BML‑277 led to a decrease in radiation‑induced p‑CHK2 and γH2AX levels and mitigated radiation‑induced apoptosis. On the whole, the present study provides a novel approach for developing drug candidates based on the profiling of biological radiation‑sensitive markers. These markers hold promise for predicting radiation exposure and assessing the associated human risk.
Collapse
Affiliation(s)
- Jeong-In Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Seung-Youn Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Kyung-Hee Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dong-Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - In-Su Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi‑do 13488, Republic of Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| |
Collapse
|
3
|
Schüle S, Ostheim P, Muhtadi R, Stewart S, Kaletka G, Hermann C, Port M, Abend M. Evaluating transport conditions of conventional, widely used EDTA blood tubes for gene expression analysis in comparison to expensive, specialized PAXgene tubes in preparedness for radiological and nuclear events. Int J Radiat Biol 2023; 100:99-107. [PMID: 37676284 DOI: 10.1080/09553002.2023.2250871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
PURPOSE Gene expression (GE) analysis of a radio-sensitive gene set (FDXR, DDB2, WNT3, POU2AF1) has been introduced in the last decade as an early and high-throughput prediction tool of later developing acute hematologic radiation syndrome (H-ARS) severity. The use of special tubes for RNA extraction from peripheral whole blood (PAXgene) represent an established standard in GE studies, although uncommonly used in clinics and not immediately available in the quantities needed in radiological/nuclear (R/N) incidents. On the other hand, EDTA blood tubes are widely utilized in clinical practice. MATERIAL AND METHODS Using blood samples from eleven healthy donors, we investigated GE changes associated with delayed processing of EDTA tubes up to 4 h at room temperature (RT) after venipuncture (simulating delays caused by daily clinical routine), followed by a subsequent transport time of 24 h at RT, 4 °C, and -20 °C. Differential gene expression (DGE) of the target genes was further examined after X-irradiation with 0 Gy and 4 Gy under optimal transport conditions. RESULTS No significant changes in DGE were observed when storing EDTA whole blood samples up to 4 h at RT and subsequently kept at 4 °C for 24 h which is in line with expected DGE. However, other storage conditions, such as -20 °C or RT, decreased RNA quality and/or (significantly) caused changes in DGE exceeding the known methodological variance of the qRT-PCR. CONCLUSION Our data indicate that the use of EDTA whole blood tubes for GE-based H-ARS severity prediction is comparable to the quality of PAXgene tubes, when processed ≤ 4 h after venipuncture and the sample is transported within 24 hours at 4 °C.
Collapse
Affiliation(s)
- Simone Schüle
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Patrick Ostheim
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Razan Muhtadi
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Samantha Stewart
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Gwendolyn Kaletka
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Cornelius Hermann
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology, affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
4
|
Abend M, Amundson S, Badie C, Brzoska K, Kriehuber R, Lacombe J, Lopez-Riego M, Lumniczky K, Endesfelder D, O’Brien G, Doucha-Senf S, Ghandhi S, Hargitai R, Kis E, Lundholm L, Oskamp D, Ostheim P, Schüle S, Schwanke D, Shuryak I, Siebenwith C, Unverricht-Yeboah M, Wojcik A, Yang J, Zenhausern F, Port M. RENEB Inter-Laboratory Comparison 2021: The Gene Expression Assay. Radiat Res 2023; 199:598-615. [PMID: 37057982 PMCID: PMC11106736 DOI: 10.1667/rade-22-00206.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/24/2023] [Indexed: 04/15/2023]
Abstract
Early and high-throughput individual dose estimates are essential following large-scale radiation exposure events. In the context of the Running the European Network for Biodosimetry and Physical Dosimetry (RENEB) 2021 exercise, gene expression assays were conducted and their corresponding performance for dose-assessment is presented in this publication. Three blinded, coded whole blood samples from healthy donors were exposed to 0, 1.2 and 3.5 Gy X-ray doses (240 kVp, 1 Gy/min) using the X-ray source Yxlon. These exposures correspond to clinically relevant groups of unexposed, low dose (no severe acute health effects expected) and high dose exposed individuals (requiring early intensive medical health care). Samples were sent to eight teams for dose estimation and identification of clinically relevant groups. For quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microarray analyses, samples were lysed, stored at 20°C and shipped on wet ice. RNA isolations and assays were run in each laboratory according to locally established protocols. The time-to-result for both rough early and more precise later reports has been documented where possible. Accuracy of dose estimates was calculated as the difference between estimated and reference doses for all doses (summed absolute difference, SAD) and by determining the number of correctly reported dose estimates that were defined as ±0.5 Gy for reference doses <2.5 Gy and ±1.0 Gy for reference doses >3 Gy, as recommended for triage dosimetry. We also examined the allocation of dose estimates to clinically/diagnostically relevant exposure groups. Altogether, 105 dose estimates were reported by the eight teams, and the earliest report times on dose categories and estimates were 5 h and 9 h, respectively. The coefficient of variation for 85% of all 436 qRT-PCR measurements did not exceed 10%. One team reported dose estimates that systematically deviated several-fold from reported dose estimates, and these outliers were excluded from further analysis. Teams employing a combination of several genes generated about two-times lower median SADs (0.8 Gy) compared to dose estimates based on single genes only (1.7 Gy). When considering the uncertainty intervals for triage dosimetry, dose estimates of all teams together were correctly reported in 100% of the 0 Gy, 50% of the 1.2 Gy and 50% of the 3.5 Gy exposed samples. The order of dose estimates (from lowest to highest) corresponding to three dose categories (unexposed, low dose and highest exposure) were correctly reported by all teams and all chosen genes or gene combinations. Furthermore, if teams reported no exposure or an exposure >3.5 Gy, it was always correctly allocated to the unexposed and the highly exposed group, while low exposed (1.2 Gy) samples sometimes could not be discriminated from highly (3.5 Gy) exposed samples. All teams used FDXR and 78.1% of correct dose estimates used FDXR as one of the predictors. Still, the accuracy of reported dose estimates based on FDXR differed considerably among teams with one team's SAD (0.5 Gy) being comparable to the dose accuracy employing a combination of genes. Using the workflow of this reference team, we performed additional experiments after the exercise on residual RNA and cDNA sent by six teams to the reference team. All samples were processed similarly with the intention to improve the accuracy of dose estimates when employing the same workflow. Re-evaluated dose estimates improved for half of the samples and worsened for the others. In conclusion, this inter-laboratory comparison exercise enabled (1) identification of technical problems and corrections in preparations for future events, (2) confirmed the early and high-throughput capabilities of gene expression, (3) emphasized different biodosimetry approaches using either only FDXR or a gene combination, (4) indicated some improvements in dose estimation with FDXR when employing a similar methodology, which requires further research for the final conclusion and (5) underlined the applicability of gene expression for identification of unexposed and highly exposed samples, supporting medical management in radiological or nuclear scenarios.
Collapse
Affiliation(s)
- M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S.A. Amundson
- Columbia University Irving Medical Center, Center for Radiological Research, New York, New York
| | - C. Badie
- UK Health Security Agency and Office for Health Improvement and Disparities, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, England
| | - K. Brzoska
- Institute of Nuclear Chemistry and Technology, Centre for Radiobiology and Biological Dosimetry, Warsaw, Poland
| | - R. Kriehuber
- Forschungszentrum Jülich, Department of Safety and Radiation Protection, Jülich, Germany
| | - J. Lacombe
- University of Arizona, Center for Applied Nanobioscience & Medicine, Phoenix, Arizona
| | - M. Lopez-Riego
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - K. Lumniczky
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - D. Endesfelder
- Bundesamt für Strahlenschutz, BfS, Oberschleißheim, Germany
| | - G. O’Brien
- UK Health Security Agency and Office for Health Improvement and Disparities, Centre for Radiation, Chemical and Environmental Hazards, Oxfordshire, England
| | | | - S.A. Ghandhi
- Columbia University Irving Medical Center, Center for Radiological Research, New York, New York
| | - R. Hargitai
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - E. Kis
- Radiation Medicine Unit, Department of Radiobiology and Radiohygiene, National Public Health Centre, Budapest, Hungary
| | - L. Lundholm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - D. Oskamp
- Forschungszentrum Jülich, Department of Safety and Radiation Protection, Jülich, Germany
| | - P. Ostheim
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - S. Schüle
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - D. Schwanke
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - I. Shuryak
- Columbia University Irving Medical Center, Center for Radiological Research, New York, New York
| | - C. Siebenwith
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - M. Unverricht-Yeboah
- Forschungszentrum Jülich, Department of Safety and Radiation Protection, Jülich, Germany
| | - A. Wojcik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - J. Yang
- University of Arizona, Center for Applied Nanobioscience & Medicine, Phoenix, Arizona
| | - F. Zenhausern
- University of Arizona, Center for Applied Nanobioscience & Medicine, Phoenix, Arizona
| | - M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
5
|
Chermat R, Ziaee M, Mak DY, Refet-Mollof E, Rodier F, Wong P, Carrier JF, Kamio Y, Gervais T. Radiotherapy on-chip: microfluidics for translational radiation oncology. LAB ON A CHIP 2022; 22:2065-2079. [PMID: 35477748 DOI: 10.1039/d2lc00177b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The clinical importance of radiotherapy in the treatment of cancer patients justifies the development and use of research tools at the fundamental, pre-clinical, and ultimately clinical levels, to investigate their toxicities and synergies with systemic agents on relevant biological samples. Although microfluidics has prompted a paradigm shift in drug discovery in the past two decades, it appears to have yet to translate to radiotherapy research. However, the materials, dimensions, design versatility and multiplexing capabilities of microfluidic devices make them well-suited to a variety of studies involving radiation physics, radiobiology and radiotherapy. This review will present the state-of-the-art applications of microfluidics in these fields and specifically highlight the perspectives offered by radiotherapy on-a-chip in the field of translational radiobiology and precision medicine. This body of knowledge can serve both the microfluidics and radiotherapy communities by identifying potential collaboration avenues to improve patient care.
Collapse
Affiliation(s)
- Rodin Chermat
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Maryam Ziaee
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - David Y Mak
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Elena Refet-Mollof
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| | - Francis Rodier
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montreal, QC, Canada
| | - Philip Wong
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Jean-François Carrier
- Département de radiologie, radio-oncologie et médecine nucléaire, Université de Montréal, Montreal, QC, Canada
- Département de Physique, Université de Montréal, Montréal, QC, Canada
- Département de Radio-oncologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - Yuji Kamio
- Département de Radio-oncologie, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
| | - Thomas Gervais
- μFO Lab, Polytechnique Montréal, Montréal, QC, Canada.
- Institut du Cancer de Montréal, (ICM), Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, Canada
| |
Collapse
|
6
|
Shen X, Chen Y, Li C, Yang F, Wen Z, Zheng J, Zhou Z. Rapid and automatic detection of micronuclei in binucleated lymphocytes image. Sci Rep 2022; 12:3913. [PMID: 35273270 PMCID: PMC8913785 DOI: 10.1038/s41598-022-07936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/28/2022] [Indexed: 11/09/2022] Open
Abstract
Cytokinesis block micronucleus (CBMN) assay is a widely used radiation biological dose estimation method. However, the subjectivity and the time-consuming nature of manual detection limits CBMN for rapid standard assay. The CBMN analysis is combined with a convolutional neural network to create a software for rapid standard automated detection of micronuclei in Giemsa stained binucleated lymphocytes images in this study. Cell acquisition, adhesive cell mass segmentation, cell type identification, and micronucleus counting are the four steps of the software's analysis workflow. Even when the cytoplasm is hazy, several micronuclei are joined to each other, or micronuclei are attached to the nucleus, this algorithm can swiftly and efficiently detect binucleated cells and micronuclei in a verification of 2000 images. In a test of 20 slides, the software reached a detection rate of 99.4% of manual detection in terms of binucleated cells, with a false positive rate of 14.7%. In terms of micronuclei detection, the software reached a detection rate of 115.1% of manual detection, with a 26.2% false positive rate. Each image analysis takes roughly 0.3 s, which is an order of magnitude faster than manual detection.
Collapse
Affiliation(s)
- Xiang Shen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China
| | - Ying Chen
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Chaowen Li
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Fucheng Yang
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Zhanbo Wen
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Jinlin Zheng
- Beijing Huironghe Technology Co., Ltd, Beijing, 101102, China
| | - Zhenggan Zhou
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100083, China.
| |
Collapse
|
7
|
Identifying Candidate Biomarkers of Ionizing Radiation in Human Pulmonary Microvascular Lumens Using Microfluidics-A Pilot Study. MICROMACHINES 2021; 12:mi12080904. [PMID: 34442526 PMCID: PMC8402207 DOI: 10.3390/mi12080904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/02/2021] [Accepted: 07/21/2021] [Indexed: 12/04/2022]
Abstract
The microvasculature system is critical for the delivery and removal of key nutrients and waste products and is significantly damaged by ionizing radiation. Single-cell capillaries and microvasculature structures are the primary cause of circulatory dysfunction, one that results in morbidities leading to progressive tissue and organ failure and premature death. Identifying tissue-specific biomarkers that are predictive of the extent of tissue and organ damage will aid in developing medical countermeasures for treating individuals exposed to ionizing radiation. In this pilot study, we developed and tested a 17 µL human-derived microvascular microfluidic lumen for identifying candidate biomarkers of ionizing radiation exposure. Through mass-spectrometry-based proteomics, we detected 35 proteins that may be candidate early biomarkers of ionizing radiation exposure. This pilot study demonstrates the feasibility of using humanized microfluidic and organ-on-a-chip systems for biomarker discovery studies. A more elaborate study of sufficient statistical power is needed to identify candidate biomarkers and test medical countermeasures of ionizing radiation.
Collapse
|
8
|
Inter-laboratory comparison of gene expression biodosimetry for protracted radiation exposures as part of the RENEB and EURADOS WG10 2019 exercise. Sci Rep 2021; 11:9756. [PMID: 33963206 PMCID: PMC8105310 DOI: 10.1038/s41598-021-88403-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2021] [Indexed: 02/03/2023] Open
Abstract
Large-scale radiation emergency scenarios involving protracted low dose rate radiation exposure (e.g. a hidden radioactive source in a train) necessitate the development of high throughput methods for providing rapid individual dose estimates. During the RENEB (Running the European Network of Biodosimetry) 2019 exercise, four EDTA-blood samples were exposed to an Iridium-192 source (1.36 TBq, Tech-Ops 880 Sentinal) at varying distances and geometries. This resulted in protracted doses ranging between 0.2 and 2.4 Gy using dose rates of 1.5-40 mGy/min and exposure times of 1 or 2.5 h. Blood samples were exposed in thermo bottles that maintained temperatures between 39 and 27.7 °C. After exposure, EDTA-blood samples were transferred into PAXGene tubes to preserve RNA. RNA was isolated in one laboratory and aliquots of four blinded RNA were sent to another five teams for dose estimation based on gene expression changes. Using an X-ray machine, samples for two calibration curves (first: constant dose rate of 8.3 mGy/min and 0.5-8 h varying exposure times; second: varying dose rates of 0.5-8.3 mGy/min and 4 h exposure time) were generated for distribution. Assays were run in each laboratory according to locally established protocols using either a microarray platform (one team) or quantitative real-time PCR (qRT-PCR, five teams). The qRT-PCR measurements were highly reproducible with coefficient of variation below 15% in ≥ 75% of measurements resulting in reported dose estimates ranging between 0 and 0.5 Gy in all samples and in all laboratories. Up to twofold reductions in RNA copy numbers per degree Celsius relative to 37 °C were observed. However, when irradiating independent samples equivalent to the blinded samples but increasing the combined exposure and incubation time to 4 h at 37 °C, expected gene expression changes corresponding to the absorbed doses were observed. Clearly, time and an optimal temperature of 37 °C must be allowed for the biological response to manifest as gene expression changes prior to running the gene expression assay. In conclusion, dose reconstructions based on gene expression measurements are highly reproducible across different techniques, protocols and laboratories. Even a radiation dose of 0.25 Gy protracted over 4 h (1 mGy/min) can be identified. These results demonstrate the importance of the incubation conditions and time span between radiation exposure and measurements of gene expression changes when using this method in a field exercise or real emergency situation.
Collapse
|
9
|
Potential application of γ-H2AX as a biodosimetry tool for radiation triage. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108350. [PMID: 34083048 DOI: 10.1016/j.mrrev.2020.108350] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 01/01/2023]
Abstract
Radiation triage and biological dosimetry are two initial steps in the medical management of exposed individuals following radiological accidents. Well established biodosimetry methods such as the dicentric (DC) assay, micronucleus (MN) assay, and fluorescence in-situ hybridization (FISH) translocation assay (for residual damage) have been used for this purpose for several decades. Recent advances in scoring methodology and networking among established laboratories have increased triage capacity; however, these methods still have limitations in analysing large sample numbers, particularly because of the ∼ 48 h minimum culture time required prior to analysis. Hence, there is a need for simple, and high throughput markers to identify exposed individuals in case of radiological/nuclear emergencies. In recent years, a few markers were identified, one being phosphorylated histone 2AX (γ-H2AX), which measured a nuclear foci or nuclear staining intensity that was found to be suitable for triage. Measurement of γ-H2AX foci formed at and around the sites of DNA double-strand breaks is a rapid and sensitive biodosimetry method which does not require culturing and is thus promising for the analysis of a large number of samples. In this review, we have summarized the recent developments of γ-H2AX assay in radiation triage and biodosimetry, focusing chiefly on: i) the importance of baseline frequency and reported values among different laboratories, ii) the influence of known and unknown variables on dose estimation, iii) quality assurance such as inter-laboratory comparison between scorers and scoring methods, and iv) current limitations and potential for future development.
Collapse
|
10
|
Shuryak I, Ghandhi SA, Turner HC, Weber W, Melo D, Amundson SA, Brenner DJ. Dose and Dose-Rate Effects in a Mouse Model of Internal Exposure from 137Cs. Part 2: Integration of Gamma-H2AX and Gene Expression Biomarkers for Retrospective Radiation Biodosimetry. Radiat Res 2020; 196:491-500. [PMID: 33064820 PMCID: PMC8944909 DOI: 10.1667/rade-20-00042.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/13/2020] [Indexed: 11/03/2022]
Abstract
Inhalation and ingestion of 137Cs and other long-lived radionuclides can occur after large-scale accidental or malicious radioactive contamination incidents, resulting in a complex temporal pattern of radiation dose/dose rate, influenced by radionuclide pharmacokinetics and chemical properties. High-throughput radiation biodosimetry techniques for such internal exposure are needed to assess potential risks of short-term toxicity and delayed effects (e.g., carcinogenesis) for exposed individuals. Previously, we used γ-H2AX to reconstruct injected 137Cs activity in experimentally-exposed mice, and converted activity values into radiation doses based on time since injection and 137Cs-elimination kinetics. In the current study, we sought to assess the feasibility and possible advantages of combining γ-H2AX with transcriptomics to improve 137Cs activity reconstructions. We selected five genes (Atf5, Hist2h2aa2, Olfr358, Psrc1, Hist2h2ac) with strong statistically-significant Spearman's correlations with injected activity and stable expression over time after 137Cs injection. The geometric mean of log-transformed signals of these five genes, combined with γ-H2AX fluorescence, were used as predictors in a nonlinear model for reconstructing injected 137Cs activity. The coefficient of determination (R2) comparing actual and reconstructed activities was 0.91 and root mean squared error (RMSE) was 0.95 MBq. These metrics remained stable when the model was fitted to a randomly-selected half of the data and tested on the other half, repeated 100 times. Model performance was significantly better when compared to our previous analysis using γ-H2AX alone, and when compared to an analysis where genes are used without γ-H2AX, suggesting that integrating γ-H2AX with gene expression provides an important advantage. Our findings show a proof of principle that integration of radiation-responsive biomarkers from different fields is promising for radiation biodosimetry of internal emitters.
Collapse
Affiliation(s)
- Igor Shuryak
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Shanaz A. Ghandhi
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Helen C. Turner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - Waylon Weber
- Lovelace Biomedical, Albuquerque, New Mexico, 87108
| | | | - Sally A. Amundson
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| | - David J. Brenner
- Center for Radiological Research, Columbia University Irving Medical Center, New York, New York 10032
| |
Collapse
|
11
|
Ghandhi SA, Shuryak I, Morton SR, Amundson SA, Brenner DJ. New Approaches for Quantitative Reconstruction of Radiation Dose in Human Blood Cells. Sci Rep 2019; 9:18441. [PMID: 31804590 PMCID: PMC6895166 DOI: 10.1038/s41598-019-54967-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/19/2019] [Indexed: 12/22/2022] Open
Abstract
In the event of a nuclear attack or large-scale radiation event, there would be an urgent need for assessing the dose to which hundreds or thousands of individuals were exposed. Biodosimetry approaches are being developed to address this need, including transcriptomics. Studies have identified many genes with potential for biodosimetry, but, to date most have focused on classification of samples by exposure levels, rather than dose reconstruction. We report here a proof-of-principle study applying new methods to select radiation-responsive genes to generate quantitative, rather than categorical, radiation dose reconstructions based on a blood sample. We used a new normalization method to reduce effects of variability of signal intensity in unirradiated samples across studies; developed a quantitative dose-reconstruction method that is generally under-utilized compared to categorical methods; and combined these to determine a gene set as a reconstructor. Our dose-reconstruction biomarker was trained using two data sets and tested on two independent ones. It was able to reconstruct dose up to 4.5 Gy with root mean squared error (RMSE) of ± 0.35 Gy on a test dataset using the same platform, and up to 6.0 Gy with RMSE of ± 1.74 Gy on a test set using a different platform.
Collapse
Affiliation(s)
- Shanaz A Ghandhi
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA.
| | - Igor Shuryak
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - Shad R Morton
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - Sally A Amundson
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| | - David J Brenner
- Columbia University Irving Medical Center, 630, W 168th street, VC11-237, New York, NY, 10032, USA
| |
Collapse
|
12
|
Macaeva E, Mysara M, De Vos WH, Baatout S, Quintens R. Gene expression-based biodosimetry for radiological incidents: assessment of dose and time after radiation exposure. Int J Radiat Biol 2018; 95:64-75. [PMID: 30247087 DOI: 10.1080/09553002.2018.1511926] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
PURPOSE In order to ensure efficient use of medical resources following a radiological incident, there is an urgent need for high-throughput time-efficient biodosimetry tools. In the present study, we tested the applicability of a gene expression signature for the prediction of exposure dose as well as the time elapsed since irradiation. MATERIALS AND METHODS We used whole blood samples from seven healthy volunteers as reference samples (X-ray doses: 0, 25, 50, 100, 500, 1000, and 2000 mGy; time points: 8, 12, 24, 36 and 48 h) and samples from seven other individuals as 'blind samples' (20 samples in total). RESULTS Gene expression values normalized to the reference gene without normalization to the unexposed controls were sufficient to predict doses with a correlation coefficient between the true and the predicted doses of 0.86. Importantly, we could also classify the samples according to the time since exposure with a correlation coefficient between the true and the predicted time point of 0.96. Because of the dynamic nature of radiation-induced gene expression, this feature will be of critical importance for adequate gene expression-based dose prediction in a real emergency situation. In addition, in this study we also compared different methodologies for RNA extraction available on the market and suggested the one most suitable for emergency situation which does not require on-spot availability of any specific reagents or equipment. CONCLUSIONS Our results represent an important advancement in the application of gene expression for biodosimetry purposes.
Collapse
Affiliation(s)
- Ellina Macaeva
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium.,b Department of Molecular Biotechnology , Ghent University , Ghent , Belgium
| | - Mohamed Mysara
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium
| | - Winnok H De Vos
- b Department of Molecular Biotechnology , Ghent University , Ghent , Belgium.,c Department of Veterinary Sciences , University of Antwerp , Belgium
| | - Sarah Baatout
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium.,b Department of Molecular Biotechnology , Ghent University , Ghent , Belgium
| | - Roel Quintens
- a Interdisciplinary Biosciences Group, Belgian Nuclear Research Centre, SCK•CEN, Mol , Belgium
| |
Collapse
|
13
|
Keam SP, Gulati T, Gamell C, Caramia F, Arnau GM, Huang C, Schittenhelm RB, Kleifeld O, Neeson PJ, Williams SG, Haupt Y. Biodosimetric transcriptional and proteomic changes are conserved in irradiated human tissue. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2018; 57:241-249. [PMID: 29850926 DOI: 10.1007/s00411-018-0746-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
Transcriptional dosimetry is an emergent field of radiobiology aimed at developing robust methods for detecting and quantifying absorbed doses using radiation-induced fluctuations in gene expression. A combination of RNA sequencing, array-based and quantitative PCR transcriptomics in cellular, murine and various ex vivo human models has led to a comprehensive description of a fundamental set of genes with demonstrable dosimetric qualities. However, these are yet to be validated in human tissue due to the scarcity of in situ-irradiated source material. This represents a major hurdle to the continued development of transcriptional dosimetry. In this study, we present a novel evaluation of a previously reported set of dosimetric genes in human tissue exposed to a large therapeutic dose of radiation. To do this, we evaluated the quantitative changes of a set of dosimetric transcripts consisting of FDXR, BAX, BCL2, CDKN1A, DDB2, BBC3, GADD45A, GDF15, MDM2, SERPINE1, TNFRSF10B, PLK3, SESN2 and VWCE in guided pre- and post-radiation (2 weeks) prostate cancer biopsies from seven patients. We confirmed the prolonged dose-responsivity of most of these transcripts in in situ-irradiated tissue. BCL2, GDF15, and to some extent TNFRSF10B, were markedly unreliable single markers of radiation exposure. Nevertheless, as a full set, these genes reliably segregated non-irradiated and irradiated tissues and predicted radiation absorption on a patient-specific basis. We also confirmed changes in the translated protein product for a small subset of these dosimeters. This study provides the first confirmatory evidence of an existing dosimetric gene set in less-accessible tissues-ensuring peripheral responses reflect tissue-specific effects. Further work will be required to determine if these changes are conserved in different tissue types, post-radiation times and doses.
Collapse
Affiliation(s)
- Simon P Keam
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| | - Twishi Gulati
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Cristina Gamell
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Franco Caramia
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Gisela Mir Arnau
- Molecular Genomics Facility, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Oded Kleifeld
- The Smoler Proteomics Center Technion, Israel Institute of Technology, Haifa, Israel
| | - Paul J Neeson
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - Scott G Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ygal Haupt
- Tumor Suppression Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
- Monash Biomedical Proteomics Facility, Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
14
|
Mu H, Sun J, Li L, Yin J, Hu N, Zhao W, Ding D, Yi L. Ionizing radiation exposure: hazards, prevention, and biomarker screening. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:15294-15306. [PMID: 29705904 DOI: 10.1007/s11356-018-2097-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/20/2018] [Indexed: 06/08/2023]
Abstract
Radiation is a form of energy derived from a source that is propagated through material in space. It consists of ionizing radiation or nonionizing radiation. Ionizing radiation is a feature of the environment and an important tool in medical treatment, but it can cause serious damage to organisms. A number of protective measures and standards of protection have been proposed to protect against radiation. There is also a need for biomarkers to rapidly assess individual doses of radiation, which can not only estimate the dose of radiation but also determine its effects on health. Proteomics, genomics, metabolomics, and lipidomics have been widely used in the search for such biomarkers. These topics are discussed in depth in this review.
Collapse
Affiliation(s)
- Hongxiang Mu
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jing Sun
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Linwei Li
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Jie Yin
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Weichao Zhao
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China
| | - Lan Yi
- Institute of Cytology and Genetics, College of pharmaceutical and biological science, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, 421001, Hunan Province, People's Republic of China.
| |
Collapse
|
15
|
Shrestha S, Vanasse A, Cooper LN, Antosh MP. Gene Expression as a Dosimeter in Irradiated Drosophila melanogaster. J Comput Biol 2017; 24:1265-1274. [PMID: 29035581 PMCID: PMC5729855 DOI: 10.1089/cmb.2017.0170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Biological indicators would be of use in radiation dosimetry in situations where an exposed person is not wearing a dosimeter, or when physical dosimeters are insufficient to estimate the risk caused by the radiation exposure. In this work, we investigate the use of gene expression as a dosimeter. Gene expression analysis was done on 15,222 genes of Drosophila melanogaster (fruit flies) at days 2, 10, and 20 postirradiation, with X-ray exposures of 10, 1000, 5000, 10,000, and 20,000 roentgens. Several genes were identified, which could serve as a biodosimeter in an irradiated D. melanogaster model. Many of these genes have human homologues. Six genes showed a linear response (R2 > 0.9) with dose at all time points. One of these genes, inverted repeat-binding protein, is a known DNA repair gene and has a human homologue (XRCC6). The lowest dose, 10 roentgen, is very low for fruit flies. If the lowest dose is excluded, 13 genes showed a linear response with dose at all time points. This includes 5 of 6 genes that were linear with all radiation doses included. Of these 13 genes, 4 have human homologues and 8 have known functions. The expression of this panel of genes, particularly those with human homologues, could potentially be used as the biological indicator of radiation exposure in dosimetry applications.
Collapse
Affiliation(s)
- Samana Shrestha
- 1 Department of Physics, University of Rhode Island , Kingston, Rhode Island
| | - Adam Vanasse
- 1 Department of Physics, University of Rhode Island , Kingston, Rhode Island
| | - Leon N Cooper
- 2 Department of Physics, Brown University , Providence, Rhode Island.,3 Institute for Brain and Neural Systems, Brown University , Providence, Rhode Island
| | - Michael P Antosh
- 1 Department of Physics, University of Rhode Island , Kingston, Rhode Island.,3 Institute for Brain and Neural Systems, Brown University , Providence, Rhode Island
| |
Collapse
|
16
|
Li S, Zhang QZ, Zhang DQ, Feng JB, Luo Q, Lu X, Wang XR, Li KP, Chen DQ, Mu XF, Gao L, Liu QJ. GDF-15 gene expression alterations in human lymphoblastoid cells and peripheral blood lymphocytes following exposure to ionizing radiation. Mol Med Rep 2017; 15:3599-3606. [PMID: 28440431 PMCID: PMC5436215 DOI: 10.3892/mmr.2017.6476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 02/20/2017] [Indexed: 02/05/2023] Open
Abstract
The identification of rapid, sensitive and high‑throughput biomarkers is imperative in order to identify individuals harmed by radiation accidents, and accurately evaluate the absorbed doses of radiation. DNA microarrays have previously been used to evaluate the alterations in growth/differentiation factor 15 (GDF15) gene expression in AHH‑1 human lymphoblastoid cells, following exposure to γ‑rays. The present study aimed to characterize the relationship between the dose of ionizing radiation and the produced effects in GDF‑15 gene expression in AHH‑1 cells and human peripheral blood lymphocytes (HPBLs). GDF‑15 mRNA and protein expression levels following exposure to γ‑rays and neutron radiation were assessed by reverse transcription‑quantitative polymerase chain reaction and western blot analysis in AHH‑1 cells. In addition, alterations in GDF‑15 gene expression in HPBLs following ex vivo irradiation were evaluated. The present results demonstrated that GDF‑15 mRNA and protein expression levels in AHH‑1 cells were significantly upregulated following exposure to γ‑ray doses ranging between 1 and 10 Gy, regardless of the dose rate. A total of 48 h following exposure to neutron radiation, a dose‑response relationship was identified in AHH‑1 cells at γ‑ray doses between 0.4 and 1.6 Gy. GDF‑15 mRNA levels in HPBLs were significantly upregulated following exposure to γ‑ray doses between 1 and 8 Gy, within 4‑48 h following irradiation. These results suggested that significant time‑ and dose‑dependent alterations in GDF‑15 mRNA and protein expression occur in AHH‑1 cells and HPBLs in the early phases following exposure to ionizing radiation. In conclusion, alterations in GDF‑15 gene expression may have potential as a biomarker to evaluate radiation exposure.
Collapse
Affiliation(s)
- Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Qing-Zhao Zhang
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - De-Qin Zhang
- Beijing Shijingshan Center for Disease Control and Prevention, Beijing 100043, P.R. China
| | - Jiang-Bin Feng
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Qun Luo
- Department of Transfusion, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Xin-Ru Wang
- Department of Clinical Laboratory, Second Artillery General Hospital PLA, Beijing 100088, P.R. China
| | - Kun-Peng Li
- Department of Radiotherapy, General Hospital of Armed Police Forces, Beijing 100039, P.R. China
| | - De-Qing Chen
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Xiao-Feng Mu
- Department of Radiotherapy, General Hospital of Armed Police Forces, Beijing 100039, P.R. China
| | - Ling Gao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P.R. China
| |
Collapse
|
17
|
Pannkuk EL, Fornace AJ, Laiakis EC. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules. Int J Radiat Biol 2017; 93:1151-1176. [PMID: 28067089 DOI: 10.1080/09553002.2016.1269218] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. CONCLUSIONS Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.
Collapse
Affiliation(s)
- Evan L Pannkuk
- a Tumor Biology Program , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA
| | - Albert J Fornace
- b Molecular Oncology , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA.,c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| | - Evagelia C Laiakis
- c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| |
Collapse
|
18
|
Sproull M, Camphausen K. State-of-the-Art Advances in Radiation Biodosimetry for Mass Casualty Events Involving Radiation Exposure. Radiat Res 2016; 186:423-435. [PMID: 27710702 DOI: 10.1667/rr14452.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
With the possibility of large-scale terrorist attacks around the world, the need for modeling and development of new medical countermeasures for potential future chemical, biological, radiological and nuclear (CBRN) has been well established. Project Bioshield, initiated in 2004, provided a framework to develop and expedite research in the field of CBRN exposures. To respond to large-scale population exposures from a nuclear event or radiation dispersal device (RDD), new methods for determining received dose using biological modeling became necessary. The field of biodosimetry has advanced significantly beyond this original initiative, with expansion into the fields of genomics, proteomics, metabolomics and transcriptomics. Studies are ongoing to evaluate the use of lymphocyte kinetics for dose assessment, as well as the development of field-deployable EPR technology. In addition, expansion of traditional cytogenetic assessment methods through the use of automated platforms and the development of laboratory surge capacity networks have helped to advance our biodefense preparedness. In this review of the latest advances in the field of biodosimetry we evaluate our progress and identify areas that still need to be addressed to achieve true field-deployment readiness.
Collapse
Affiliation(s)
- Mary Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
19
|
Weissmann R, Kacprowski T, Peper M, Esche J, Jensen LR, van Diepen L, Port M, Kuss AW, Scherthan H. Transcriptome Alterations In X-Irradiated Human Gingiva Fibroblasts. HEALTH PHYSICS 2016; 111:75-84. [PMID: 27356049 PMCID: PMC4936435 DOI: 10.1097/hp.0000000000000419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/22/2015] [Indexed: 06/06/2023]
Abstract
Ionizing radiation is known to induce genomic lesions, such as DNA double strand breaks, whose repair can lead to mutations that can modulate cellular and organismal fate. Soon after radiation exposure, cells induce transcriptional changes and alterations of cell cycle programs to respond to the received DNA damage. Radiation-induced mutations occur through misrepair in a stochastic manner and increase the risk of developing cancers years after the incident, especially after high dose radiation exposures. Here, the authors analyzed the transcriptomic response of primary human gingival fibroblasts exposed to increasing doses of acute high dose-rate x rays. In the dataset obtained after 0.5 and 5 Gy x-ray exposures and two different repair intervals (0.5 h and 16 h), the authors discovered several radiation-induced fusion transcripts in conjunction with dose-dependent gene expression changes involving a total of 3,383 genes. Principal component analysis of repeated experiments revealed that the duration of the post-exposure repair intervals had a stronger impact than irradiation dose. Subsequent overrepresentation analyses showed a number of KEGG gene sets and WikiPathways, including pathways known to relate to radioresistance in fibroblasts (Wnt, integrin signaling). Moreover, a significant radiation-induced modulation of microRNA targets was detected. The data sets on IR-induced transcriptomic alterations in primary gingival fibroblasts will facilitate genomic comparisons in various genotoxic exposure scenarios.
Collapse
Affiliation(s)
- Robert Weissmann
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Tim Kacprowski
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Michel Peper
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Jennifer Esche
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Lars R. Jensen
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Laura van Diepen
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Matthias Port
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Andreas W. Kuss
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| | - Harry Scherthan
- *Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany; †Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine Greifswald, Germany; ‡Institut für Radiobiologie der Bundeswehr in Verbindung mit der Universität Ulm, München, Germany
| |
Collapse
|
20
|
Abend M, Badie C, Quintens R, Kriehuber R, Manning G, Macaeva E, Njima M, Oskamp D, Strunz S, Moertl S, Doucha-Senf S, Dahlke S, Menzel J, Port M. Examining Radiation-Induced In Vivo and In Vitro Gene Expression Changes of the Peripheral Blood in Different Laboratories for Biodosimetry Purposes: First RENEB Gene Expression Study. Radiat Res 2016; 185:109-23. [DOI: 10.1667/rr14221.1] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- M. Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - C. Badie
- Cancer Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, United Kingdom
| | | | - R. Kriehuber
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - G. Manning
- Cancer Group, Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, United Kingdom
| | | | - M. Njima
- Microbiology Units, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre, Mol, Belgium
| | - D. Oskamp
- Radiation Biology Unit, Department of Safety and Radiation Protection, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - S. Strunz
- Biomathematics and Bioinformatics Unit, Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - S. Moertl
- Institute of Radiation Biology, Helmholtz Zentrum, Munich, Germany; and
| | | | - S. Dahlke
- Medizinische Hochschule Hannover, Hannover, Germany
| | - J. Menzel
- Medizinische Hochschule Hannover, Hannover, Germany
| | - M. Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| |
Collapse
|
21
|
Radiation-induced alternative transcription and splicing events and their applicability to practical biodosimetry. Sci Rep 2016; 6:19251. [PMID: 26763932 PMCID: PMC4725928 DOI: 10.1038/srep19251] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/04/2015] [Indexed: 02/01/2023] Open
Abstract
Accurate assessment of the individual exposure dose based on easily accessible samples (e.g. blood) immediately following a radiological accident is crucial. We aimed at developing a robust transcription-based signature for biodosimetry from human peripheral blood mononuclear cells irradiated with different doses of X-rays (0.1 and 1.0 Gy) at a dose rate of 0.26 Gy/min. Genome-wide radiation-induced changes in mRNA expression were evaluated at both gene and exon level. Using exon-specific qRT-PCR, we confirmed that several biomarker genes are alternatively spliced or transcribed after irradiation and that different exons of these genes exhibit significantly different levels of induction. Moreover, a significant number of radiation-responsive genes were found to be genomic neighbors. Using three different classification models we found that gene and exon signatures performed equally well on dose prediction, as long as more than 10 features are included. Together, our results highlight the necessity of evaluating gene expression at the level of single exons for radiation biodosimetry in particular and transcriptional biomarker research in general. This approach is especially advisable for practical gene expression-based biodosimetry, for which primer- or probe-based techniques would be the method of choice.
Collapse
|
22
|
Lacombe J, Phillips SL, Zenhausern F. Microfluidics as a new tool in radiation biology. Cancer Lett 2015; 371:292-300. [PMID: 26704304 DOI: 10.1016/j.canlet.2015.11.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 12/26/2022]
Abstract
Ionizing radiations interact with molecules at the cellular and molecular levels leading to several biochemical modifications that may be responsible for biological effects on tissue or whole organisms. The study of these changes is difficult because of the complexity of the biological response(s) to radiations and the lack of reliable models able to mimic the whole molecular phenomenon and different communications between the various cell networks, from the cell activation to the macroscopic effect at the tissue or organismal level. Microfluidics, the science and technology of systems that can handle small amounts of fluids in confined and controlled environment, has been an emerging field for several years. Some microfluidic devices, even at early stages of development, may already help radiobiological research by proposing new approaches to study cellular, tissue and total-body behavior upon irradiation. These devices may also be used in clinical biodosimetry since microfluidic technology is frequently developed for integrating complex bioassay chemistries into automated user-friendly, reproducible and sensitive analyses. In this review, we discuss the use, numerous advantages, and possible future of microfluidic technology in the field of radiobiology. We will also examine the disadvantages and required improvements for microfluidics to be fully practical in radiation research and to become an enabling tool for radiobiologists and radiation oncologists.
Collapse
Affiliation(s)
- Jerome Lacombe
- Center for Applied NanoBioscience and Medicine, University of Arizona, 145 S. 79th Street, Chandler, AZ 85226, USA.
| | - Shanna Leslie Phillips
- Center for Applied NanoBioscience and Medicine, University of Arizona, 145 S. 79th Street, Chandler, AZ 85226, USA; Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, University of Arizona, 145 S. 79th Street, Chandler, AZ 85226, USA; Translational Genomics Research Institute, 445 N. Fifth Street, Phoenix, AZ 85004, USA; Department of Basic Medical Sciences, College of Medicine Phoenix, 425 N. 5th Street, Phoenix, AZ 85004, USA.
| |
Collapse
|
23
|
Brengues M, Gu J, Zenhausern F. Microfluidic module for blood cell separation for gene expression radiobiological assays. RADIATION PROTECTION DOSIMETRY 2015; 166:306-310. [PMID: 25877531 PMCID: PMC4572140 DOI: 10.1093/rpd/ncv138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Advances in molecular techniques have improved discovery of biomarkers associated with radiation exposure. Gene expression techniques have been demonstrated as effective tools for biodosimetry, and different assay platforms with different chemistries are now available. One of the main challenges is to integrate the sample preparation processing of these assays into microfluidic platforms to be fully automated for point-of-care medical countermeasures in the case of a radiological event. Most of these assays follow the same workflow processing that comprises first the collection of blood samples followed by cellular and molecular sample preparation. The sample preparation is based on the specific reagents of the assay system and depends also on the different subsets of cells population and the type of biomarkers of interest. In this article, the authors present a module for isolation of white blood cells from peripheral blood as a prerequisite for automation of gene expression assays on a microfluidic cartridge. For each sample condition, the gene expression platform can be adapted to suit the requirements of the selected assay chemistry.
Collapse
Affiliation(s)
- Muriel Brengues
- Center for Applied NanoBioscience and Medicine, The University of Arizona College of Medicine, 425 N. 5th Street, Phoenix, AZ 85004, USA
| | - Jian Gu
- Center for Applied NanoBioscience and Medicine, The University of Arizona College of Medicine, 425 N. 5th Street, Phoenix, AZ 85004, USA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and Medicine, The University of Arizona College of Medicine, 425 N. 5th Street, Phoenix, AZ 85004, USA
| |
Collapse
|
24
|
Johnston ML, Young EF, Shepard KL. Whole-blood immunoassay for γH2AX as a radiation biodosimetry assay with minimal sample preparation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2015; 54:365-372. [PMID: 25935208 DOI: 10.1007/s00411-015-0595-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
The current state of the art in high-throughput minimally invasive radiation biodosimetry involves the collection of samples in the field and analysis at a centralized facility. We have developed a simple biological immunoassay for radiation exposure that could extend this analysis out of the laboratory into the field. Such a forward placed assay would facilitate triage of a potentially exposed population. The phosphorylation and localization of the histone H2AX at double-stranded DNA breaks has already been proven to be an adequate surrogate assay for reporting DNA damage proportional to radiation dose. Here, we develop an assay for phosphorylated H2AX directed against minimally processed sample lysates. We conduct preliminary verification of H2AX phosphorylation using irradiated mouse embryo fibroblast cultures. Additional dosimetry is performed using human blood samples irradiated ex vivo. The assay reports H2AX phosphorylation in human blood samples in response to ionizing radiation over a range of 0-5 Gy in a linear fashion, without requiring filtering, enrichment, or purification of the blood sample.
Collapse
Affiliation(s)
- Matthew L Johnston
- Bialanx, Inc., 511 Avenue of the Americas, Suite 267, New York, NY, USA,
| | | | | |
Collapse
|
25
|
Lue SW, Repin M, Mahnke R, Brenner DJ. Development of a High-Throughput and Miniaturized Cytokinesis-Block Micronucleus Assay for Use as a Biological Dosimetry Population Triage Tool. Radiat Res 2015; 184:134-42. [PMID: 26230078 DOI: 10.1667/rr13991.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biodosimetry is an essential tool for providing timely assessments of radiation exposure. For a large mass-casualty event involving exposure to ionizing radiation, it is of utmost importance to rapidly provide dose information for medical treatment. The well-established cytokinesis-block micronucleus (CBMN) assay is a validated method for biodosimetry. However, the need for an accelerated sample processing is required for the CBMN assay to be a suitable population triage tool. We report here on the development of a high-throughput and miniaturized version of the CMBN assay for accelerated sample processing.
Collapse
Affiliation(s)
- Stanley W Lue
- a Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York 10032; and
| | - Mikhail Repin
- a Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York 10032; and
| | - Ryan Mahnke
- b Northrop Grumman, Elkridge, Maryland 21075
| | - David J Brenner
- a Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, New York 10032; and
| |
Collapse
|
26
|
Li MJ, Cui FM, Cheng Y, Sun D, Zhou PK, Min R. Changes in the adhesion and migration ability of peripheral blood cells: potential biomarkers indicating exposure dose. HEALTH PHYSICS 2014; 107:242-247. [PMID: 25068961 DOI: 10.1097/hp.0000000000000085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The expression of adhesion molecules and their related functions of adhesion and migration were investigated in peripheral blood mononuclear cells (PBMCs) to identify radiation-related changes and dose-dependency. The authors screened new biomarkers as radiation exposure dose indicators. Heparinized human peripheral blood was irradiated in vitro with different doses of γ-rays. The expression levels of the CD11a, CD11b, CD18, CD29, CD49d, and CD54 molecules on the surface of PBMC cells were determined by flow cytometry at different time points post-irradiation. The adhesion ability of human PBMCs was determined using an enzyme-linked immunoassay kit, and the migration ability of rat PBMCs was evaluated using a transwell chamber assay. Compared with the unirradiated control group, a significant increase (p < 0.05) in human CD11b/CD13 double-positive cells was detected 6 h post 6 Gy irradiation in vitro. These results indicated that the decrease in human CD29/CD13 double-positive cells in the 6 Gy exposure group at 6, 12, and 24 h post-irradiation was significant (p < 0.01). The adhesion ability of irradiated human PBMCs to IgG substrate increased significantly (p < 0.05) at 6 h after irradiation of 2, 4, or 6 Gy compared with non-irradiated controls. The migration ability of the rat PBMCs toward the MIP-1α chemokine significantly decreased (p < 0.05) with increasing irradiation doses. These results suggest that the protein expression of cell surface molecules and their associated cellular functions might be potential biomarkers for identifying radiation exposure doses in an emergency radiation accident.
Collapse
Affiliation(s)
- Ming-juan Li
- *JiaXing University College of Medicine, Medicine Experimental Center, 118# Jia Hang Road, Jiaxing 314001, PR China; †Division of Radiation Medicine, Department of Naval Medicine, Second Military Medical University, 800# Xiang Yin Road, Shanghai 200433, PR China; ‡Radiation Medicine Insititute, Academy of Military Medical Science, Beijing, 27# Tai Ping Road, Beijing 100850, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Liu QJ, Zhang DQ, Zhang QZ, Feng JB, Lu X, Wang XR, Li KP, Chen DQ, Mu XF, Li S, Gao L. Dose-effect of ionizing radiation-inducedPIG3gene expression alteration in human lymphoblastoid AHH-1 cells and human peripheral blood lymphocytes. Int J Radiat Biol 2014; 91:71-80. [DOI: 10.3109/09553002.2014.938374] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Flood AB, Boyle HK, Du G, Demidenko E, Nicolalde RJ, Williams BB, Swartz HM. Advances in a framework to compare bio-dosimetry methods for triage in large-scale radiation events. RADIATION PROTECTION DOSIMETRY 2014; 159:77-86. [PMID: 24729594 PMCID: PMC4067227 DOI: 10.1093/rpd/ncu120] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Planning and preparation for a large-scale nuclear event would be advanced by assessing the applicability of potentially available bio-dosimetry methods. Using an updated comparative framework the performance of six bio-dosimetry methods was compared for five different population sizes (100-1,000,000) and two rates for initiating processing of the marker (15 or 15,000 people per hour) with four additional time windows. These updated factors are extrinsic to the bio-dosimetry methods themselves but have direct effects on each method's ability to begin processing individuals and the size of the population that can be accommodated. The results indicate that increased population size, along with severely compromised infrastructure, increases the time needed to triage, which decreases the usefulness of many time intensive dosimetry methods. This framework and model for evaluating bio-dosimetry provides important information for policy-makers and response planners to facilitate evaluation of each method and should advance coordination of these methods into effective triage plans.
Collapse
Affiliation(s)
- Ann Barry Flood
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Holly K Boyle
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Gaixin Du
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | - Eugene Demidenko
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| | | | | | - Harold M Swartz
- Geisel School of Medicine at Dartmouth, EPR Center, Hanover, NH 03768, USA
| |
Collapse
|
29
|
Saglar E, Unlu S, Babalioglu I, Gokce SC, Mergen H. Assessment of ER Stress and autophagy induced by ionizing radiation in both radiotherapy patients and ex vivo irradiated samples. J Biochem Mol Toxicol 2014; 28:413-7. [PMID: 24888459 DOI: 10.1002/jbt.21579] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/30/2014] [Accepted: 05/08/2014] [Indexed: 12/12/2022]
Abstract
Acute radiation leads to several toxic clinical states and triggers some molecular pathways. To shed light on molecular mechanisms triggered by ionizing radiation (IR), we examined the expression profiles of endoplasmic reticulum (ER) stress and autophagy-related genes in individuals who were exposed to IR. Blood samples were collected from 50 cancer patients before radiotherapy and on the 5th, 15th, and 25th days of the treatment. Peripheral blood samples from 10 healthy volunteers were also obtained for ex vivo irradiation, divided into five and irradiated at a rate of 373 kGy/h to 0, 0.1, 0.5, 1, and 3Gy γ-rays using a constant gamma source. GRP78, ATG5, LC3, ATF4, XBP1, and GADD153 genes were analyzed by quantitative real-time polymerase chain reaction (QRT-PCR) using beta 2 microglobulin (B2M) and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as references. In both groups, expressions of the selected genes have increased. It can be concluded that IR induces ER stress and related authophagy pathway in the peripheral lymphocyte cells proportionally by dose.
Collapse
Affiliation(s)
- Emel Saglar
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe, Ankara, Turkey.
| | | | | | | | | |
Collapse
|
30
|
Swartz HM, Williams BB, Flood AB. Overview of the principles and practice of biodosimetry. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2014; 53:221-32. [PMID: 24519326 PMCID: PMC5982531 DOI: 10.1007/s00411-014-0522-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 02/02/2014] [Indexed: 05/05/2023]
Abstract
The principle of biodosimetry is to utilize changes induced in the individual by ionizing radiation to estimate the dose and, if possible, to predict or reflect the clinically relevant response, i.e., the biological consequences of the dose. Ideally, the changes should be specific for ionizing radiation, and the response should be unaffected by prior medical or physiological variations among subjects, including changes that might be caused by the stress and trauma from a radiation event. There are two basic types of biodosimetry with different and often complementary characteristics: those based on changes in biological parameters such as gene activation or chromosomal abnormalities and those based on physical changes in tissues (detected by techniques such as EPR). In this paper, we consider the applicability of the various techniques for different scenarios: small- and large-scale exposures to levels of radiation that could lead to the acute radiation syndrome and exposures with lower doses that do not need immediate care, but should be followed for evidence of long-term consequences. The development of biodosimetry has been especially stimulated by the needs after a large-scale event where it is essential to have a means to identify those individuals who would benefit from being brought into the medical care system. Analyses of the conventional methods officially recommended for responding to such events indicate that these methods are unlikely to achieve the results needed for timely triage of thousands of victims. Emerging biodosimetric methods can fill this critically important gap.
Collapse
Affiliation(s)
- Harold M Swartz
- EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, NH, USA,
| | | | | |
Collapse
|
31
|
Brengues M, Liu D, Korn R, Zenhausern F. Method for validating radiobiological samples using a linear accelerator. EPJ TECHNIQUES AND INSTRUMENTATION 2014; 1:2. [PMID: 25485227 PMCID: PMC4257133 DOI: 10.1140/epjti2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 12/20/2013] [Indexed: 06/04/2023]
Abstract
There is an immediate need for rapid triage of the population in case of a large scale exposure to ionizing radiation. Knowing the dose absorbed by the body will allow clinicians to administer medical treatment for the best chance of recovery for the victim. In addition, today's radiotherapy treatment could benefit from additional information regarding the patient's sensitivity to radiation before starting the treatment. As of today, there is no system in place to respond to this demand. This paper will describe specific procedures to mimic the effects of human exposure to ionizing radiation creating the tools for optimization of administered radiation dosimetry for radiotherapy and/or to estimate the doses of radiation received accidentally during a radiation event that could pose a danger to the public. In order to obtain irradiated biological samples to study ionizing radiation absorbed by the body, we performed ex-vivo irradiation of human blood samples using the linear accelerator (LINAC). The LINAC was implemented and calibrated for irradiating human whole blood samples. To test the calibration, a 2 Gy test run was successfully performed on a tube filled with water with an accuracy of 3% in dose distribution. To validate our technique the blood samples were ex-vivo irradiated and the results were analyzed using a gene expression assay to follow the effect of the ionizing irradiation by characterizing dose responsive biomarkers from radiobiological assays. The response of 5 genes was monitored resulting in expression increase with the dose of radiation received. The blood samples treated with the LINAC can provide effective irradiated blood samples suitable for molecular profiling to validate radiobiological measurements via the gene-expression based biodosimetry tools.
Collapse
Affiliation(s)
- Muriel Brengues
- />Center for Applied NanoBioscience and Medicine, The University of Arizona College of Medicine, 425 N. 5th Street, Phoenix, AZ 85004 USA
| | - David Liu
- />Scottsdale Healthcare, Scottsdale Clinical Research Institute, 10510 N. 92nd Street, Scottsdale, AZ 85258 USA
| | - Ronald Korn
- />Scottsdale Healthcare, Scottsdale Clinical Research Institute, 10510 N. 92nd Street, Scottsdale, AZ 85258 USA
| | - Frederic Zenhausern
- />Center for Applied NanoBioscience and Medicine, The University of Arizona College of Medicine, 425 N. 5th Street, Phoenix, AZ 85004 USA
- />Scottsdale Healthcare, Scottsdale Clinical Research Institute, 10510 N. 92nd Street, Scottsdale, AZ 85258 USA
| |
Collapse
|
32
|
Forrester HB, Sprung CN. Intragenic controls utilizing radiation-induced alternative transcript regions improves gene expression biodosimetry. Radiat Res 2014; 181:314-23. [PMID: 24625097 DOI: 10.1667/rr13501.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ionizing-radiation exposure can be life threatening if given to the whole body. In addition, whole body radiation exposure can affect large numbers of people such as after a nuclear reactor accident, a nuclear explosion or a radiological terrorist attack. In these cases, an accurate biodosimeter is essential for triage management. One of the problems for biodosimetry in general is the interindividual variation before and after exposure, which can make it challenging to assign an accurate dose. To begin to address this challenge, lymphocyte cell lines were exposed to 0, 1, 2 and 5 Gy ionizing radiation from a ¹³⁷Cs source at a dose rate of 0.6 Gy/min. Alternative transcripts with regions showing large differential responses to ionizing radiation were determined from exon array data. Gene expression analysis was then performed on isolated mRNA using qRT-PCR with normalization to intergenic (PGK1, GAPDH) and novel intragenic regions for candidate radiation-responsive genes, PPM1D and MDM2. Our studies show that the use of a cis-associated expression reference improved the potential dose prediction approximately 2.3-8.3 fold and provided an advantage for dose prediction compared to distantly or trans-located control ionizing radiation nonresponsive genes. This approach also provides an alternative gene expression normalization method to potentially reduce interindividual variations when untreated basal gene expression levels are unavailable. Using associated noninduced regions of ionizing radiation-induced genes provides a way to estimate basal gene expression in the irradiated sample. This strategy can be utilized as a biodosimeter on its own or to enhance other gene expression candidates for biodosimetry. This normalization strategy may also be generally applicable for other quantitative PCR strategies where normalization is required for a particular response.
Collapse
Affiliation(s)
- Helen B Forrester
- Centre for Innate Immunity and Infectious Diseases, MIMR-PHI Institute of Medical Research and Monash University, Victoria, Australia
| | | |
Collapse
|
33
|
Tucker JD, Joiner MC, Thomas RA, Grever WE, Bakhmutsky MV, Chinkhota CN, Smolinski JM, Divine GW, Auner GW. Accurate Gene Expression-Based Biodosimetry Using a Minimal Set of Human Gene Transcripts. Int J Radiat Oncol Biol Phys 2014; 88:933-9. [DOI: 10.1016/j.ijrobp.2013.11.248] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 11/26/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
|
34
|
Sullivan JM, Prasanna PGS, Grace MB, Wathen L, Wallace RL, Koerner JF, Coleman CN. Assessment of biodosimetry methods for a mass-casualty radiological incident: medical response and management considerations. HEALTH PHYSICS 2013; 105:540-54. [PMID: 24162058 PMCID: PMC3810609 DOI: 10.1097/hp.0b013e31829cf221] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Following a mass-casualty nuclear disaster, effective medical triage has the potential to save tens of thousands of lives. In order to best use the available scarce resources, there is an urgent need for biodosimetry tools to determine an individual's radiation dose. Initial triage for radiation exposure will include location during the incident, symptoms, and physical examination. Stepwise triage will include point of care assessment of less than or greater than 2 Gy, followed by secondary assessment, possibly with high throughput screening, to further define an individual's dose. Given the multisystem nature of radiation injury, it is unlikely that any single biodosimetry assay can be used as a standalone tool to meet the surge in capacity with the timeliness and accuracy needed. As part of the national preparedness and planning for a nuclear or radiological incident, the authors reviewed the primary literature to determine the capabilities and limitations of a number of biodosimetry assays currently available or under development for use in the initial and secondary triage of patients. Understanding the requirements from a response standpoint and the capability and logistics for the various assays will help inform future biodosimetry technology development and acquisition. Factors considered include: type of sample required, dose detection limit, time interval when the assay is feasible biologically, time for sample preparation and analysis, ease of use, logistical requirements, potential throughput, point-of-care capability, and the ability to support patient diagnosis and treatment within a therapeutically relevant time point.
Collapse
Affiliation(s)
- Julie M. Sullivan
- Office of Preparedness and Emergency Operations, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
- AAAS Science and Technology Policy Fellow, Washington DC
| | - Pataje G. S. Prasanna
- Radia on Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | - Marcy B. Grace
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Lynne Wathen
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - Rodney L. Wallace
- Biomedical Advanced Research & Development Authority, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - John F. Koerner
- Office of Preparedness and Emergency Operations, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
| | - C. Norman Coleman
- Office of Preparedness and Emergency Operations, Office of the Assistant Secretary for Preparedness and Response, Department of Health and Human Services, Washington, DC
- Radia on Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| |
Collapse
|
35
|
Paul S, Smilenov LB, Amundson SA. Widespread decreased expression of immune function genes in human peripheral blood following radiation exposure. Radiat Res 2013; 180:575-83. [PMID: 24168352 DOI: 10.1667/rr13343.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We report a large-scale reduced expression of genes in pathways related to cell-type specific immunity functions that emerges from microarray analysis 48 h after ex vivo γ-ray irradiation (0, 0.5, 2, 5, 8 Gy) of human peripheral blood from five donors. This response is similar to that seen in patients at 24 h after the start of total-body irradiation and strengthens the rationale for the ex vivo model as an adjunct to human in vivo studies. The most marked response was in genes associated with natural killer (NK) cell immune functions, reflecting a relative loss of NK cells from the population. T- and B-cell mediated immunity genes were also significantly represented in the radiation response. Combined with our previous studies, a single gene expression signature was able to predict radiation dose range with 97% accuracy at times from 6-48 h after exposure. Gene expression signatures that may report on the loss or functional deactivation of blood cell subpopulations after radiation exposure may be particularly useful both for triage biodosimetry and for monitoring the effect of radiation mitigating treatments.
Collapse
Affiliation(s)
- Sunirmal Paul
- Center for Radiological Research, Columbia University Medical Center, New York, New York 10032
| | | | | |
Collapse
|
36
|
EL-SAGHIRE HOUSSEIN, MICHAUX ARLETTE, THIERENS HUBERT, BAATOUT SARAH. Low doses of ionizing radiation induce immune-stimulatory responses in isolated human primary monocytes. Int J Mol Med 2013; 32:1407-14. [DOI: 10.3892/ijmm.2013.1514] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/02/2013] [Indexed: 11/05/2022] Open
|
37
|
Badie C, Kabacik S, Balagurunathan Y, Bernard N, Brengues M, Faggioni G, Greither R, Lista F, Peinnequin A, Poyot T, Herodin F, Missel A, Terbrueggen B, Zenhausern F, Rothkamm K, Meineke V, Braselmann H, Beinke C, Abend M. Laboratory intercomparison of gene expression assays. Radiat Res 2013; 180:138-48. [PMID: 23886340 DOI: 10.1667/rr3236.1] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The possibility of a large-scale acute radiation exposure necessitates the development of new methods that could provide rapid individual dose estimates with high sample throughput. The focus of the study was an intercomparison of laboratories' dose-assessment performances using gene expression assays. Lithium-heparinized whole blood from one healthy donor was irradiated (240 kVp, 1 Gy/min) immediately after venipuncture at approximately 37°C using single X-ray doses. Blood samples to establish calibration curves (0.25-4 Gy) as well as 10 blinded test samples (0.1-6.4 Gy) were incubated for 24 h at 37°C supplemented with an equal volume of medium and 10% fetal calf serum. For quantitative reverse transcription polymerase chain reaction (qRT-PCR), samples were lysed, stored at -20°C and shipped on ice. For the Chemical Ligation Dependent Probe Amplification methodology (CLPA), aliquots were incubated in 2 ml CLPA reaction buffer (DxTerity), mixed and shipped at room temperature. Assays were run in each laboratory according to locally established protocols. The mean absolute difference (MAD) of estimated doses relative to the true doses (in Gy) was calculated. We also merged doses into binary categories reflecting aspects of clinical/diagnostic relevance and examined accuracy, sensitivity and specificity. The earliest reported time on dose estimates was <8 h. The standard deviation of technical replicate measurements in 75% of all measurements was below 11%. MAD values of 0.3-0.5 Gy and 0.8-1.3 Gy divided the laboratories contributions into two groups. These fourfold differences in accuracy could be primarily explained by unexpected variances of the housekeeping gene (P = 0.0008) and performance differences in processing of calibration and blinded test samples by half of the contributing laboratories. Reported gene expression dose estimates aggregated into binary categories in general showed an accuracies and sensitivities of 93-100% and 76-100% for the groups, with low MAD and high MAD, respectively. In conclusion, gene expression-based dose estimates were reported quickly, and for laboratories with MAD between 0.3-0.5 Gy binary dose categories of clinical significance could be discriminated with an accuracy and sensitivity comparable to established cytogenetic assays.
Collapse
Affiliation(s)
- C Badie
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Didcot, Oxon OX11 0RQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Manning G, Rothkamm K. Deoxyribonucleic acid damage-associated biomarkers of ionising radiation: current status and future relevance for radiology and radiotherapy. Br J Radiol 2013; 86:20130173. [PMID: 23659923 DOI: 10.1259/bjr.20130173] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Diagnostic and therapeutic radiation technology has developed dramatically in recent years, and its use has increased significantly, bringing clinical benefit. The use of diagnostic radiology has become widespread in modern society, particularly in paediatrics where the clinical benefit needs to be balanced with the risk of leukaemia and brain cancer increasing after exposure to low doses of radiation. With improving long-term survival rates of radiotherapy patients and the ever-increasing use of diagnostic and interventional radiology procedures, concern has risen over the long-term risks and side effects from such treatments. Biomarker development in radiology and radiotherapy has progressed significantly in recent years to investigate the effects of such use and optimise treatment. Recent biomarker development has focused on improving the limitations of established techniques by the use of automation, increasing sensitivity and developing novel biomarkers capable of quicker results. The effect of low-dose exposure (0-100 mGy) used in radiology, which is increasingly linked to cancer incidences, is being investigated, as some recent research challenges the linear-no-threshold model. Radiotherapy biomarkers are focused on identifying radiosensitive patients, determining the treatment-associated risk and allowing for a tailored and more successful treatment of cancer patients. For biomarkers in any of these areas to be successfully developed, stringent criteria must be applied in techniques and analysis of data to reduce variation among reports and allow data sets to be accurately compared. Newly developed biomarkers can then be used in combination with the established techniques to better understand and quantify the individual biological response to exposures associated with radiology tests and to personalise treatment plans for patients.
Collapse
Affiliation(s)
- G Manning
- Biological Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, UK.
| | | |
Collapse
|
39
|
El-Saghire H, Thierens H, Monsieurs P, Michaux A, Vandevoorde C, Baatout S. Gene set enrichment analysis highlights different gene expression profiles in whole blood samples X-irradiated with low and high doses. Int J Radiat Biol 2013; 89:628-38. [PMID: 23484538 DOI: 10.3109/09553002.2013.782448] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE Health risks from exposure to low doses of ionizing radiation (IR) are becoming a concern due to the rapidly growing medical applications of X-rays. Using microarray techniques, this study aims for a better understanding of whole blood response to low and high doses of IR. MATERIALS AND METHODS Aliquots of peripheral blood samples were irradiated with 0, 0.05, and 1 Gy X-rays. RNA was isolated and prepared for microarray gene expression experiments. Bioinformatic approaches, i.e., univariate statistics and Gene Set Enrichment Analysis (GSEA) were used for analyzing the data generated. Seven differentially expressed genes were selected for further confirmation using quantitative real-time PCR (RT-PCR). RESULTS Functional analysis of genes differentially expressed at 0.05 Gy showed the enrichment of chemokine and cytokine signaling. However, responsive genes to 1 Gy were mainly involved in tumor suppressor protein 53 (p53) pathways. In a second approach, GSEA showed a higher statistical ranking of inflammatory and immune-related gene sets that are involved in both responding and/or secretion of growth factors, chemokines, and cytokines. This indicates the activation of the immune response. Whereas, gene sets enriched at 1 Gy were 'classical' radiation pathways like p53 signaling, apoptosis, DNA damage and repair. Comparative RT-PCR studies showed the significant induction of chemokine-related genes (PF4, GNG11 and CCR4) at 0.05 Gy and DNA damage and repair genes at 1 Gy (DDB2, AEN and CDKN1A). CONCLUSIONS This study moves a step forward in understanding the different cellular responses to low and high doses of X-rays. In addition to that, and in a broader context, it addresses the need for more attention to the risk assessment of health effects resulting from the exposure to low doses of IR.
Collapse
Affiliation(s)
- Houssein El-Saghire
- Radiobiology Unit, Molecular and Cellular Biology, Belgian Nuclear Research Centre (SCK•CEN), Mol, Belgium.
| | | | | | | | | | | |
Collapse
|
40
|
Omaruddin RA, Roland TA, Wallace HJ, Chaudhry MA. Gene expression as a biomarker for human radiation exposure. Hum Cell 2013; 26:2-7. [PMID: 23446844 DOI: 10.1007/s13577-013-0059-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/10/2013] [Indexed: 11/25/2022]
Abstract
Accidental exposure to ionizing radiation can be unforeseen, rapid, and devastating. The detonation of a radiological device leading to such an exposure can be detrimental to the exposed population. The radiation-induced damage may manifest as acute effects that can be detected clinically or may be more subtle effects that can lead to long-term radiation-induced abnormalities. Accurate identification of the individuals exposed to radiation is challenging. The availability of a rapid and effective screening test that could be used as a biomarker of radiation exposure detection is mandatory. We tested the suitability of alterations in gene expression to serve as a biomarker of human radiation exposure. To develop a useful gene expression biomonitor, however, gene expression changes occurring in response to irradiation in vivo must be measured directly. Patients undergoing radiation therapy provide a suitable test population for this purpose. We examined the expression of CC3, MADH7, and SEC PRO in blood samples of these patients before and after radiotherapy to measure the in vivo response. The gene expression after ionizing radiation treatment varied among different patients, suggesting the complexity of the response. The expression of the SEC PRO gene was repressed in most of the patients. The MADH7 gene was found to be upregulated in most of the subjects and could serve as a molecular marker of radiation exposure.
Collapse
Affiliation(s)
- Romaica A Omaruddin
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, 302 Rowell Building, Burlington, VT 05405, USA
| | | | | | | |
Collapse
|
41
|
Budworth H, Snijders AM, Marchetti F, Mannion B, Bhatnagar S, Kwoh E, Tan Y, Wang SX, Blakely WF, Coleman M, Peterson L, Wyrobek AJ. DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood. PLoS One 2012; 7:e48619. [PMID: 23144912 PMCID: PMC3492462 DOI: 10.1371/journal.pone.0048619] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/26/2012] [Indexed: 01/28/2023] Open
Abstract
DNA damage and repair are hallmarks of cellular responses to ionizing radiation. We hypothesized that monitoring the expression of DNA repair-associated genes would enhance the detection of individuals exposed to radiation versus other forms of physiological stress. We employed the human blood ex vivo radiation model to investigate the expression responses of DNA repair genes in repeated blood samples from healthy, non-smoking men and women exposed to 2 Gy of X-rays in the context of inflammation stress mimicked by the bacterial endotoxin lipopolysaccharide (LPS). Radiation exposure significantly modulated the transcript expression of 12 genes of 40 tested (2.2E-06<p<0.03), of which 8 showed no overlap between unirradiated and irradiated samples (CDKN1A, FDXR, BBC3, PCNA, GADD45a, XPC, POLH and DDB2). This panel demonstrated excellent dose response discrimination (0.5 to 8 Gy) in an independent human blood ex vivo dataset, and 100% accuracy for discriminating patients who received total body radiation. Three genes of this panel (CDKN1A, FDXR and BBC3) were also highly sensitive to LPS treatment in the absence of radiation exposure, and LPS co-treatment significantly affected their radiation responses. At the protein level, BAX and pCHK2-thr68 were elevated after radiation exposure, but the pCHK2-thr68 response was significantly decreased in the presence of LPS. Our combined panel yields an estimated 4-group accuracy of ∼90% to discriminate between radiation alone, inflammation alone, or combined exposures. Our findings suggest that DNA repair gene expression may be helpful to identify biodosimeters of exposure to radiation, especially within high-complexity exposure scenarios.
Collapse
Affiliation(s)
- Helen Budworth
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Antoine M. Snijders
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Francesco Marchetti
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Brandon Mannion
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Sandhya Bhatnagar
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Ely Kwoh
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Yuande Tan
- Center for Biostatistics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Shan X. Wang
- Department of Materials Science and Engineering, Department of Electrical Engineering, Stanford University, Stanford, California, United States of America
| | - William F. Blakely
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Matthew Coleman
- Radiation Oncology, UC Davis School of Medicine, University of California Davis, Davis, California, United States of America
| | - Leif Peterson
- Center for Biostatistics, The Methodist Hospital Research Institute, Houston, Texas, United States of America
| | - Andrew J. Wyrobek
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
42
|
Pernot E, Hall J, Baatout S, Benotmane MA, Blanchardon E, Bouffler S, El Saghire H, Gomolka M, Guertler A, Harms-Ringdahl M, Jeggo P, Kreuzer M, Laurier D, Lindholm C, Mkacher R, Quintens R, Rothkamm K, Sabatier L, Tapio S, de Vathaire F, Cardis E. Ionizing radiation biomarkers for potential use in epidemiological studies. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 751:258-286. [DOI: 10.1016/j.mrrev.2012.05.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/04/2012] [Accepted: 05/28/2012] [Indexed: 02/07/2023]
|
43
|
Swartz HM, Flood AB, Williams BB, Dong R, Swarts SG, He X, Grinberg O, Sidabras J, Demidenko E, Gui J, Gladstone DJ, Jarvis LA, Kmiec MM, Kobayashi K, Lesniewski PN, Marsh SDP, Matthews TP, Nicolalde RJ, Pennington PM, Raynolds T, Salikhov I, Wilcox DE, Zaki BI. Electron paramagnetic resonance dosimetry for a large-scale radiation incident. HEALTH PHYSICS 2012; 103:255-67. [PMID: 22850230 PMCID: PMC3649772 DOI: 10.1097/hp.0b013e3182588d92] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
With possibilities for radiation terrorism and intensified concerns about nuclear accidents since the recent Fukushima Daiichi event, the potential exposure of large numbers of individuals to radiation that could lead to acute clinical effects has become a major concern. For the medical community to cope with such an event and avoid overwhelming the medical care system, it is essential to identify not only individuals who have received clinically significant exposures and need medical intervention but also those who do not need treatment. The ability of electron paramagnetic resonance to measure radiation-induced paramagnetic species, which persist in certain tissues (e.g., teeth, fingernails, toenails, bone, and hair), has led to this technique becoming a prominent method for screening significantly exposed individuals. Although the technical requirements needed to develop this method for effective application in a radiation event are daunting, remarkable progress has been made. In collaboration with General Electric and through funding committed by the Biomedical Advanced Research and Development Authority, electron paramagnetic resonance tooth dosimetry of the upper incisors is being developed to become a Food and Drug Administration-approved and manufacturable device designed to carry out triage for a threshold dose of 2 Gy. Significant progress has also been made in the development of electron paramagnetic resonance nail dosimetry based on measurements of nails in situ under point-of-care conditions, and in the near future this may become a second field-ready technique. Based on recent progress in measurements of nail clippings, it is anticipated that this technique may be implementable at remotely located laboratories to provide additional information when the measurements of dose on-site need to be supplemented. The authors conclude that electron paramagnetic resonance dosimetry is likely to be a useful part of triage for a large-scale radiation incident.
Collapse
|
44
|
Lam V, Moulder JE, Salzman NH, Dubinsky EA, Andersen GL, Baker JE. Intestinal microbiota as novel biomarkers of prior radiation exposure. Radiat Res 2012; 177:573-83. [PMID: 22439602 DOI: 10.1667/rr2691.1] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is an urgent need for rapid, accurate, and sensitive diagnostic platforms to confirm exposure to radiation and estimate the dose absorbed by individuals subjected to acts of radiological terrorism, nuclear power plant accidents, or nuclear warfare. Clinical symptoms and physical dosimeters, even when available, do not provide adequate diagnostic information to triage and treat life-threatening radiation injuries. We hypothesized that intestinal microbiota act as novel biomarkers of prior radiation exposure. Adult male Wistar rats (n = 5/group) received single or multiple fraction total-body irradiation of 10.0 Gy and 18.0 Gy, respectively. Fresh fecal pellets were obtained from each rat prior to (day 0) and at days 4, 11, and 21 post-irradiation. Fecal microbiota composition was determined using microarray and quantitative PCR (polymerase chain reaction) analyses. The radiation exposure biomarkers consisted of increased 16S rRNA levels of 12 members of the Bacteroidales, Lactobacillaceae, and Streptococcaceae after radiation exposure, unchanged levels of 98 Clostridiaceae and Peptostreptococcaceae, and decreased levels of 47 separate Clostridiaceae members; these biomarkers are present in human and rat feces. As a result of the ubiquity of these biomarkers, this biomarker technique is non-invasive; microbiota provide a sustained level of reporting signals that are increased several-fold following exposure to radiation, and intestinal microbiota that are unaffected by radiation serve as internal controls. We conclude that intestinal microbiota serve as novel biomarkers of prior radiation exposure, and may be able to complement conventional chromosome aberrational analysis to significantly enhance biological dose assessments.
Collapse
Affiliation(s)
- Vy Lam
- Division of Cardiothoracic Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
45
|
Li MJ, Wang WW, Chen SW, Shen Q, Min R. Radiation dose effect of DNA repair-related gene expression in mouse white blood cells. Med Sci Monit 2012; 17:BR290-7. [PMID: 21959603 PMCID: PMC3539470 DOI: 10.12659/msm.881976] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Background The aim of this study was to screen molecular biomarkers for biodosimetry from DNA repair-related gene expression profiles. Material/Methods Mice were subjected to whole-body exposure with 60Co γ rays with a dose range of 0–8 Gy at a dose rate of 0.80 Gy/min. RNA was extracted from the peripheral blood of irradiated mice at 4, 8, 12, 24 and 48hrs post-irradiation. The mRNA transcriptional changes of 11 genes related to DNA damage and repair were detected using real-time quantitative polymerase chain reaction (RT-PCR). Results Of the 11 genes examined, CDKN1A (cyclin-dependent kinase inhibitor 1A or p21, Cip1) and ATM (ataxia telangiectasia mutated) expression levels were found to be heavily up- and down-regulated, respectively, with exposure dose increasing at different post-irradiation times. RAD50 (RAD50 homolog), PLK3 (polo-like kinase 3), GADD45A (growth arrest and DNA damage-inducible, alpha), DDB2 (damage-specific DNA-binding protein 2), BBC3 (BCL2-binding component 3) and IER5 (immediate early response 5) gene expression levels were found to undergo significant oscillating changes over a broad dose range of 2–8 Gy at post-exposure time points observed. Three of the genes were found not to change within the observed exposure dose and post-radiation time ranges. Conclusions The results of this study add to the biodosimetry with biomarker data pool and will be helpful for constructing appropriate gene expression biomarker systems to evaluate radiation exposure doses.
Collapse
Affiliation(s)
- Ming-juan Li
- Division of Radiation Medicine, Department of Naval Medicine, 2nd Military Medical University, Shanghai, China
| | | | | | | | | |
Collapse
|
46
|
Boldt S, Knops K, Kriehuber R, Wolkenhauer O. A frequency-based gene selection method to identify robust biomarkers for radiation dose prediction. Int J Radiat Biol 2012; 88:267-76. [DOI: 10.3109/09553002.2012.638358] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
47
|
Tucker JD, Grever WE, Joiner MC, Konski AA, Thomas RA, Smolinski JM, Divine GW, Auner GW. Gene expression-based detection of radiation exposure in mice after treatment with granulocyte colony-stimulating factor and lipopolysaccharide. Radiat Res 2011; 177:209-19. [PMID: 22128785 DOI: 10.1667/rr2749.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In a large-scale nuclear incident, many thousands of people may be exposed to a wide range of radiation doses. Rapid biological dosimetry will be required on an individualized basis to estimate the exposures and to make treatment decisions. To ameliorate the adverse effects of exposure, victims may be treated with one or more cytokine growth factors, including granulocyte colony-stimulating factor (G-CSF), which has therapeutic efficacy for treating radiation-induced bone marrow ablation by stimulating granulopoiesis. The existence of infections and the administration of G-CSF each may confound the ability to achieve reliable dosimetry by gene expression analysis. In this study, C57BL/6 mice were used to determine the extent to which G-CSF and lipopolysaccharide (LPS, which simulates infection by gram-negative bacteria) alter the expression of genes that are either radiation-responsive or non-responsive, i.e., show potential for use as endogenous controls. Mice were acutely exposed to (60)Co γ rays at either 0 Gy or 6 Gy. Two hours later the animals were injected with either 0.1 mg/kg of G-CSF or 0.3 mg/kg of LPS. Expression levels of 96 different gene targets were evaluated in peripheral blood after an additional 4 or 24 h using real-time quantitative PCR. The results indicate that the expression levels of some genes are altered by LPS, but altered expression after G-CSF treatment was generally not observed. The expression levels of many genes therefore retain utility for biological dosimetry or as endogenous controls. These data suggest that PCR-based quantitative gene expression analyses may have utility in radiation biodosimetry in humans even in the presence of an infection or after treatment with G-CSF.
Collapse
Affiliation(s)
- James D Tucker
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Fenech M. Current status, new frontiers and challenges in radiation biodosimetry using cytogenetic, transcriptomic and proteomic technologies. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2011.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Swartz HM, Williams BB, Nicolalde RJ, Demidenko E, Flood AB. Overview of biodosimetry for management of unplanned exposures to ionizing radiation. RADIAT MEAS 2011. [DOI: 10.1016/j.radmeas.2011.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
50
|
Coy SL, Cheema AK, Tyburski JB, Laiakis EC, Collins SP, Fornace AJ. Radiation metabolomics and its potential in biodosimetry. Int J Radiat Biol 2011; 87:802-23. [PMID: 21692691 PMCID: PMC3572797 DOI: 10.3109/09553002.2011.556177] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE Radiation exposure triggers a complex network of molecular and cellular responses that impacts metabolic processes and alters the levels of metabolites. Such metabolites have potential as biomarkers for radiation dosimetry. This review provides an overview of radiation signalling and metabolism, of metabolomic approaches used in the discovery phase, and of instrumentation with the potential to assess radiation injury in the field. APPROACH Recent developments in fast, high-resolution chromatography and mass spectrometry and new data analysis methods allow the quantitative assessment of thousands of metabolites based on biofluids obtained non-invasively. This complex analysis leads to the discovery-phase identification of groups of metabolites useful for screening and biodosimetry by targeted quantitative measurement. Instrumentation for target analysis can be simpler than that used for discovery, so we examine current technologies based on ion mobility. CONCLUSIONS Recent published results and ongoing studies examine the complex changes in the levels of many metabolites caused by radiation exposure, and identify groups of small-molecule biomarkers for radiation biodosimetry. Based on results showing separation orthogonal to mass, chemical noise suppression, and high sensitivity, differential mobility mass spectrometry (DMS-MS) ion mobility spectrometry appears highly promising for the development of deployable instrumentation.
Collapse
Affiliation(s)
- Stephen L. Coy
- Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Amrita K. Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - John B. Tyburski
- Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Evagelia C. Laiakis
- Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Sean P. Collins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Albert J. Fornace
- Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|