1
|
Gaikwad KB, Babu JS, Parthasarathi KTS, Narayanan J, Padmanabhan P, Pandey A, Gundimeda S, Elchuri SV, Sharma J. Computational approaches for identifications of altered ion channels in keratoconus. Eye (Lond) 2025; 39:145-153. [PMID: 39420106 PMCID: PMC11733014 DOI: 10.1038/s41433-024-03395-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 09/13/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Keratoconus is an etiologically complex, degenerative corneal disease that eventually leads to loss of corneal integrity. Cells in corneal epithelium and endothelium express various types of ion channels that play important roles in ocular pathology. This emphasizes the need of understanding alterations of ion channels in keratoconus. METHOD Differential gene expression analysis was performed to identify deregulated ion channels in keratoconus patients using transcriptomic data. Thereafter correlation analysis of ion channel expression was performed to obtain the changed correlation between ion channels' expression in keratoconus patients versus control samples. Moreover, Protein-protein interaction networks and a pathway map was constructed to identify cellular processes altered due to the deregulation of ion channels. Furthermore, drugs interacting with deregulated ion channels were identified. RESULTS Total 75 ion channels were found to be deregulated in keratoconus, of which 12 were upregulated and 63 were downregulated. Correlations between ion channel expressions found to be different in control and keratoconus samples. Thereafter, protein-protein interactions network was generated to identify hub ion channels in network. Furthermore, the pathway map was constructed to depict calcium signalling, MAPK signalling, synthesis and secretion of cortisol, and cAMP signalling. The 19 FDA- approved drugs that interact with the 5 deregulated ion channels were identified. CONCLUSION Down-regulation of voltage-gated calcium channels can be attributed to reduced cell proliferation and differentiation. Additionally, deregulated ion channels in 3',5'- cyclic adenosine monophosphate signalling may be responsible for elevated cortisol level in progressive keratoconus patients.
Collapse
Affiliation(s)
- Kiran Bharat Gaikwad
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Jayavigneeswari Suresh Babu
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, 600006, India
| | - K T Shreya Parthasarathi
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Janakiraman Narayanan
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, 600006, India
| | - Prema Padmanabhan
- Department of Cornea, Medical Research Foundation, Sankara Nethralaya, Chennai, 600006, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Seetaramanjaneyulu Gundimeda
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Sailaja V Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya Campus, Chennai, 600006, India.
| | - Jyoti Sharma
- Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.
| |
Collapse
|
2
|
Singh RB, Koh S, Sharma N, Woreta FA, Hafezi F, Dua HS, Jhanji V. Keratoconus. Nat Rev Dis Primers 2024; 10:81. [PMID: 39448666 DOI: 10.1038/s41572-024-00565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
Keratoconus is a progressive eye disorder primarily affecting individuals in adolescence and early adulthood. The ectatic changes in the cornea cause thinning and cone-like steepening leading to irregular astigmatism and reduced vision. Keratoconus is a complex disorder with a multifaceted aetiology and pathogenesis, including genetic, environmental, biomechanical and cellular factors. Environmental factors, such as eye rubbing, UV light exposure and contact lens wearing, are associated with disease progression. On the cellular level, a complex interplay of hormonal changes, alterations in enzymatic activity that modify extracellular membrane stiffness, and changes in biochemical and biomechanical signalling pathways disrupt collagen cross-linking within the stroma, contributing to structural integrity loss and distortion of normal corneal anatomy. Clinically, keratoconus is diagnosed through clinical examination and corneal imaging. Advanced imaging platforms have improved the detection of keratoconus, facilitating early diagnosis and monitoring of disease progression. Treatment strategies for keratoconus are tailored to disease severity and progression. In early stages, vision correction with glasses or soft contact lenses may suffice. As the condition advances, rigid gas-permeable contact lenses or scleral lenses are prescribed. Corneal cross-linking has emerged as a pivotal treatment aimed at halting the progression of corneal ectasia. In patients with keratoconus with scarring or contact lens intolerance, surgical interventions are performed.
Collapse
Affiliation(s)
- Rohan Bir Singh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands
| | - Shizuka Koh
- Department of Innovative Visual Science, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Namrata Sharma
- Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Fasika A Woreta
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Farhad Hafezi
- ELZA Institute, Zurich, Switzerland
- EMAGine AG, Zug, Switzerland
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
| | - Harminder S Dua
- Department of Ophthalmology, University of Nottingham, Nottingham, UK
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Tanriverdi B, Sarac O, Cubukcu HC, Caglayan M, Durak ZE, Durak I, Cagil N. Xanthine oxidase enzyme activity in keratoconic corneal epithelium. Int Ophthalmol 2021; 41:1063-1069. [PMID: 33389422 DOI: 10.1007/s10792-020-01665-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 11/27/2020] [Indexed: 11/27/2022]
Abstract
PURPOSE To assess the activity of xanthine oxidase (XO) enzyme in keratoconic corneal epithelium and to evaluate its relationship with the keratoconus (KC) severity. METHODS This prospective and randomized study included 66 eyes of 54 KC patients who received corneal collagen cross-linking treatment and 43 eyes of 32 patients who underwent photorefractive keratectomy due to their refractive error. During surgical procedures, the corneal epithelium was mechanically scraped and gathered to analyze the XO enzyme activity spectrophotometrically. The KC group was subdivided into three groups (stages 1, 2, and 3) according to the Amsler-Krumeich classification. The results were compared between the KC and the control group and in between KC subgroups. RESULTS No significant differences in age and gender were found between the KC and control groups (p = 0.064 and p = 0.296, respectively). The mean XO activity levels of the KC and control groups were 173.57 ± 87.61 and 223.70 ± 99.52 mIU/mg, respectively (p < 0.001). In KC group, 33 eyes were at stage 1, 19 were at stage 2, and 14 were at stage 3. No significant difference was observed between KC subgroups regarding XO activity levels (p = 0.681). CONCLUSION In this study, our findings revealed that ultraviolet-related pro-oxidant XO enzyme may have a role in the etiopathogenesis of KC. Further studies are needed to support our result. CLINICAL TRIALS REGISTRATION When we started this study in 2018, we did not have a "Clinical Trials Registration." However, we have ethics committee approval (date: 21. 02. 2018/No: 22).
Collapse
Affiliation(s)
| | - Ozge Sarac
- Department of Ophthalmology, Yildirim Beyazit University, Ankara, Turkey
| | - Hikmet Can Cubukcu
- Department of Medical Biochemistry, Maresal Cakmak State Hospital, Erzurum, Turkey
| | - Mehtap Caglayan
- Gazi Yasargil Training and Research Hospital, Diyarbakir, Turkey
| | | | - Ilker Durak
- Department of Medical Biochemistry, Faculty of Medicine, Ankara University, Morphology Building, Ankara, Turkey
| | - Nurullah Cagil
- Department of Ophthalmology, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
4
|
Genetics vs chronic corneal mechanical trauma in the etiology of keratoconus. Exp Eye Res 2020; 202:108328. [PMID: 33172608 DOI: 10.1016/j.exer.2020.108328] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022]
Abstract
Both genetic and environmental factors have been considered to play a role in the etiology keratoconus. Eye rubbing, and more recently eye compression due to sleeping position, have been identified to be highly related to the condition, and are present in a high percentage of patients. Today, the predominant model is that these factors can provide the "second hit" necessary to generate the condition in a genetically susceptible individual. In addition, the extremely high prevalence in Arab populations, where endogamy could play a role, the high concordance rate in monozygotic twins, and the presence of family history of the condition between 5 and 23% of cases, support a genetic influence. Segregation analysis studies suggest that keratoconus is a complex non-Mendelian disease. Results from linkage analysis, next generation sequencing studies and genome-wide association studies also have suggested that genetic factors are involved in the condition. Recently, it has been proposed that mechanical trauma (i.e. eye rubbing or eye compression at night), is a sine quanon condition for the onset of keratoconus, and quite possibly its only cause. There are various arguments for and against this hypothesis. Indeed, it is possible, as initially suggested around 55 years ago, that the term "keratoconus" include diverse phenotypically similar conditions, which are actually of different etiology.
Collapse
|
5
|
Lu X, Watsky MA. Influence of Vitamin D on Corneal Epithelial Cell Desmosomes and Hemidesmosomes. Invest Ophthalmol Vis Sci 2020; 60:4074-4083. [PMID: 31561249 PMCID: PMC6779066 DOI: 10.1167/iovs.19-27796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose We have observed noticably weak epithelial attachment in vitamin D receptor knockout mice (VDR KO) undergoing epithelial debridement. We hypothesized that VDR KO negatively affects corneal epithelial cell desmosomes and/or hemidesmosomes. Methods Transcript levels of desmosome and hemidesmosome proteins in VDR KO corneas were assessed by qPCR. Western blotting and immunochemistry were used to detect proteins in cultured cells exposed to 1,25(OH)2D3 and 24R,25(OH)2D3. Results VDR KO resulted in decreased corneal desmosomal desmoglein 1 (DSG1) and desmocollin 2 (DSC2) mRNA, and hemidesmosomal plectin mRNA. DSG1 and plectin protein expression were reduced in VDR KO corneas. DSG1 protein expression increased in VDR wild types (VDR WT) and VDR KO mouse primary epithelial cells (MPCEC) treated with 1,25(OH)2D3 and 24R,25(OH)2D3. 24R,25(OH)2D3 treatment resulted in increased plectin and integrin β4 levels in VDR WT MPCEC, and decreased levels in VDR KO MPCEC. Treatment of human corneal epithelial cells (HCEC) with 1,25(OH)2D3 and 24R,25(OH)2D3 resulted in increased DSC2 and DSG1 protein expression. Plectin and integrin β4 were only increased in 24R,25(OH)2D3 treated HCEC. Conclusions VDR KO results in reduced desmosomal and hemidesmosomal mRNA and protein levels. 1,25(OH)2D3 and 24R,25(OH)2D3 increased DSG1 protein in all cells tested. For hemidesmosome proteins, 24R,25(OH)2D3 increased plectin and integrin β4 protein expression in VDR WT and HCEC, with decreased expression in VDR KO MPCEC. Thus, vitamin D3 is involved in desmosome and hemidesmosome junction formation/regulation, and their decreased expression likely contributes to the loosely adherent corneal epithelium in VDR KO mice. Our data indicate the presence of a VDR-independent pathway.
Collapse
Affiliation(s)
- Xiaowen Lu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Mitchell A Watsky
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia, United States.,The Graduate School, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
6
|
Loukovitis E, Sfakianakis K, Syrmakesi P, Tsotridou E, Orfanidou M, Bakaloudi DR, Stoila M, Kozei A, Koronis S, Zachariadis Z, Tranos P, Kozeis N, Balidis M, Gatzioufas Z, Fiska A, Anogeianakis G. Genetic Aspects of Keratoconus: A Literature Review Exploring Potential Genetic Contributions and Possible Genetic Relationships with Comorbidities. Ophthalmol Ther 2018; 7:263-292. [PMID: 30191404 PMCID: PMC6258591 DOI: 10.1007/s40123-018-0144-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Keratoconus (KC) is a complex, genetically heterogeneous, multifactorial degenerative disorder that is accompanied by corneal ectasia which usually progresses asymmetrically. With an incidence of approximately 1 per 2000 and 2 cases per 100,000 population presenting annually, KC follows an autosomal recessive or dominant pattern of inheritance and is, apparently, associated with genes that interact with environmental, genetic, and/or other factors. This is an important consideration in refractive surgery in the case of familial KC, given the association of KC with other genetic disorders and the imbalance between dizygotic twins. The present review attempts to identify the genetic loci contributing to the different KC clinical presentations and relate them to the common genetically determined comorbidities associated with KC. METHODS The PubMed, MEDLINE, Google Scholar, and GeneCards databases were screened for KC-related articles published in English between January 2006 and November 2017. Keyword combinations of "keratoconus," "risk factor(s)," "genetics," "genes," "genetic association(s)," and "cornea" were used. In total, 217 articles were retrieved and analyzed, with greater weight placed on the more recent literature. Further bibliographic research based on the 217 articles revealed another 124 relevant articles that were included in this review. Using the reviewed literature, an attempt was made to correlate genes and genetic risk factors with KC characteristics and genetically related comorbidities associated with KC based on genome-wide association studies, family-based linkage analysis, and candidate-gene approaches. RESULTS An association matrix between known KC-related genes and KC symptoms and/or clinical signs together with an association matrix between identified KC genes and genetically related KC comorbidities/syndromes were constructed. CONCLUSION Twenty-four genes were identified as potential contributors to KC and 49 KC-related comorbidities/syndromes were found. More than 85% of the known KC-related genes are involved in glaucoma, Down syndrome, connective tissue disorders, endothelial dystrophy, posterior polymorphous corneal dystrophy, and cataract.
Collapse
Affiliation(s)
| | - Konstantinos Sfakianakis
- Division of Surgical Anatomy, Laboratory of Anatomy, Medical School, Democritus University of Thrace, University Campus, Alexandroupolis, Greece
| | - Panagiota Syrmakesi
- AHEPA University Hospital, Thessaloníki, Greece
- Ophthalmica Eye Institute, Thessaloníki, Greece
| | - Eleni Tsotridou
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Myrsini Orfanidou
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Dimitra Rafailia Bakaloudi
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Maria Stoila
- Ophthalmica Eye Institute, Thessaloníki, Greece
- Faculty of Medicine, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | - Athina Kozei
- Ophthalmica Eye Institute, Thessaloníki, Greece
- School of Pharmacology, University of Nicosia, Makedonitissis, Nicosia, Cyprus
| | | | | | | | | | | | - Zisis Gatzioufas
- Department of Ophthalmology, Cornea, Cataract and Refractive Surgery, University Hospital Basel, Basel, Switzerland
| | - Aliki Fiska
- Laboratory of Anatomy, Medical School, Democritus University of Thrace, University Campus, Alexandroupolis, Greece
| | | |
Collapse
|
7
|
Caglayan M, Kocamıs SI, Sarac O, Tatli Dogan H, Kosekahya P, Ayan M, Cagil N. Investigation of Heme Oxygenase 2 Enzyme Protein Expression in Keratoconus and Normal Human Corneal Epithelium: An Immunohistochemical Study. Curr Eye Res 2018; 44:25-29. [DOI: 10.1080/02713683.2018.1521980] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Mehtap Caglayan
- Department of Ophthalmology, Mardin State Hospital, Mardin, Turkey
| | | | - Ozge Sarac
- Department of Ophthalmology, Yildirim Beyazit University, Ankara, Turkey
| | | | - Pinar Kosekahya
- Department of Ophthalmology, Ulucanlar Eye Training and Research Hospital, Ankara, Turkey
| | - Murat Ayan
- Department of Ophthalmology, Yenimahalle State Hospital, Ankara, Turkey
| | - Nurullah Cagil
- Department of Ophthalmology, Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
8
|
Wang YM, Ng TK, Choy KW, Wong HK, Chu WK, Pang CP, Jhanji V. Histological and microRNA Signatures of Corneal Epithelium in Keratoconus. J Refract Surg 2018. [DOI: 10.3928/1081597x-20171215-02] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Shetty R, Vunnava KP, Dhamodaran K, Matalia H, Murali S, Jayadev C, Murugeswari P, Ghosh A, Das D. Characterization of Corneal Epithelial Cells in Keratoconus. Transl Vis Sci Technol 2018; 8:2. [PMID: 30627477 PMCID: PMC6322712 DOI: 10.1167/tvst.8.1.2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/09/2018] [Indexed: 01/08/2023] Open
Abstract
Purpose We studied the cellular characteristics of epithelial cells in the cone and extraconal periphery of corneas in keratoconus eyes. Methods This prospective observational study was conducted at Narayana Nethralaya Eye Institute. A total of 83 and 42 eyes with keratoconus and normal topography, respectively, were included in the study. Corneal epithelial cells were collected and analyzed for apoptosis, proliferation, epithelial-mesenchymal transition, and differentiation status using molecular and biochemical tools. Statistical analysis was performed using the Student's t-test. Results Corneal epithelial cells from the cone showed significantly higher expression of proapoptotic marker BAX (P < 0.005) compared to controls. Significantly elevated expression of cell cycle markers CYCLIN D1 (P < 0.005) and Ki67 (P < 0.005) were noted in the extraconal region compared to controls. Cells of the cone showed significantly higher ZO-1 (P < 0.005) and lower vimentin (P < 0.005) compared to controls. Significantly lower expression of the differentiation marker CK3/12 (P < 0.05) was observed in cones compared to controls. Conclusions Cones of keratoconic corneas show enhanced cell death, poor differentiation, proliferation and epithelial-mesenchymal transition. The cellular changes of the corneal epithelial cells in the cone and extraconal region differ significantly in a keratoconus corneas. Translational Relevance Characterization of patient-specific corneal epithelial cellular status in keratoconus has the potential to determine the optimal treatment and therapeutic outcomes paving the way towards personalized treatment in the future.
Collapse
Affiliation(s)
- Rohit Shetty
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, Bangalore, Karnataka, India
| | - Krishna Poojita Vunnava
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, Bangalore, Karnataka, India
| | - Kamesh Dhamodaran
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India.,Current address: Department of Basic Sciences, The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
| | - Himanshu Matalia
- Department of Cornea and Refractive Surgery, Narayana Nethralaya Eye Institute, Bangalore, Karnataka, India
| | - Subramani Murali
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Chaitra Jayadev
- Department of Vitreo-Retinal Services, Narayana Nethralaya Eye Institute, Bangalore, Karnataka, India
| | - Ponnulagu Murugeswari
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Arkasubhra Ghosh
- GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| | - Debashish Das
- Stem Cell Research Laboratory, GROW Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India
| |
Collapse
|
10
|
Wang YW, Cheng HL, Ding YR, Chou LH, Chow NH. EMP1, EMP 2, and EMP3 as novel therapeutic targets in human cancer. Biochim Biophys Acta Rev Cancer 2017; 1868:199-211. [PMID: 28408326 DOI: 10.1016/j.bbcan.2017.04.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/15/2017] [Accepted: 04/08/2017] [Indexed: 02/09/2023]
Abstract
The epithelial membrane protein genes 1, 2, and 3 (EMP1, EMP2, and EMP3) belong to the peripheral myelin protein 22-kDa (PMP22) gene family, which consists of at least seven members: PMP22, EMP1, EMP2, EMP3, PERP, brain cell membrane protein 1, and MP20. This review addresses the structural and functional features of EMPs, detailing their tissue distribution and functions in the human body, their expression pattern in a variety of tumors, and highlighting the underlying mechanisms involved in carcinogenesis. The implications in cancer biology, patient prognosis prediction, and potential application in disease therapy are discussed. For example, EMP1 was reported to be a biomarker of gefitinib resistance in lung cancer and contributes to prednisolone resistance in acute lymphoblastic leukemia patients. EMP2 functions as an oncogene in human endometrial and ovarian cancers; however, characteristics of EMP2 in urothelial cancer fulfill the criteria of a suppressor gene. Of particular interest, EMP3 overexpression in breast cancer is significantly related to strong HER-2 expression. Co-expression of HER-2 and EMP3 is the most important indicator of progression-free and metastasis-free survival for patients with urothelial carcinoma of the upper urinary tract. Altogether, discovery of pharmacological inhibitors and/or regulators of EMP protein activity could open novel strategies for enhanced therapy against EMP-mediated human diseases.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Ling Cheng
- National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | - Ya-Rou Ding
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lien-Hsuan Chou
- School of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Nan-Haw Chow
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Zheng Z, Luan X, Zha J, Li Z, Wu L, Yan Y, Wang H, Hou D, Huang L, Huang F, Zheng H, Ge L, Guan H. TNF-α inhibits the migration of oral squamous cancer cells mediated by miR-765-EMP3-p66Shc axis. Cell Signal 2017; 34:102-109. [PMID: 28336231 DOI: 10.1016/j.cellsig.2017.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022]
Abstract
Whereas TNF-α can facilitate the metastasis of oral squamous cancer cells (OSCC), whether it inhibits the metastasis is not clear so far. In this study, we demonstrated that high dose TNF-α at 100ng/mL could in vitro significantly inhibit the migration of two OSCC cell lines, CAL-27 and SCC-25. To explore the related mechanisms, we focused on the involvement of the microRNAs and found that TNF-α increased the expression of miR-765. The upregulation of miR-765 was attributed to the inhibition of the migration. We showed that miR-765 directly targeted EMP3 and suppressed its expression. We also found that the expression of EMP3 was much higher in human oral squamous cancer in compare with the surrounding normal tissue. Interestingly, p66Shc, a downstream molecule in the EMP3-related signaling pathway, was increased by TNF-α. We found that the overexpression of p66Shc could suppress the migration through the enhanced E-cadherin and ZO-1 signals. Either silencing the expression of EMP3 or enhancing the expression of miR-765 could upregulate the expression of p66Shc. Together, our results demonstrated that TNF-α inhibited the metastasis of oral squamous cancer cell through the miR-765-EMP3-p66Shc axis, which may provide new insights for the therapy of oral squamous cancer.
Collapse
Affiliation(s)
- Zhichao Zheng
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Xiuwen Luan
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Southern Medical University, Guangzhou 510280, China
| | - Jun Zha
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Zhengmao Li
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Lihong Wu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Haiyan Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Dan Hou
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Liwen Huang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Feng Huang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Huade Zheng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, China; South China Institute of Collaborative Innovation, Dongguan 523808, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China
| | - Hongbing Guan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou 510140, China.
| |
Collapse
|
12
|
Kabza M, Karolak JA, Rydzanicz M, Szcześniak MW, Nowak DM, Ginter-Matuszewska B, Polakowski P, Ploski R, Szaflik JP, Gajecka M. Collagen synthesis disruption and downregulation of core elements of TGF-β, Hippo, and Wnt pathways in keratoconus corneas. Eur J Hum Genet 2017; 25:582-590. [PMID: 28145428 DOI: 10.1038/ejhg.2017.4] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/16/2016] [Accepted: 12/24/2016] [Indexed: 12/13/2022] Open
Abstract
To understand better the factors contributing to keratoconus (KTCN), we performed comprehensive transcriptome profiling of human KTCN corneas for the first time using an RNA-Seq approach. Twenty-five KTCN and 25 non-KTCN corneas were enrolled in this study. After RNA extraction, total RNA libraries were prepared and sequenced. The discovery RNA-Seq analysis (in eight KTCN and eight non-KTCN corneas) was conducted first, after which the replication RNA-Seq experiment was performed on a second set of samples (17 KTCN and 17 non-KTCN corneas). Over 82% of the genes and almost 75% of the transcripts detected as differentially expressed in KTCN and non-KTCN corneas were confirmed in the replication study using another set of samples. We used these differentially expressed genes to generate a network of KTCN-deregulated genes. We found an extensive disruption of collagen synthesis and maturation pathways, as well as downregulation of the core elements of the TGF-β, Hippo, and Wnt signaling pathways influencing corneal organization. This first comprehensive transcriptome profiling of human KTCN corneas points further to a complex etiology of KTCN.
Collapse
Affiliation(s)
- Michal Kabza
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Bioinformatics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Justyna A Karolak
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Michał W Szcześniak
- Department of Bioinformatics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Dorota M Nowak
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Barbara Ginter-Matuszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Piotr Polakowski
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Jacek P Szaflik
- Department of Ophthalmology, Medical University of Warsaw, Warsaw, Poland
| | - Marzena Gajecka
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
13
|
Molecular and Histopathological Changes Associated with Keratoconus. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7803029. [PMID: 28251158 PMCID: PMC5303843 DOI: 10.1155/2017/7803029] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/16/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Keratoconus (KC) is a corneal thinning disorder that leads to loss of visual acuity through ectasia, opacity, and irregular astigmatism. It is one of the leading indicators for corneal transplantation in the Western countries. KC usually starts at puberty and progresses until the third or fourth decade; however its progression differs among patients. In the keratoconic cornea, all layers except the endothelium have been shown to have histopathological structural changes. Despite numerous studies in the last several decades, the mechanisms of KC development and progression remain unclear. Both genetic and environmental factors may contribute to the pathogenesis of KC. Many previous articles have reviewed the genetic aspects of KC, but in this review we summarize the histopathological features of different layers of cornea and discuss the differentially expressed proteins in the KC-affected cornea. This summary will help emphasize the major molecular defects in KC and identify additional research areas related to KC, potentially opening up possibilities for novel methods of KC prevention and therapeutic intervention.
Collapse
|
14
|
|
15
|
Karamichos D, Zieske JD, Sejersen H, Sarker-Nag A, Asara JM, Hjortdal J. Tear metabolite changes in keratoconus. Exp Eye Res 2015; 132:1-8. [PMID: 25579606 DOI: 10.1016/j.exer.2015.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 11/18/2022]
Abstract
While efforts have been made over the years, the exact cause of keratoconus (KC) remains unknown. The aim of this study was to identify alterations in endogenous metabolites in the tears of KC patients compared with age-matched healthy subjects. Three groups were tested: 1) Age-matched controls with no eye disease (N = 15), 2) KC - patients wearing Rigid Gas permeable lenses (N = 16), and 3) KC - No Correction (N = 14). All samples were processed for metabolomics analysis using LC-MS/MS. We identified a total of 296 different metabolites of which >40 were significantly regulated between groups. Glycolysis and gluconeogenesis had significant changes, such as 3-phosphoglycerate and 1,3 diphosphateglycerate. As a result the citric acid cycle (TCA) was also affected with notable changes in Isocitrate, aconitate, malate, and acetylphosphate, up regulated in Group 2 and/or 3. Urea cycle was also affected, especially in Group 3 where ornithine and aspartate were up-regulated by at least 3 fold. The oxidation state was also severely affected. Groups 2 and 3 were under severe oxidative stress causing multiple metabolites to be regulated when compared to Group 1. Group 2 and 3, both showed significant down regulation in GSH-to-GSSG ratio when compared to Group 1. Another indicator of oxidative stress, the ratio of lactate - pyruvate was also affected with Groups 2 and 3 showing at least a 2-fold up regulation. Overall, our data indicate that levels of metabolites related to urea cycle, TCA cycle and oxidative stress are highly altered in KC patients.
Collapse
Affiliation(s)
- D Karamichos
- Ophthalmology, University of Oklahoma - Dean McGee Eye Institute, Oklahoma City, OK, USA.
| | - J D Zieske
- Schepens Eye Research Institute/Massachusetts Eye and Ear and the Department of Ophthalmology Harvard Medical School, 20 Staniiford Street, Boston, MA, USA.
| | - H Sejersen
- Department of Ophthalmology, Aarhus University Hospital, Aarhus C, Denmark.
| | - A Sarker-Nag
- Ophthalmology, University of Oklahoma - Dean McGee Eye Institute, Oklahoma City, OK, USA.
| | - John M Asara
- Division of Signal Transduction/Mass Spectrometry Core, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - J Hjortdal
- Department of Ophthalmology, Aarhus University Hospital, Aarhus C, Denmark.
| |
Collapse
|
16
|
Wang YW, Li WM, Wu WJ, Chai CY, Liu HS, Lai MD, Chow NH. Potential significance of EMP3 in patients with upper urinary tract urothelial carcinoma: crosstalk with ErbB2-PI3K-Akt pathway. J Urol 2013; 192:242-51. [PMID: 24333112 DOI: 10.1016/j.juro.2013.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2013] [Indexed: 02/06/2023]
Abstract
PURPOSE Upper urinary tract (pyelocalyceal cavities and ureter) urothelial carcinoma is a relatively rare neoplastic disease. Although diagnosis and treatment of this tumor variant have improved significantly, accurate risk stratification remains a challenge. To identify the putative oncogene involved in urothelial carcinoma progression we performed bioinformatics guided experimental investigation targeting chromosome 19q13. MATERIALS AND METHODS We investigated the effects of EMP3 on cancer cell growth, migration and adhesion in transfection and siRNA experiments in vitro. Crosstalk of integrins or ErbB2 with EMP3 was examined by reverse transcriptase-polymerase chain reaction and immunoblot. The potential involvement of epigenetic alterations of EMP3 in vitro and in vivo was analyzed by methylation specific polymerase chain reaction. To validate clinical relevance we measured EMP3 expression at the mRNA and protein levels in a cohort of 77 patients with upper urinary tract urothelial carcinoma and compared prognostic significance in relation to that of ErbB2 expression. RESULTS We noted functional crosstalk between ErbB2 and EMP3 in vitro. EMP3 over expression promoted cancer cell proliferation and migration but suppressed cell adhesion in vitro. EMP3 activated the ErbB2-PI3K-AKT pathway to increase cell growth in vitro. In the clinical cohort Kaplan-Meier survival estimates showed that ErbB2 and EMP3 co-expression was the most important indicator of progression-free and metastasis-free survival in patients with upper urinary tract urothelial carcinoma (log rank test p = 0.018 and 0.04, respectively). CONCLUSIONS EMP3 is an important prognostic indicator for selecting patients with upper urinary tract urothelial carcinoma for more intensive therapy. EMP3 is an innovative co-targeting candidate for designing ErbB2 based cancer therapy.
Collapse
Affiliation(s)
- Yi-Wen Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Wei-Ming Li
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | - Wen-Jeng Wu
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China; Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China; Department of Urology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, Republic of China
| | - Hsiao-Sheng Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ming-Derg Lai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China; Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Nan-Haw Chow
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China; Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| |
Collapse
|
17
|
Chaerkady R, Shao H, Scott SG, Pandey A, Jun AS, Chakravarti S. The keratoconus corneal proteome: loss of epithelial integrity and stromal degeneration. J Proteomics 2013; 87:122-31. [PMID: 23727491 DOI: 10.1016/j.jprot.2013.05.023] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/12/2013] [Accepted: 05/14/2013] [Indexed: 01/06/2023]
Abstract
UNLABELLED Keratoconus is a thinning corneal dystrophy that begins in the early teenage years and ultimately requires cornea transplantation to restore vision. Here we conducted a highly sensitive mass spectrometric analysis of the epithelium and the stroma from keratoconus and normal donor corneas. We identified a total of 932 and 1157 proteins in the consolidated data of the epithelium and stroma, respectively. Technical replicates showed strong correlations (≥0.88) in levels of all common proteins, indicating very low technical variations in the data. Analysis of the most increased (≥1.5 fold) and decreased (≤0.8 fold) proteins in the keratoconus corneal epithelial protein extracts identified proteins related to dermal diseases, inflammation, epithelial stratification and mesenchymal changes. Increased proteins included keratins 6A, 16 and vimentin, while the iron transporter lactotransferrin was decreased. The keratoconus stromal proteome suggests endoplasmic reticular stress, oxidative stress and widespread decreases in many extracellular matrix proteoglycan core proteins, lumican and keratocan, collagen types I, III, V and XII. Marked increase in apoptosis and endocytosis-related proteins suggest degenerative changes in keratocytes, the resident cells of the stroma. This is the most comprehensive proteome analysis of the cornea that highlights similarities of keratoconus with other neurodegenerative diseases. BIOLOGICAL SIGNIFICANCE This study provides, to our knowledge, the most comprehensive proteomic analysis of the vision threatening disease keratoconus, which affects a significant portion of the US and global populations. Using iTRAQ and LC/MS/MS, we have identified significant changes in the human corneal epithelium and stromal proteome that correlate to in vivo clinical findings. The protein changes identified will lead to molecular insights into disease pathogenesis and provide candidate genes for genetic studies of keratoconus.
Collapse
Affiliation(s)
- Raghothama Chaerkady
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
WAP (whey acidic protein) is an important whey protein present in milk of mammals. This protein has characteristic domains, rich in cysteine residues, called 4-DSC (four-disulfide core domain). Other proteins, mainly present at mucosal surfaces, have been shown to also possess these characteristic WAP-4-DSC domains. The present review will focus on two WAP-4-DSC containing proteins, namely SLPI (secretory leucocyte protease inhibitor) and trappin-2/elafin. Although first described as antiproteases able to inhibit in particular host neutrophil proteases [NE (neutrophil elastase), cathepsin-G and proteinase-3] and as such, able to limit maladaptive tissue damage during inflammation, it has become apparent that these molecules have a variety of other functions (direct antimicrobial activity, bacterial opsonization, induction of adaptive immune responses, promotion of tissue repair, etc.). After providing information about the 'classical' antiproteasic role of these molecules, we will discuss the evidence pertaining to their pleiotropic functions in inflammation and immunity.
Collapse
|
19
|
Abstract
PURPOSE To study the effects of hydrogen peroxide exposure on mitochondrial DNA (mtDNA) in cultured human corneal epithelial cells. In addition, we compared the integrity of mtDNA found in epithelial cells isolated from keratoconus (KC) and normal (NL) corneas. METHODS Telomerase immortalized human corneal epithelial cell line (hTCEpi) were cultured at pH 7.0 or pH 5.0 with or without 200 microM hydrogen peroxide (H2O2). Immunohistochemistry with a marker for oxidative damage, 8-hydroxy-2'-deoxyguanosine (8-OH-dG), was performed on KC and NL corneas (n = 10). Epithelial cells were isolated from KC corneas (n = 5) and NL corneas (n = 7). Total DNA was extracted, and the mtDNA was analyzed by long extension polymerase chain reaction (LX-PCR). The ratios of mtDNA to nuclear DNA were measured by PCR. The mtDNA control regions were PCR amplified and sequenced. RESULTS In the epithelial cell cultures, the full-length LX-PCR mtDNA decreased 54% and 44% in the H2O2 + pH7 cultures and H2O2 + pH5 cultures, respectively. 8-OH-dG was present in all layers of KC epithelial cells but only in superficial layers of NL epithelial cells. The isolated KC and NL epithelial cells had comparable levels of full-length LX-PCR mtDNA (16.2 kb) and smaller sized mtDNA bands (4.3 +/- 0.99 vs 4.0 +/- 0.83 bands per individual, respectively). There were no significant differences in the control region nucleotide sequences in KC and NL epithelia. CONCLUSIONS Hydrogen peroxide can significantly degrade LX-PCR mtDNA in vitro. Although the KC epithelium showed a higher degree of oxidative damage, the levels of mtDNA damage in NL and KC epithelial cells were similar to each other.
Collapse
|
20
|
Sugar J, Wadia HP. Keratoconus and Other Ectasias. Ophthalmology 2009. [DOI: 10.1016/b978-0-323-04332-8.00042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
21
|
Foell JL, Volkmer I, Giersberg C, Kornhuber M, Horneff G, Staege MS. Loss of detectability of Charcot-Leyden crystal protein transcripts in blood cells after treatment with dimethyl sulfoxide. J Immunol Methods 2008; 339:99-103. [PMID: 18789335 DOI: 10.1016/j.jim.2008.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 08/19/2008] [Accepted: 08/19/2008] [Indexed: 11/18/2022]
Abstract
Charcot-Leyden crystal protein (CLC) is a major secretory effector protein of eosinophils. In addition, CLC has been identified as marker for regulatory T-cells and differential expression of CLC has been described under diverse pathological conditions. By analysis of DNA microarray data from peripheral blood mononuclear cells (PBMC) we found differences for the expression of CLC between PBMC that had been cryopreserved or had been used for RNA isolation immediately after cell separation. Reverse transcriptase-polymerase chain reaction (RT-PCR) of separated cell populations indicated that contaminating granulocytes were the main source of CLC transcripts in PBMC. CLC was only detectable in fresh PBMC and not in cryopreserved material. Transcripts corresponding to CLC were also detectable by RT-PCR only in fresh PBMC and eosinophils. Loss of CLC transcripts in PBMC was induced by a short pulse with dimethyl sulfoxide (DMSO), indicating that the freezing medium was responsible for this phenomenon. We conclude that CLC transcripts are lost during cryopreservation in the presence of DMSO and can never be identified as differentially expressed in cryopreserved samples.
Collapse
Affiliation(s)
- Juergen L Foell
- Department of Pediatrics, Children's Cancer Research Centre, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Koçer SS, Djurić PM, Bugallo MF, Simon SR, Matic M. Transcriptional profiling of putative human epithelial stem cells. BMC Genomics 2008; 9:359. [PMID: 18667080 PMCID: PMC2536675 DOI: 10.1186/1471-2164-9-359] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 07/30/2008] [Indexed: 12/30/2022] Open
Abstract
Background Human interfollicular epidermis is sustained by the proliferation of stem cells and their progeny, transient amplifying cells. Molecular characterization of these two cell populations is essential for better understanding of self renewal, differentiation and mechanisms of skin pathogenesis. The purpose of this study was to obtain gene expression profiles of alpha 6+/MHCI+, transient amplifying cells and alpha 6+/MHCI-, putative stem cells, and to compare them with existing data bases of gene expression profiles of hair follicle stem cells. The expression of Major Histocompatibility Complex (MHC) class I, previously shown to be absent in stem cells in several tissues, and alpha 6 integrin were used to isolate MHCI positive basal cells, and MHCI low/negative basal cells. Results Transcriptional profiles of the two cell populations were determined and comparisons made with published data for hair follicle stem cell gene expression profiles. We demonstrate that presumptive interfollicular stem cells, alpha 6+/MHCI- cells, are enriched in messenger RNAs encoding surface receptors, cell adhesion molecules, extracellular matrix proteins, transcripts encoding members of IFN-alpha family proteins and components of IFN signaling, but contain lower levels of transcripts encoding proteins which take part in energy metabolism, cell cycle, ribosome biosynthesis, splicing, protein translation, degradation, DNA replication, repair, and chromosome remodeling. Furthermore, our data indicate that the cell signaling pathways Notch1 and NF-κB are downregulated/inhibited in MHC negative basal cells. Conclusion This study demonstrates that alpha 6+/MHCI- cells have additional characteristics attributed to stem cells. Moreover, the transcription profile of alpha 6+/MHCI- cells shows similarities to transcription profiles of mouse hair follicle bulge cells known to be enriched for stem cells. Collectively, our data suggests that alpha 6+/MHCI- cells may be enriched for stem cells. This study is the first comprehensive gene expression profile of putative human epithelial stem cells and their progeny that were isolated directly from neonatal foreskin tissue. Our study is important for understanding self renewal and differentiation of epidermal stem cells, and for elucidating signaling pathways involved in those processes. The generated data base may serve those working with other human epithelial tissue progenitors.
Collapse
Affiliation(s)
- Salih S Koçer
- Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY, USA.
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Abstract
PURPOSE Meesmann dystrophy is a rare inherited corneal disease. This is the description of a unique family in Denmark. METHODS The family members were examined by biomicroscopy. Blood samples were collected. DNA from the leukocyte population was isolated, and the cytokeratin 12 (KRT12) gene was partially sequenced. RESULTS This Danish family harbors a 451G-->T mutation. All patients in this family that harbor mutations also show microcysts, but none have any symptoms. CONCLUSIONS This is the second family recently diagnosed with Meesmann dystrophy in Denmark. The family represents its own distinct genotype, independent of previously reported ones. All patients with microcysts were asymptomatic.
Collapse
|
25
|
Ehlers N, Hjortdal J, Nielsen K, Thiel HJ, Ørntoft T. Phenotypic variability in Meesmann's dystrophy: clinical review of the literature and presentation of a family genetically identical to the original family. Acta Ophthalmol 2008; 86:40-4. [PMID: 17986293 DOI: 10.1111/j.1600-0420.2007.00931.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE To describe the phenotypic variability in Meesmann's microcystic dystrophy of the corneal epithelium based on a review of the literature and the presentation of a Danish family. METHODS We carried out a clinical examination of the family and genetic sequencing of DNA. RESULTS Subjective symptoms often include blurred vision and ocular irritation. Typical cases may be entirely free of complaints. Intermittent pain episodes, such as occur in recurrent erosion syndrome, are not the rule. Genetic sequencing indicated a familial relationship with the originally described Meesmann family. Clinical variability was similar. Approximately 85% of cases showed microcysts in the entire epithelium. The remaining 15% demonstrated variants with microcysts in the upper or lower part of the cornea, or in the central or peripheral cornea, as well as subepithelial opacities. CONCLUSIONS Meesmann's dystrophy occurs worldwide. The largest family described is the original German one, now supplemented with a Danish branch. Despite the presence of an identical genetic defect, the clinical phenotype varies. This suggests that non-KRT12-related mechanisms are responsible for the variation.
Collapse
Affiliation(s)
- Niels Ehlers
- Department of Ophthalmology, Arhus University Hospital, Arhus, Denmark.
| | | | | | | | | |
Collapse
|
26
|
Bibliography. Current world literature. Corneal and external disorders. Curr Opin Ophthalmol 2006; 17:413-8. [PMID: 16900037 DOI: 10.1097/01.icu.0000233964.03757.bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Zhou M, Li XM, Lavker RM. Transcriptional profiling of enriched populations of stem cells versus transient amplifying cells. A comparison of limbal and corneal epithelial basal cells. J Biol Chem 2006; 281:19600-9. [PMID: 16675456 DOI: 10.1074/jbc.m600777200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The basal layer of limbal and central corneal epithelium is enriched in stem cells and transient amplifying cells, respectively. This physical separation of stem and transient amplifying cells makes the limbal/corneal epithelium an exceptionally suitable system for isolating basal cells enriched in these two proliferative populations. Prior attempts to isolate epithelial stem cells used methods such as proteolytic tissue dissociation and cell sorting that could potentially alter their gene expression profile. Using laser capture microdissection, we were able to isolate resting limbal and corneal basal cells from frozen sections with minimal tissue processing, thereby improving the yield and quality of RNA. Analyses of RNA isolated from 300 limbal and corneal basal cells from eight mice revealed a set of approximately 100 genes that are differentially expressed in limbal cells versus corneal epithelial basal cells. Semiquantitative reverse transcription-PCR confirmed the up-regulation of three limbal and three corneal genes. LacZ identification of epiregulin from epiregulin-null mice and immunohistochemical staining of wild type mice confirmed that epiregulin, one of the limbal epithelium-enriched genes, was associated with the limbal epithelial basal cells. Within the limbal and corneal basal cells, we detected previously unknown genes that were differentially expressed in these two regions that contribute further to our understanding of the unique heterogeneity of these two closely related basal cell populations. Our findings indicate that we can obtain accurate gene expression profiles of the stem cell-enriched limbal basal cell population in their "natural" quiescent state.
Collapse
Affiliation(s)
- Mingyuan Zhou
- Department of Dermatology, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
28
|
Nielsen K, Vorum H, Fagerholm P, Birkenkamp-Demtröder K, Honoré B, Ehlers N, Orntoft TF. Proteome profiling of corneal epithelium and identification of marker proteins for keratoconus, a pilot study. Exp Eye Res 2006; 82:201-9. [PMID: 16083875 DOI: 10.1016/j.exer.2005.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2004] [Revised: 04/25/2005] [Accepted: 06/09/2005] [Indexed: 11/23/2022]
Abstract
The purpose of this study is to identify corneal proteins differentially expressed between keratoconus and normal epithelial samples. Proteins from the corneal epithelium were isolated from 6 keratoconus and 6 myopia patients (controls) and separated by 2D-gel electrophoresis. Six % and 12% SDS-PAGE gels were used to separate low and high molecular weight proteins. Gels were silver stained and protein spots were defined by Melanie II software. The proteins that were most altered in expression comparing keratoconus and controls were extracted, trypsin-digested, and identified by mass spectroscopy. Approximately 200-500 protein spots were detected on each gel. Nineteen spots were identified as differentially expressed between keratoconus and reference epithelium including cytokeratin 3 (< 7.8 fold), gelsolin (1.6 fold), S100A4 (1.9 fold), and enolase 1 (0.72 fold). Another identified protein found at very high levels was cytokeratin 12. Gelsolin, cytokeratin 3, and cytokeratin 12 have previously been described to be involved in other corneal diseases. Three proteins, gelsolin, alpha enolase, and S100A4 were identified to be differentially expressed in keratoconus compared to reference epithelium and thus may be involved in the pathogenesis.
Collapse
Affiliation(s)
- Kim Nielsen
- Molecular Diagnostic Laboratory, Skejby Sygehus, Brendstrupgaarsvej, 8200 Aarhus N, Denmark.
| | | | | | | | | | | | | |
Collapse
|