1
|
Liu Y, Mao C, Liu S, Xiao D, Shi Y, Tao Y. Proline dehydrogenase in cancer: apoptosis, autophagy, nutrient dependency and cancer therapy. Amino Acids 2021; 53:1891-1902. [PMID: 34283310 DOI: 10.1007/s00726-021-03032-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/27/2021] [Indexed: 01/03/2023]
Abstract
L-proline catabolism is emerging as a key pathway that is critical to cellular metabolism, growth, survival, and death. Proline dehydrogenase (PRODH) enzyme, which catalyzes the first step of proline catabolism, has diverse functional roles in regulating many pathophysiological processes, including apoptosis, autophagy, cell senescence, and cancer metastasis. Notably, accumulated evidence demonstrated that PRODH plays complex role in many types of cancers. In this review, we briefly introduce the function of PRODH, then its expression in different types of cancer. We next discuss the regulation of PRODH in cancer, the downstream pathways of PRODH and the therapies that are under investigation. Finally, we propose novel insights for future perspectives on the modulation of PRODH.
Collapse
Affiliation(s)
- Yating Liu
- Postdoctoral Research Station of Clinical Medicine & Department of Hematology and Critical Care Medicine, Central South University, the 3rd Xiangya Hospital, Changsha, 410000, People's Republic of China.,Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Chao Mao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Center for Geriatric Disorders, National Clinical Research, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Ying Shi
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Yongguang Tao
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, 410078, China. .,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China. .,Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
2
|
Palka J, Oscilowska I, Szoka L. Collagen metabolism as a regulator of proline dehydrogenase/proline oxidase-dependent apoptosis/autophagy. Amino Acids 2021; 53:1917-1925. [PMID: 33818628 PMCID: PMC8651534 DOI: 10.1007/s00726-021-02968-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Recent studies on the regulatory role of amino acids in cell metabolism have focused on the functional significance of proline degradation. The process is catalysed by proline dehydrogenase/proline oxidase (PRODH/POX), a mitochondrial flavin-dependent enzyme converting proline into ∆1-pyrroline-5-carboxylate (P5C). During this process, electrons are transferred to electron transport chain producing ATP for survival or they directly reduce oxygen, producing reactive oxygen species (ROS) inducing apoptosis/autophagy. However, the mechanism for switching survival/apoptosis mode is unknown. Although PRODH/POX activity and energetic metabolism were suggested as an underlying mechanism for the survival/apoptosis switch, proline availability for this enzyme is also important. Proline availability is regulated by prolidase (proline supporting enzyme), collagen biosynthesis (proline utilizing process) and proline synthesis from glutamine, glutamate, α-ketoglutarate (α-KG) and ornithine. Proline availability is dependent on the rate of glycolysis, TCA and urea cycles, proline metabolism, collagen biosynthesis and its degradation. It is well established that proline synthesis enzymes, P5C synthetase and P5C reductase as well as collagen prolyl hydroxylases are up-regulated in most of cancer types and control rates of collagen biosynthesis. Up-regulation of collagen prolyl hydroxylase and its exhaustion of ascorbate and α-KG may compete with DNA and histone demethylases (that require the same cofactors) to influence metabolic epigenetics. This knowledge led us to hypothesize that up-regulation of prolidase and PRODH/POX with inhibition of collagen biosynthesis may represent potential pharmacotherapeutic approach to induce apoptosis or autophagic death in cancer cells. These aspects of proline metabolism are discussed in the review as an approach to understand complex regulatory mechanisms driving PRODH/POX-dependent apoptosis/survival.
Collapse
Affiliation(s)
- Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Ilona Oscilowska
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| | - Lukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Bialystok, Poland
| |
Collapse
|
3
|
|
4
|
Chen H, Tang X, Gong X, Chen D, Li A, Sun C, Lin H, Gao J. Reversible redox-responsive 1H/19F MRI molecular probes. Chem Commun (Camb) 2020; 56:4106-4109. [DOI: 10.1039/d0cc00778a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The redox-responsive manganese(ii)/(iii) complexes serve as a pair of reversible probes for 1H MRI and 19F MRI of biological redox species.
Collapse
Affiliation(s)
- Hongming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Xiaoxue Tang
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Xuanqing Gong
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Dongxia Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Ao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Chengjie Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces
- The MOE Laboratory of Spectrochemical Analysis & Instrumentation
- The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology
- College of Chemistry and Chemical Engineering
- Xiamen University
| |
Collapse
|
5
|
Proline oxidase silencing induces proline-dependent pro-survival pathways in MCF-7 cells. Oncotarget 2018; 9:13748-13757. [PMID: 29568391 PMCID: PMC5862612 DOI: 10.18632/oncotarget.24466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 02/01/2018] [Indexed: 11/28/2022] Open
Abstract
Proline degradation by proline dehydrogenase/proline oxidase (PRODH/POX) contributes to apoptosis or autophagy. The identification of specific pathway of apoptosis/survival regulation is the aim of this study. We generated knocked-down PRODH/POX MCF-7 breast cancer cells (MCF-7shPRODH/POX). PRODH/POX silencing did not affect cell viability. However, it contributed to decrease in DNA and collagen biosynthesis, increase in prolidase activity and intracellular proline concentration as well as increase in the expression of iNOS, NF-κB, mTOR, HIF-1α, COX-2, AMPK, Atg7 and Beclin-1 in MCF-7shPRODH/POX cells. In these cells, glycyl-proline (GlyPro, substrate for prolidase) further inhibited DNA and collagen biosynthesis, maintained high prolidase activity, intracellular concentration of proline and up-regulated HIF-1α, AMPK, Atg7 and Beclin-1, compared to GlyPro-treated MCF-7 cells. In MCF-7 cells, GlyPro increased collagen biosynthesis, concentration of proline and expression of caspase-3, cleaved caspases -3 and -9, iNOS, NF-κB, COX-2 and AMPKβ. PRODH/POX knock-down contributed to pro-survival autophagy pathways in MCF-7 cells and GlyPro-derived proline augmented this process. However, GlyPro induced apoptosis in PRODH/POX-expressing MCF-7 cells as detected by up-regulation of active caspases -3 and -9. The data suggest that PRODH/POX silencing induces autophagy in MCF-7 cells and GlyPro-derived proline supports this process.
Collapse
|
6
|
Zareba I, Palka J. Prolidase-proline dehydrogenase/proline oxidase-collagen biosynthesis axis as a potential interface of apoptosis/autophagy. Biofactors 2016; 42:341-8. [PMID: 27040799 DOI: 10.1002/biof.1283] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/04/2016] [Indexed: 12/20/2022]
Abstract
Prolidase is a cytosolic imidodipeptidase that specifically splits imidodipeptides with C-terminal proline or hydroxyproline. The enzyme plays an important role in the recycling of proline from imidodipeptides for resynthesis of collagen and other proline-containing proteins. The mechanism of prolidase-dependent regulation of collagen biosynthesis was found at both transcriptional and post-transcriptional level. The increase in the enzyme activity is due to its phosphorylation on serine/threonine residues. Prolidase-dependent transcriptional regulation of collagen biosynthesis was found at the level of NF-κB, known inhibitor of type I collagen gene expression. Proline dehydrogenase/proline oxidase (PRODH/POX) is flavin-dependent enzyme associated with the inner mitochondrial membrane. The enzyme catalyzes conversion of proline into Δ(1) -pyrroline-5-carboxylate (P5C), during which reactive oxygen species (ROS) are produced, inducing intrinsic and extrinsic apoptotic pathways. Alternatively, under low glucose stress, PRODH/POX activation produces ATP for energy supply and survival. Of special interest is that PRODH/POX gene is induced by P53 and peroxisome proliferator-activated gamma receptor (PPARγ). Among down-regulators of PRODH/POX is an oncogenic transcription factor c-MYC and miR-23b*. On the other hand, PRODH/POX suppresses HIF-1α transcriptional activity, the MAPK pathway, cyclooxygenase-2, epidermal growth factor receptor and Wnt/b-catenin signaling. PRODH/POX expression is often down-regulated in various tumors, limiting mitochondrial proline utilization to P5C. It is accompanied by increased cytoplasmic level of proline. Proline availability for PRODH/POX-dependent ATP or ROS generation depends on activity of prolidase and utilization of proline in process of collagen biosynthesis. Therefore, Prolidase-PRODH/POX-Collagen Biosynthesis axis may represent potential interface that regulate apoptosis and survival. © 2016 BioFactors, 42(4):341-348, 2016.
Collapse
Affiliation(s)
- Ilona Zareba
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
7
|
Fischer-Fodor E, Miklasova N, Berindan-Neagoe I, Saha B. Iron, inflammation and invasion of cancer cells. ACTA ACUST UNITED AC 2015; 88:272-7. [PMID: 26609256 PMCID: PMC4632882 DOI: 10.15386/cjmed-492] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/30/2015] [Indexed: 01/08/2023]
Abstract
Chronic inflammation is associated with the metastasis of tumor cells evolving from a benign tumor to disseminating cancer. Such a metastatic progression is fostered by the angiogenesis propelled by various mediators interacting at the site of tumor growth. Angiogenesis causes two major changes that are assisted by altered glycosylation and neo-antigen presentation by the cancer cells. The angiogenesis-promoted pathological changes include enhanced inflammation and degradation of tissue matrices releasing tumor cells from the site of its origin. The degraded tumor cells release the neo-antigens resulting from altered glycosylation. Presentation of neo-antigens to T cells escalates metastasis and inflammation. Inflammasome activation and inflammation in several infections are regulated by iron. Based on the discrete reports, we propose a link between iron, inflammation, angiogenesis and tumor growth. Knowing the link better may help us formulate a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Eva Fischer-Fodor
- Research Department, Prof. Dr. I. Chiricuta Institute of Oncology, Cluj-Napoca, Romania ; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Ioana Berindan-Neagoe
- Research Department, Prof. Dr. I. Chiricuta Institute of Oncology, Cluj-Napoca, Romania ; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Bhaskar Saha
- Department of Pathogenesis and Cellular Response, National Centre for Cell Science, Ganeshkhind, Pune, India
| |
Collapse
|
8
|
Tsitovich PB, Burns PJ, McKay AM, Morrow JR. Redox-activated MRI contrast agents based on lanthanide and transition metal ions. J Inorg Biochem 2014; 133:143-54. [DOI: 10.1016/j.jinorgbio.2014.01.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 12/17/2022]
|
9
|
Tsitovich PB, Spernyak JA, Morrow JR. A redox-activated MRI contrast agent that switches between paramagnetic and diamagnetic states. Angew Chem Int Ed Engl 2013; 52:13997-4000. [PMID: 24222651 DOI: 10.1002/anie.201306394] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/09/2013] [Indexed: 11/05/2022]
Affiliation(s)
- Pavel B Tsitovich
- Department of Chemistry, University at Buffalo, The State University of New York, Amherst, NY 14260 (USA)
| | | | | |
Collapse
|
10
|
Tsitovich PB, Spernyak JA, Morrow JR. A Redox-Activated MRI Contrast Agent that Switches Between Paramagnetic and Diamagnetic States. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201306394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
11
|
Abstract
Proline dehydrogenase (oxidase, PRODH/POX), the first enzyme in the proline degradative pathway, plays a special role in tumorigenesis and tumor development. Proline metabolism catalyzed by PRODH/POX is closely linked with the tricarboxylic acid (TCA) cycle and urea cycle. The proline cycle formed by the interconversion of proline and Δ(1) -pyrroline-5-carboxylate (P5C) between mitochondria and cytosol interlocks with pentose phosphate pathway. Importantly, by catalyzing proline to P5C, PRODH/POX donates electrons into the electron transport chain to generate ROS or ATP. In earlier studies, we found that PRODH/POX functions as a tumor suppressor to initiate apoptosis, inhibit tumor growth, and block the cell cycle, all by ROS signaling. It also suppresses hypoxia inducible factor signaling by increasing α-ketoglutarate. During tumor progression, PRODH/POX is under the control of various tumor-associated factors, such as tumor suppressor p53, inflammatory factor peroxisome proliferator-activated receptor gamma (PPARγ), onco-miRNA miR-23b*, and oncogenic transcription factor c-MYC. Recent studies revealed the two-sided features of PRODH/POX-mediated regulation. Under metabolic stress such as oxygen and glucose deprivation, PRODH/POX can be induced to serve as a tumor survival factor through ATP production or ROS-induced autophagy. The paradoxical roles of PRODH/POX can be understood considering the temporal and spatial context of the tumor. Further studies will provide additional insights into this protein and on its metabolic effects in tumors, which may lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Wei Liu
- Metabolism and Cancer Susceptibility Section, Basic Research Laboratory, Center for Cancer Research, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21702-1201, USA
| | | |
Collapse
|
12
|
Baete SH, Vandecasteele J, De Deene Y. 19F MRI oximetry: simulation of perfluorocarbon distribution impact. Phys Med Biol 2011; 56:2535-57. [PMID: 21444970 DOI: 10.1088/0031-9155/56/8/013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In (19)F MRI oximetry, a method used to image tumour hypoxia, perfluorocarbons serve as oxygenation markers. The goal of this study is to evaluate the impact of perfluorocarbon distribution and concentration in (19)F MRI oximetry through a computer simulation. The simulation studies the correspondence between (19)F measured (pO(FNMR)(2)) and actual tissue oxygen tension (pO(2)) for several tissue perfluorocarbon distributions. For this, a Krogh tissue model is implemented which incorporates the presence of perfluorocarbons in blood and tissue. That is, in tissue the perfluorocarbons are distributed homogeneously according to Gaussian diffusion profiles, or the perfluorocarbons are concentrated in the capillary wall. Using these distributions, the oxygen tension in the simulation volume is calculated. The simulated mean oxygen tension is then compared with pO(FNMR)(2), the (19)F MRI-based measure of pO(2) and with pO(0)(2), pO(2) in the absence of perfluorocarbons. The agreement between pO(FNMR)(2) and actual pO(2) is influenced by vascular density and perfluorocarbon distribution. The presence of perfluorocarbons generally gives rise to a pO(2) increase in tissue. This effect is enhanced when perfluorocarbons are also present in blood. Only the homogeneous perfluorocarbon distribution in tissue with no perfluorocarbons in blood guarantees small deviations of pO(FNMR)(2) from pO(2). Hence, perfluorocarbon distribution in tissue and blood has a serious impact on the reliability of (19)F MRI-based measures of oxygen tension. In addition, the presence of perfluorocarbons influences the actual oxygen tension. This finding may be of great importance for further development of (19)F MRI oximetry.
Collapse
Affiliation(s)
- S H Baete
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University, De Pintelaan 185, 9000 Gent, Belgium.
| | | | | |
Collapse
|
13
|
Baete SHU, Vandecasteele J, Colman L, De Neve W, De Deene Y. An oxygen-consuming phantom simulating perfused tissue to explore oxygen dynamics and (19)F MRI oximetry. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2010; 23:217-26. [PMID: 20577778 DOI: 10.1007/s10334-010-0219-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Revised: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 11/28/2022]
Abstract
OBJECTIVE This study presents a reproducible phantom which mimics oxygen-consuming tissue and can be used for the validation of (19)F MRI oximetry. MATERIALS AND METHODS The phantom consists of a haemodialysis filter of which the outer compartment is filled with a gelatin matrix containing viable yeast cells. Perfluorocarbon emulsions can be added to the gelatin matrix to simulate sequestered perfluorocarbons. A blood-substituting perfluorocarbon fluid is pumped through the lumen of the fibres in the filter. (19)F relaxometry MRI is performed with a fast 2D Look-Locker imaging sequence on a clinical 3T scanner. RESULTS Acute and perfusion-related hypoxia were simulated and imaged spatially and temporally using the phantom. CONCLUSIONS The presented experimental setup can be used to simulate oxygen consumption by somatic cells in vivo and for validating computational biophysical models of hypoxia, as measured with (19)F MRI oximetry.
Collapse
Affiliation(s)
- Steven H Ubert Baete
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University, Gent, Belgium.
| | | | | | | | | |
Collapse
|
14
|
Liu Y, Borchert GL, Donald S, Diwan B, Anver M, Phang JM. Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res 2009; 69:6414-22. [PMID: 19654292 PMCID: PMC4287397 DOI: 10.1158/0008-5472.can-09-1223] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Tumor metabolism and bioenergetics have become important topics for cancer research and are promising targets for anticancer therapy. Although glucose serves as the main source of energy, proline, an alternative substrate, is important, especially during nutrient stress. Proline oxidase (POX), catalyzing the first step in proline catabolism, is induced by p53 and can regulate cell survival as well as mediate programmed cell death. In a mouse xenograft tumor model, we found that POX greatly reduced tumor formation by causing G2 cell cycle arrest. Furthermore, immunohistochemical staining showed decreased POX expression in tumor tissues. Importantly, HIF-1alpha signaling was impaired with POX expression due to the increased production of alpha-ketoglutarate, a critical substrate for prolyl hydroxylation and degradation of HIF-1alpha. Combined with previous in vitro findings and reported clinical genetic associations, these new findings lead us to propose POX as a mitochondrial tumor suppressor and a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yongmin Liu
- Basic Science Program, SAIC-Frederick, Inc., Frederick, Maryland
| | | | - Steve Donald
- Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | | | - Miriam Anver
- Pathology/Histotechnology Laboratory, SAIC-Frederick, Inc., Frederick, Maryland
| | - James M. Phang
- Laboratory of Comparative Carcinogenesis, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
15
|
Owens DK, Crosby KC, Runac J, Howard BA, Winkel BSJ. Biochemical and genetic characterization of Arabidopsis flavanone 3beta-hydroxylase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:833-43. [PMID: 18657430 DOI: 10.1016/j.plaphy.2008.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 05/28/2008] [Accepted: 06/01/2008] [Indexed: 05/04/2023]
Abstract
Flavanone 3beta-hydroxylase (F3H; EC 1.14.11.9) is a 2-oxoglutarate dependent dioxygenase that catalyzes the synthesis of dihydrokaempferol, the common precursor for three major classes of 3-hydroxy flavonoids, the flavonols, anthocyanins, and proanthocyanidins. This enzyme also competes for flux into the 3-deoxy flavonoid branch pathway in some species. F3H genes are increasingly being used, often together with genes encoding other enzymes, to engineer flavonoid synthesis in microbes and plants. Although putative F3H genes have been cloned in a large number of plant species, only a handful have been functionally characterized. Here we describe the biochemical properties of the Arabidopsis thaliana F3H (AtF3H) enzyme and confirm the activities of gene products from four other plant species previously identified as having high homology to F3H. We have also investigated the surprising "leaky" phenotype of AtF3H mutant alleles, uncovering evidence that two related flavonoid enzymes, flavonol synthase (EC 1.14.11.23) and anthocyanidin synthase (EC 1.14.11.19), can partially compensate for F3H in vivo. These experiments further indicate that the absence of F3H in these lines enables the synthesis of uncommon 3-deoxy flavonoids in the Arabidopsis seed coat.
Collapse
Affiliation(s)
- Daniel K Owens
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | | | |
Collapse
|
16
|
Vickerman V, Blundo J, Chung S, Kamm R. Design, fabrication and implementation of a novel multi-parameter control microfluidic platform for three-dimensional cell culture and real-time imaging. LAB ON A CHIP 2008; 8:1468-77. [PMID: 18818801 PMCID: PMC2560179 DOI: 10.1039/b802395f] [Citation(s) in RCA: 243] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
New and more biologically relevant in vitro models are needed for use in drug development, regenerative medicine, and fundamental scientific investigation. While the importance of the extracellular microenvironment is clear, the ability to investigate the effects of physiologically relevant biophysical and biochemical factors is restricted in traditional cell culture platforms. Moreover, the versatility for multi-parameter manipulation, on a single platform, with the optical resolution to monitor the dynamics of individual cells or small population is lacking. Here we introduce a microfluidic platform for 3D cell culture in biologically derived or synthetic hydrogels with the capability to monitor cellular dynamics in response to changes in their microenvironment. Direct scaffold microinjection, was employed to incorporate 3D matrices into microfluidic devices. Our system geometry permits a unique window for studying directional migration, e.g. sprouting angiogenesis, since sprouts grow predominantly in the microscopic viewing plane. In this study, we demonstrate the ability to generate gradients (non-reactive solute), surface shear, interstitial flow, and image cells in situ. Three different capillary morphogenesis assays are demonstrated. Human adult dermal microvascular endothelial cells (HMVEC-ad) were maintained in culture for up to 7 days during which they formed open lumen-like structures which was confirmed with confocal microscopy and by perfusion with fluorescent microspheres. In the sprouting assay, time-lapse movies revealed cellular mechanisms and dynamics (filopodial projection/retraction, directional migration, cell division and lumen formation) during tip-cell invasion of underlying 3D matrix and subsequent lumen formation.
Collapse
Affiliation(s)
- Vernella Vickerman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | | |
Collapse
|
17
|
Abstract
New insights into cancer cell-specific biological pathways are urgently needed to promote development of rationally targeted therapeutics. Reactive oxygen species (ROS) and their role in cancer cell response to growth factor signaling and hypoxia are emerging as verdant areas of exploration on the road to discovering cancer's Achilles heel. One of the distinguishing and near-universal hallmarks of cancer growth is hypoxia. Unregulated cellular proliferation leads to formation of cellular masses that extend beyond the resting vasculature, resulting in oxygen and nutrient deprivation. The resulting hypoxia triggers a number of critical adaptations that enable cancer cell survival, including apoptosis suppression, altered glucose metabolism, and an angiogenic phenotype. Ironically, recent investigations suggest that oxygen depletion stimulates mitochondria to elaborate increased ROS, with subsequent activation of signaling pathways, such as hypoxia inducible factor 1alpha, that promote cancer cell survival and tumor growth. Because mitochondria are key organelles involved in chemotherapy-induced apoptosis induction, the relationship between mitochondria, ROS signaling, and activation of survival pathways under hypoxic conditions has been the subject of increased study. Insights into mechanisms involved in ROS signaling may offer novel avenues to facilitate discovery of cancer-specific therapies. Preclinical and clinical evaluation of agents that modify ROS signaling in cancer offers a novel avenue for intervention. This review will cover recent work in ROS-mediated signaling in cancer cells and its potential as a target for developmental therapeutics.
Collapse
Affiliation(s)
- John P Fruehauf
- Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92668, USA.
| | | |
Collapse
|
18
|
Abstract
Reactive oxygen species (ROS) have long been considered only as cyto- and genotoxic. However, there is now compelling evidence that ROS also act as second messengers in response to various stimuli, such as growth factors, hormones and cytokines. The hypoxia-inducible transcription factor (HIF) is a master regulator of oxygen-sensitive gene expression. More recently, HIF has also been shown to respond to non-hypoxic stimuli. Interestingly, recent reports indicate that ROS regulate HIF stability and transcriptional activity in well-oxygenated cells, as well as under hypoxic conditions. Consequently, ROS appear to be key players in regulating HIF-dependent pathways under both normal and pathological circumstances. This review summarizes the current understanding of the role of ROS in the regulation of the mammalian HIF system.
Collapse
Affiliation(s)
- Jacques Pouysségur
- Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR 6543, Centre A. Lacassagne, 33 Avenue Valombrose, F-06189 Nice, France
| | | |
Collapse
|