1
|
Stavniichuk A, Pyrshev K, Tomilin VN, Kordysh M, Zaika O, Pochynyuk O. Modus operandi of ClC-K2 Cl - Channel in the Collecting Duct Intercalated Cells. Biomolecules 2023; 13:177. [PMID: 36671562 PMCID: PMC9855527 DOI: 10.3390/biom13010177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The renal collecting duct is known to play a critical role in many physiological processes, including systemic water-electrolyte homeostasis, acid-base balance, and the salt sensitivity of blood pressure. ClC-K2 (ClC-Kb in humans) is a Cl--permeable channel expressed on the basolateral membrane of several segments of the renal tubule, including the collecting duct intercalated cells. ClC-Kb mutations are causative for Bartters' syndrome type 3 manifested as hypotension, urinary salt wasting, and metabolic alkalosis. However, little is known about the significance of the channel in the collecting duct with respect to the normal physiology and pathology of Bartters' syndrome. In this review, we summarize the available experimental evidence about the signaling determinants of ClC-K2 function and the regulation by systemic and local factors as well as critically discuss the recent advances in understanding the collecting-duct-specific roles of ClC-K2 in adaptations to changes in dietary Cl- intake and maintaining systemic acid-base homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
2
|
Chiorescu RM, Lazar RD, Buksa SB, Mocan M, Blendea D. Biomarkers of Volume Overload and Edema in Heart Failure With Reduced Ejection Fraction. Front Cardiovasc Med 2022; 9:910100. [PMID: 35783848 PMCID: PMC9247259 DOI: 10.3389/fcvm.2022.910100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
From a pathogenetic point of view, heart failure (HF) is characterized by the activation of several neurohumoral pathways with a role in maintaining the cardiac output and the adequate perfusion pressure in target organs and tissues. Decreased cardiac output in HF with reduced ejection fraction causes activation of the sympathetic nervous system, the renin angiotensin aldosterone system, arginine-vasopressin system, natriuretic peptides, and endothelin, all of which cause water and salt retention in the body. As a result, patients will present clinically as the main symptoms: dyspnea and peripheral edema caused by fluid redistribution to the lungs and/or by fluid overload. By studying these pathophysiological mechanisms, biomarkers with a prognostic and therapeutic role in the management of edema were identified in patients with HF with low ejection fraction. This review aims to summarize the current data from the specialty literature of such biomarkers with a role in the pathogenesis of edema in HF with low ejection fraction. These biomarkers may be the basis for risk stratification and the development of new therapeutic means in the treatment of edema in these patients.
Collapse
Affiliation(s)
- Roxana Mihaela Chiorescu
- Department of Internal Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, Cluj-Napoca, Romania
| | - Roxana-Daiana Lazar
- Nicolae Stancioiu Heart Institute, Cluj-Napoca, Romania
- *Correspondence: Roxana-Daiana Lazar
| | - Sándor-Botond Buksa
- Department of Internal Medicine, Emergency Clinical County Hospital, Cluj-Napoca, Romania
| | - Mihaela Mocan
- Department of Internal Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, Cluj-Napoca, Romania
| | - Dan Blendea
- Department of Internal Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Nicolae Stancioiu Heart Institute, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Urinary proteomics reveals key markers of salt sensitivity in hypertensive patients during saline infusion. J Nephrol 2021; 34:739-751. [PMID: 33398797 DOI: 10.1007/s40620-020-00877-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hypertension is a complex disease and is the major cause of cardiovascular complications. In the vast majority of individuals, the aetiology of elevated blood pressure (BP) cannot be determined, thus impairing optimized therapies and prognosis for individual patients. A more precise understanding of the molecular pathogenesis of hypertension remains a pressing priority for both basic and translational research. Here we investigated the effect of salt on naive hypertensive patients in order to better understand the salt intake-blood pressure relationship. METHODS Patients underwent an acute saline infusion and were defined as salt-sensitive or salt-resistant according to mean blood pressure changes. Urinary proteome changes during the salt load test were analysed by a label-free quantitative proteomics approach. RESULTS Our data show that salt-sensitive patients display equal sodium reabsorption as salt-resistant patients, as major sodium transporters show the same behaviour during the salt load. However, salt-sensitive patients regulate the renin angiotensin system (RAS) differently from salt-resistant patients, and upregulate proteins, as epidermal growth factor (EGF) and plasminogen activator, urokinase (PLAU), involved in the regulation of epithelial sodium channel ENaC activity. CONCLUSIONS Salt-sensitive and salt-resistant subjects have similar response to a saline/volume infusion as detected by urinary proteome. However, we identified glutamyl aminopeptidase (ENPEP), PLAU, EGF and Xaa-Pro aminopeptidase 2 precursor XPNPEP2 as key molecules of salt-sensitivity, through modulation of ENaC-dependent sodium reabsorption along the distal tubule.
Collapse
|
4
|
Szabó GT, Kiss A, Csanádi Z, Czuriga D. Hypothetical dysfunction of the epithelial sodium channel may justify neurohumoral blockade in coronavirus disease 2019. ESC Heart Fail 2020; 8:171-174. [PMID: 33205539 PMCID: PMC7753344 DOI: 10.1002/ehf2.13078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 12/29/2022] Open
Affiliation(s)
- Gábor Tamás Szabó
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 22 Móricz Zs. krt., Debrecen, H-4032, Hungary
| | - Attila Kiss
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Zoltán Csanádi
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 22 Móricz Zs. krt., Debrecen, H-4032, Hungary
| | - Dániel Czuriga
- Division of Cardiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, 22 Móricz Zs. krt., Debrecen, H-4032, Hungary
| |
Collapse
|
5
|
Gentzsch M, Rossier BC. A Pathophysiological Model for COVID-19: Critical Importance of Transepithelial Sodium Transport upon Airway Infection. FUNCTION 2020; 1:zqaa024. [PMID: 33201937 PMCID: PMC7662147 DOI: 10.1093/function/zqaa024] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 01/06/2023] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic remains a serious public health problem and will continue to be until effective drugs and/or vaccines are available. The rational development of drugs critically depends on our understanding of disease mechanisms, that is, the physiology and pathophysiology underlying the function of the organ targeted by the virus. Since the beginning of the pandemic, tireless efforts around the globe have led to numerous publications on the virus, its receptor, its entry into the cell, its cytopathic effects, and how it triggers innate and native immunity but the role of apical sodium transport mediated by the epithelial sodium channel (ENaC) during the early phases of the infection in the airways has received little attention. We propose a pathophysiological model that defines the possible role of ENaC in this process.
Collapse
Affiliation(s)
- Martina Gentzsch
- Department of Cell Biology and Physiology, Marsico Lung Institute, University of North Carolina, Chapel Hill, USA
- Department of Pediatric Pulmonology, Marsico Lung Institute, University of North Carolina, Chapel Hill, USA
| | - Bernard C Rossier
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Zhang D, Pollock DM. Diurnal Regulation of Renal Electrolyte Excretion: The Role of Paracrine Factors. Annu Rev Physiol 2019; 82:343-363. [PMID: 31635525 DOI: 10.1146/annurev-physiol-021119-034446] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many physiological processes, including most kidney-related functions, follow specific rhythms tied to a 24-h cycle. This is largely because circadian genes operate in virtually every cell type in the body. In addition, many noncanonical genes have intrinsic circadian rhythms, especially within the liver and kidney. This new level of complexity applies to the control of renal electrolyte excretion. Furthermore, there is growing evidence that paracrine and autocrine factors, especially the endothelin system, are regulated by clock genes. We have known for decades that excretion of electrolytes is dependent on time of day, which could play an important role in fluid volume balance and blood pressure control. Here, we review what is known about the interplay between paracrine and circadian control of electrolyte excretion. The hope is that recognition of paracrine and circadian factors can be considered more deeply in the future when integrating with well-established neuroendocrine control of excretion.
Collapse
Affiliation(s)
- Dingguo Zhang
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA; ,
| | - David M Pollock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35233, USA; ,
| |
Collapse
|
7
|
Benchoula K, Khatib A, Jaffar A, Ahmed QU, Sulaiman WMAW, Wahab RA, El-Seedi HR. The promise of zebrafish as a model of metabolic syndrome. Exp Anim 2019; 68:407-416. [PMID: 31118344 PMCID: PMC6842808 DOI: 10.1538/expanim.18-0168] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a cluster including hyperglycaemia, obesity, hypertension, and
hypertriglyceridaemia as a result of biochemical and physiological alterations and can
increase the risk of cardiovascular disease and diabetes. Fundamental research on this
disease requires validated animal models. One potential animal model that is rapidly
gaining in popularity is zebrafish (Danio rerio). The use of zebrafish as
an animal model conveys several advantages, including high human genetic homology,
transparent embryos and larvae that allow easier visualization. This review discusses how
zebrafish models contribute to the development of metabolic syndrome studies. Different
diseases in the cluster of metabolic syndrome, such as hyperglycaemia, obesity, diabetes,
and hypertriglyceridaemia, have been successfully studied using zebrafish; and the model
is promising for hypertension and cardiovascular metabolic-related diseases due to its
genetic similarity to mammals. Genetic mutation, chemical induction, and dietary
alteration are among the tools used to improve zebrafish models. This field is expanding,
and thus, more effective and efficient techniques are currently developed to fulfil the
increasing demand for thorough investigations.
Collapse
Affiliation(s)
- Khaled Benchoula
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Alfi Khatib
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia.,Central Research and Animal Facility (CREAM), Kulliyyah of Science, International Islamic University Malaysia, Sultan Ahamad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Ashika Jaffar
- School of Biosciences & Technology, VIT University, Vellore 632014, India
| | - Qamar Udin Ahmed
- Pharmacognosy Research Group, Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Wan Mohd Azizi Wan Sulaiman
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Ridhwan Abd Wahab
- Kulliyah of Allied Health Science, International Islamic University Malaysia, Sultan Ahmad Shah Street, Kuantan 25200, Pahang, Malaysia
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Box 574, SE-751 23 Uppsala, Sweden.,Alrayan Medical colleges, Medina 42541, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Barros CC, Schadock I, Sihn G, Rother F, Xu P, Popova E, Lapidus I, Plehm R, Heuser A, Todiras M, Bachmann S, Alenina N, Araujo RC, Pesquero JB, Bader M. Chronic Overexpression of Bradykinin in Kidney Causes Polyuria and Cardiac Hypertrophy. Front Med (Lausanne) 2018; 5:338. [PMID: 30560131 PMCID: PMC6287039 DOI: 10.3389/fmed.2018.00338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 11/16/2018] [Indexed: 01/06/2023] Open
Abstract
Acute intra-renal infusion of bradykinin increases diuresis and natriuresis via inhibition of vasopressin activity. However, the consequences of chronically increased bradykinin in the kidneys have not yet been studied. A new transgenic animal model producing an excess of bradykinin by proximal tubular cells (KapBK rats) was generated and submitted to different salt containing diets to analyze changes in blood pressure and other cardiovascular parameters, urine excretion, and composition, as well as levels and expression of renin-angiotensin system components. Despite that KapBK rats excrete more urine and sodium, they have similar blood pressure as controls with the exception of a small increase in systolic blood pressure (SBP). However, they present decreased renal artery blood flow, increased intrarenal expression of angiotensinogen, and decreased mRNA expression of vasopressin V1A receptor (AVPR1A), suggesting a mechanism for the previously described reduction of renal vasopressin sensitivity by bradykinin. Additionally, reduced heart rate variability (HRV), increased cardiac output and frequency, and the development of cardiac hypertrophy are the main chronic effects observed in the cardiovascular system. In conclusion: (1) the transgenic KapBK rat is a useful model for studying chronic effects of bradykinin in kidney; (2) increased renal bradykinin causes changes in renin angiotensin system regulation; (3) decreased renal vasopressin sensitivity in KapBK rats is related to decreased V1A receptor expression; (4) although increased renal levels of bradykinin causes no changes in mean arterial pressure (MAP), it causes reduction in HRV, augmentation in cardiac frequency and output and consequently cardiac hypertrophy in rats after 6 months of age.
Collapse
Affiliation(s)
- Carlos C Barros
- Department of Nutrition, Federal University of Pelotas, Pelotas, Brazil
| | - Ines Schadock
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil.,Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Gabin Sihn
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Ping Xu
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Elena Popova
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Irina Lapidus
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ralph Plehm
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Arnd Heuser
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Mihail Todiras
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | - Natalia Alenina
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ronaldo C Araujo
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Joao B Pesquero
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Charite-University Medicine, Berlin, Germany.,Federal University of Minas Gerais, Belo Horizonte, Brazil.,Berlin Institute of Health (BIH), Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany.,Institute for Biology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
9
|
Maslov MY, Foianini S, Mayer D, Orlov MV, Lovich MA. Synergy between sacubitril and valsartan leads to hemodynamic, antifibrotic, and exercise tolerance benefits in rats with preexisting heart failure. Am J Physiol Heart Circ Physiol 2018; 316:H289-H297. [PMID: 30461302 DOI: 10.1152/ajpheart.00579.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Simultaneous neprilysin inhibition (NEPi) and angiotensin receptor blockade (ARB) with sacubitril/valsartan improves cardiac function and exercise tolerance in patients with heart failure. However, it is not known whether these therapeutic benefits are primarily due to NEPi with sacubitril or ARB with valsartan or their combination. Therefore, the aim of the present study was to investigate the potential contribution of sacubitril and valsartan to the benefits of the combination therapy on left ventricular (LV) function and exercise tolerance. Heart failure was induced by volume overload via partial disruption of the aortic valve in rats. Therapy began 4 wk after valve disruption and lasted through 8 wk. Drugs were administered daily via oral gavage [sacubitril/valsartan (68 mg/kg), valsartan (31 mg/kg), and sacubitril (31 mg/kg)]. Hemodynamic assessments were conducted using Millar technology, and an exercise tolerance test was conducted using a rodent treadmill. Therapy with sacubitril/valsartan improved load-dependent indexes of LV contractility (dP/d tmax) and relaxation (dP/d tmin), exercise tolerance, and mitigated myocardial fibrosis, whereas monotherapies with valsartan, or sacubitril did not. Both sacubitril/valsartan and valsartan similarly improved a load-independent index of contractility [slope of the end-systolic pressure-volume relationship ( Ees)]. Sacubitril did not improve Ees. First, synergy of NEPi with sacubitril and ARB with valsartan leads to the improvement of load-dependent LV contractility and relaxation, exercise tolerance, and reduction of myocardial collagen content. Second, the improvement in load-independent LV contractility with sacubitril/valsartan appears to be solely due to ARB with valsartan constituent. NEW & NOTEWORTHY Our data suggest the following explanation for the effects of sacubitril/valsartan: 1) synergy of sacubitril and valsartan leads to the improvement of load-dependent left ventricular contractility and relaxation, exercise tolerance, and reduction of myocardial fibrosis and 2) improvement in load-independent left ventricular contractility is solely due to the valsartan constituent. The findings offer a better understanding of the outcomes observed in clinical studies and might facilitate the continuing development of the next generations of angiotensin receptor neprilysin inhibitors.
Collapse
Affiliation(s)
- Mikhail Y Maslov
- Department of Anesthesiology, Pain Medicine and Critical Care, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| | - Stephan Foianini
- Department of Anesthesiology, Pain Medicine and Critical Care, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| | - Dita Mayer
- Department of Anesthesiology, Pain Medicine and Critical Care, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| | - Michael V Orlov
- Department of Cardiology, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| | - Mark A Lovich
- Department of Anesthesiology, Pain Medicine and Critical Care, Steward St. Elizabeth's Medical Center/Tufts University School of Medicine , Boston, Massachusetts
| |
Collapse
|
10
|
Bądzyńska B, Baranowska I, Gawryś O, Sadowski J. Evidence against a crucial role of renal medullary perfusion in blood pressure control of hypertensive rats. J Physiol 2018; 597:211-223. [PMID: 30334256 DOI: 10.1113/jp276342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 10/17/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The development of new effective methods of treating arterial hypertension is hindered by uncertainty regarding its causes. According to one widespread concept hypertension is caused by abnormal blood circulation in the kidney, specifically by reduction of blood flow through the kidney medulla; however, this causal relationship has never been rigorously verified. We investigated whether in rats with three different forms of experimental hypertension prolonged selective elevation of renal medullary blood flow using local infusion of the vasodilator bradykinin would lower arterial pressure. We found that increasing medullary blood flow by almost 50% did not result in alleviation of hypertension, which argues against a causal role of such changes in the control of arterial pressure and suggests that attempts at improving renal medullary circulation are not likely to be a promising approach to combating hypertension. ABSTRACT The crucial role of renal medullary blood flow (MBF) in the control of arterial pressure (MAP) has been widely accepted but not rigorously verified. We examined the effects of experimental selective MBF elevation on MAP, medullary tissue hypertonicity and renal excretion in hypertensive rats. We used three hypertensive rat models: (1) rats with hypertension induced by chronic angiotensin II infusions (AngII model), (2) rats with hypertension induced by unilateral nephrectomy followed by high salt diet (HS/UNX), and (3) spontaneously hypertensive rats (SHR). In acute experiments, MBF (laser-Doppler measurement) was selectively increased with an intramedullary infusion of bradykinin (Bk) at 0.27 mg h-1 kg-1 BW over 4 h. MAP, renal artery blood flow (Transonic probe) and renal excretion parameters were measured simultaneously. In chronic studies with AngII and HS/UNX rats, Bk was infused over 2 weeks and MAP (telemetry probe) and renal excretion were repeatedly determined. In acute studies, with AngII, SHR and HS/UNX groups, Bk infusion caused a 47% increase in MBF (P < 0.01-0.001), whereas solvent infusion was without effect. During the experiments MAP decreased slightly and to the same extent with Bk and solvent infusion. Medullary tissue osmolality and [Na+ ] were lower in Bk- than in solvent-infused AngII rats and in SHR. Two weeks of intramedullary Bk infusion tested in AngII and HS/UNX rats did not alter MAP or renal excretion; though in the latter group a significant MBF increase and medullary hypertonicity decrease was observed. Since no decrease in MAP in hypertensive rats was seen with Bk-induced major renal medullary hyperperfusion or with a wash-out of medullary solutes, our data argue against a crucial role of MBF in the pathogenesis of arterial hypertension.
Collapse
Affiliation(s)
- Bożena Bądzyńska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre , Polish Academy of Sciences, 5 Pawińskiego St, 02-106, Warsaw, Poland
| | - Iwona Baranowska
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre , Polish Academy of Sciences, 5 Pawińskiego St, 02-106, Warsaw, Poland
| | - Olga Gawryś
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre , Polish Academy of Sciences, 5 Pawińskiego St, 02-106, Warsaw, Poland
| | - Janusz Sadowski
- Department of Renal and Body Fluid Physiology, Mossakowski Medical Research Centre , Polish Academy of Sciences, 5 Pawińskiego St, 02-106, Warsaw, Poland
| |
Collapse
|
11
|
Abstract
Historically, the first described effect of an angiotensin converting enzyme (ACE) inhibitor was an increased activity of bradykinin, one of the substrates of ACE. However, in the subsequent years, molecular models describing the mechanism of action of ACE inhibitors in decreasing blood pressure and cardiovascular risk have focused mostly on the renin-angiotensin system. Nonetheless, over the last 20 years, the importance of bradykinin in regulating vasodilation, natriuresis, oxidative stress, fibrinolysis, inflammation, and apoptosis has become clearer. The affinity of ACE appears to be higher for bradykinin than for angiotensin I, thereby suggesting that ACE inhibitors may be more effective inhibitors of bradykinin degradation than of angiotensin II production. Data describing the effect of ACE inhibition on bradykinin signaling support the hypothesis that the most cardioprotective benefits attributed to ACE inhibition may be due to increased bradykinin signaling rather than to decreased angiotensin II signaling, especially when high dosages of ACE inhibitors are considered. In particular, modulation of bradykinin in the endothelium appears to be a major target of ACE inhibition. These new mechanistic concepts may lead to further development of strategies enhancing the bradykinin signaling.
Collapse
Affiliation(s)
- Stefano Taddei
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 67, 56126, Pisa, Italy.
| | - L Bortolotto
- Heart Institute-Hypertension Unit, Medical School University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW The kidney mediates the excretion or conservation of water and electrolytes in the face of changing fluid and salt intake and losses. To ultrafilter and reabsorb the exact quantities of free water and salts to maintain euvolemia a range of endocrine, paracrine, and hormonal signaling systems have evolved linking the tubules, capillaries, glomeruli, arterioles, and other intrinsic cells of the kidney. Our understanding of these systems remains incomplete. RECENT FINDINGS Recent work has provided new insights into the workings of the communication pathways between tubular segments and the glomeruli and vasculature, with novel therapeutic agents in development. Particular progress has also been made in the visualization of tubuloglomerular feedback. SUMMARY The review summarizes our current understanding of pathway functions in health and disease, as well as future therapeutic options to protect the healthy and injured kidney.
Collapse
Affiliation(s)
- David A. Ferenbach
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Joseph V. Bonventre
- Department of Medicine, Renal Division and Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-Massachusetts Institute of Technology, Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
McGlinchey JCP, Tummala H, Lester DH. Correction of the Pathogenic Alternative Splicing, Caused by the Common GNB3 c.825C>T Allele, Using a Novel, Antisense Morpholino. Nucleic Acid Ther 2016; 26:257-65. [PMID: 27028457 DOI: 10.1089/nat.2015.0571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The very common GNB3 c.825C>T polymorphism (rs5443) is present in approximately half of all human chromosomes. Significantly, the presence of the GNB3 825T allele has been strongly associated with predisposition to essential hypertension. Paradoxically the presence of the GNB3 825T allele, in exon 10, introduces a pathogenic alternative RNA splice site into the middle of exon 9. To attempt to correct this pathogenic aberrant splicing, we, therefore, bioinformatically designed, using a Gene Tools(®) algorithm, a GNB3-specific, antisense morpholino. It was hoped that this morpholino would behave in vitro as either a potential splice blocker and/or exon skipper, to both bind and inhibit/reduce the aberrant splicing of the GNB3 825T allele. On transfecting a human lymphoblast cell line homozygous for the 825T allele, with this antisense morpholino, we encouragingly observed both a significant reduction (from ∼58% to ∼5%) in the production of the aberrant smaller GNB3 transcript, and a subsequent increase in the normal GNB3 transcript (from ∼42% to ∼95%). Our results demonstrate the potential use of a GNB3-specific antisense morpholino, as a pharmacogenetic therapy for essential hypertension.
Collapse
Affiliation(s)
- Jonathan C P McGlinchey
- 1 School of Science, Engineering & Technology, Abertay University , Dundee, United Kingdom .,2 Blood Sciences Laboratory, Department of Haematology, Ninewells Hospital , Dundee, United Kingdom
| | - Hemanth Tummala
- 3 Centre for Paediatrics, Barts and The London School of Medicine and Dentistry, Queen Mary University of London , Barts and The London Children's Hospital, London, United Kingdom
| | - Douglas H Lester
- 1 School of Science, Engineering & Technology, Abertay University , Dundee, United Kingdom
| |
Collapse
|
14
|
Morla L, Edwards A, Crambert G. New insights into sodium transport regulation in the distal nephron: Role of G-protein coupled receptors. World J Biol Chem 2016; 7:44-63. [PMID: 26981195 PMCID: PMC4768124 DOI: 10.4331/wjbc.v7.i1.44] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/02/2015] [Accepted: 11/25/2015] [Indexed: 02/05/2023] Open
Abstract
The renal handling of Na+ balance is a major determinant of the blood pressure (BP) level. The inability of the kidney to excrete the daily load of Na+ represents the primary cause of chronic hypertension. Among the different segments that constitute the nephron, those present in the distal part (i.e., the cortical thick ascending limb, the distal convoluted tubule, the connecting and collecting tubules) play a central role in the fine-tuning of renal Na+ excretion and are the target of many different regulatory processes that modulate Na+ retention more or less efficiently. G-protein coupled receptors (GPCRs) are crucially involved in this regulation and could represent efficient pharmacological targets to control BP levels. In this review, we describe both classical and novel GPCR-dependent regulatory systems that have been shown to modulate renal Na+ absorption in the distal nephron. In addition to the multiplicity of the GPCR that regulate Na+ excretion, this review also highlights the complexity of these different pathways, and the connections between them.
Collapse
|
15
|
Gonzalez AA, Cifuentes-Araneda F, Ibaceta-Gonzalez C, Gonzalez-Vergara A, Zamora L, Henriquez R, Rosales CB, Navar LG, Prieto MC. Vasopressin/V2 receptor stimulates renin synthesis in the collecting duct. Am J Physiol Renal Physiol 2015; 310:F284-93. [PMID: 26608789 DOI: 10.1152/ajprenal.00360.2015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/18/2015] [Indexed: 12/19/2022] Open
Abstract
Renin is synthesized in the principal cells of the collecting duct (CD), and its production is increased via cAMP in angiotensin (ANG) II-dependent hypertension, despite suppression of juxtaglomerular (JG) renin. Vasopressin, one of the effector hormones of the renin-angiotensin system (RAS) via the type 2-receptor (V2R), activates the cAMP/PKA/cAMP response element-binding protein (CREB) pathway and aquaporin-2 expression in principal cells of the CD. Accordingly, we hypothesized that activation of V2R increases renin synthesis via PKA/CREB, independently of ANG II type 1 (AT1) receptor activation in CD cells. Desmopressin (DDAVP; 10(-6) M), a selective V2R agonist, increased renin mRNA (∼3-fold), prorenin (∼1.5-fold), and renin (∼2-fold) in cell lysates and cell culture media in the M-1 CD cell line. Cotreatment with DDAVP+H89 (PKA inhibitor) or CREB short hairpin (sh) RNA prevented this response. H89 also blunted DDAVP-induced CREB phosphorylation and nuclear localization. In 48-h water-deprived (WD) mice, prorenin-renin protein levels were increased in the renal inner medulla (∼1.4- and 1.8-fold). In WD mice treated with an ACE inhibitor plus AT1 receptor blockade, renin mRNA and prorenin protein levels were still higher than controls, while renin protein content was not changed. In M-1 cells, ANG II or DDAVP increased prorenin-renin protein levels; however, there were no further increases by combined treatment. These results indicate that in the CD the activation of the V2R stimulates renin synthesis via the PKA/CREB pathway independently of RAS, suggesting a critical role for vasopressin in the regulation of renin in the CD.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile;
| | | | | | - Alex Gonzalez-Vergara
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Leonardo Zamora
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ricardo Henriquez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Carla B Rosales
- Department of Physiology Tulane University, School of Medicine, New Orleans, Louisiana; and
| | - L Gabriel Navar
- Department of Physiology Tulane University, School of Medicine, New Orleans, Louisiana; and Hypertension and Renal Center of Excellence, Tulane University, School of Medicine, New Orleans, Louisiana
| | - Minolfa C Prieto
- Department of Physiology Tulane University, School of Medicine, New Orleans, Louisiana; and Hypertension and Renal Center of Excellence, Tulane University, School of Medicine, New Orleans, Louisiana
| |
Collapse
|
16
|
Kopkan L, Husková Z, Jíchová Š, Červenková L, Červenka L, Saifudeen Z, El-Dahr SS. Conditional knockout of collecting duct bradykinin B2 receptors exacerbates angiotensin II-induced hypertension during high salt intake. Clin Exp Hypertens 2015; 38:1-9. [PMID: 26151827 DOI: 10.3109/10641963.2015.1047945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We elucidated the role of collecting duct kinin B2 receptor (B2R) in the development of salt-sensitivity and angiotensin II (ANG II)-induced hypertension. To this end, we used a Cre-Lox recombination strategy to generate mice lacking Bdkrb2 gene for B2R in the collecting duct (Hoxb7-Cre(tg/+):Bdkrb2(flox/flox)). In 3 groups of control (Bdkrb2(flox/flox)) and 3 groups of UB(Bdkrb2-/-) mice, systolic blood pressure (SBP) responses to high salt intake (4 or 8% NaCl; HS) were monitored by radiotelemetry in comparison with standard salt diet (0.4% NaCl) prior to and during subcutaneous ANG II infusion (1000 ng/min/kg) via osmotic minipumps. High salt intakes alone for 2 weeks did not alter SBP in either strain. ANG II significantly increased SBP equally in control (121 ± 2 to 156 ± 3 mmHg) and UB(Bdkrb2-/-) mice (120 ± 2 to 153 ± 2 mmHg). The development of ANG II-induced hypertension was exacerbated by 4%HS in both control (125 ± 3 to 164 ± 5 mmHg) and UB(Bdkrb2-/-) mice (124 ± 2 to 162 ± 3 mmHg) during 2 weeks. Interestingly, 8%HS caused a more profound and earlier ANG II-induced hypertension in UB(Bdkrb2-/-) (129 ± 2 to 166 ± 3 mmHg) as compared to control (128 ± 2 to 158 ± 2 mmHg) and it was accompanied by body weight loss and increased mortality. In conclusion, targeted inactivation of B2R in the renal collecting duct does not cause salt-sensitivity; however, collecting duct B2R attenuates the hypertensive actions of ANG II under conditions of very high salt intake.
Collapse
Affiliation(s)
- Libor Kopkan
- a Center of Experimental Medicine, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Zuzana Husková
- a Center of Experimental Medicine, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Šárka Jíchová
- a Center of Experimental Medicine, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Lenka Červenková
- a Center of Experimental Medicine, Institute for Clinical and Experimental Medicine , Prague , Czech Republic
| | - Luděk Červenka
- a Center of Experimental Medicine, Institute for Clinical and Experimental Medicine , Prague , Czech Republic .,b Department of Pathophysiology, 2nd Faculty of Medicine , Charles University , Prague , Czech Republic , and
| | - Zubaida Saifudeen
- c Department of Pediatrics , Tulane University School of Medicine , New Orleans , LA , USA
| | - Samir S El-Dahr
- c Department of Pediatrics , Tulane University School of Medicine , New Orleans , LA , USA
| |
Collapse
|
17
|
Abstract
The amiloride-sensitive epithelial Na(+) channel (ENaC) is a key player in the regulation of Na(+) homeostasis. Its functional activity is under continuous control by a variety of signaling molecules, including bioactive peptides of endothelin family. Since ENaC dysfunction is causative for disturbances in total body Na(+) levels associated with the abnormal regulation of blood volume, blood pressure, and lung fluid balance, uncovering the molecular mechanisms of inhibitory modulation or inappropriate activation of ENaC is crucial for the successful treatment of a variety of human diseases including hypertension. The precise regulation of ENaC is particularly important for normal Na(+) and fluid homeostasis in organs where endothelins are known to act: the kidneys, lung, and colon. Inhibition of ENaC by endothelin-1 (ET-1) has been established in renal cells, and several molecular mechanisms of inhibition of ENaC by ET-1 are proposed and will be reviewed in this chapter.
Collapse
Affiliation(s)
- Andrey Sorokin
- Division of Nephrology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | |
Collapse
|
18
|
Mamenko M, Zaika O, Boukelmoune N, Madden E, Pochynyuk O. Control of ENaC-mediated sodium reabsorption in the distal nephron by Bradykinin. VITAMINS AND HORMONES 2015; 98:137-154. [PMID: 25817868 DOI: 10.1016/bs.vh.2014.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Kinins, such as Bradykinin (BK), are peptide hormones of the kallikrein-kinin system. Apart from being a vasodilator, BK also increases urinary sodium excretion to reduce systemic blood pressure. It is becoming appreciated that BK modulates function of the epithelial Na(+) channel in the distal part of the renal nephron to affect tubular sodium reabsorption. In this chapter, we outline the molecular details, as well as discuss the physiological relevance of this regulation for the whole organism sodium homeostasis and setting chronic blood pressure.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Nabila Boukelmoune
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Eric Madden
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|