1
|
Dominguez JH, Xie D, Kelly KJ. Impaired microvascular circulation in distant organs following renal ischemia. PLoS One 2023; 18:e0286543. [PMID: 37267281 PMCID: PMC10237479 DOI: 10.1371/journal.pone.0286543] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
Mortality in acute kidney injury (AKI) patients remains very high, although very important advances in understanding the pathophysiology and in diagnosis and supportive care have been made. Most commonly, adverse outcomes are related to extra-renal organ dysfunction and failure. We and others have documented inflammation in remote organs as well as microvascular dysfunction in the kidney after renal ischemia. We hypothesized that abnormal microvascular flow in AKI extends to distant organs. To test this hypothesis, we employed intravital multiphoton fluorescence imaging in a well-characterized rat model of renal ischemia/reperfusion. Marked abnormalities in microvascular flow were seen in every organ evaluated, with decreases up to 46% observed 48 hours postischemia (as compared to sham surgery, p = 0.002). Decreased microvascular plasma flow was found in areas of erythrocyte aggregation and leukocyte adherence to endothelia. Intravital microscopy allowed the characterization of the erythrocyte formations as rouleaux that flowed as one-dimensional aggregates. Observed microvascular abnormalities were associated with significantly elevated fibrinogen levels. Plasma flow within capillaries as well as microthrombi, but not adherent leukocytes, were significantly improved by treatment with the platelet aggregation inhibitor dipyridamole. These microvascular defects may, in part, explain known distant organ dysfunction associated with renal ischemia. The results of these studies are relevant to human acute kidney injury.
Collapse
Affiliation(s)
- Jesus H. Dominguez
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Danhui Xie
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - K. J. Kelly
- Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Medicine, Renal Section, Roudebush Veterans’ Affairs Medical Center, Indianapolis, Indiana, Unites States of America
| |
Collapse
|
2
|
Yang L, Ottenheijm R, Worley P, Freichel M, Camacho Londoño JE. Reduction in SOCE and Associated Aggregation in Platelets from Mice with Platelet-Specific Deletion of Orai1. Cells 2022; 11:cells11203225. [PMID: 36291093 PMCID: PMC9600098 DOI: 10.3390/cells11203225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Calcium signalling in platelets through store operated Ca2+ entry (SOCE) or receptor-operated Ca2+ entry (ROCE) mechanisms is crucial for platelet activation and function. Orai1 proteins have been implicated in platelet’s SOCE. In this study we evaluated the contribution of Orai1 proteins to these processes using washed platelets from adult mice from both genders with platelet-specific deletion of the Orai1 gene (Orai1flox/flox; Pf4-Cre termed as Orai1Plt-KO) since mice with ubiquitous Orai1 deficiency show early lethality. Platelet aggregation as well as Ca2+ entry and release were measured in vitro following stimulation with collagen, collagen related peptide (CRP), thromboxane A2 analogue U46619, thrombin, ADP and the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor thapsigargin, respectively. SOCE and aggregation induced by Thapsigargin up to a concentration of 0.3 µM was abrogated in Orai1-deficient platelets. Receptor-operated Ca2+-entry and/or platelet aggregation induced by CRP, U46619 or thrombin were partially affected by Orai1 deletion depending on the gender. In contrast, ADP-, collagen- and CRP-induced aggregation was comparable in Orai1Plt-KO platelets and control cells over the entire concentration range. Our results reinforce the indispensability of Orai1 proteins for SOCE in murine platelets, contribute to understand its role in agonist-dependent signalling and emphasize the importance to analyse platelets from both genders.
Collapse
Affiliation(s)
- Linlin Yang
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, INF 366, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Roger Ottenheijm
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, INF 366, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Paul Worley
- The Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Marc Freichel
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, INF 366, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- Correspondence: (M.F.); (J.E.C.L.)
| | - Juan E. Camacho Londoño
- Pharmakologisches Institut, Ruprecht-Karls-Universität Heidelberg, INF 366, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120 Heidelberg, Germany
- Correspondence: (M.F.); (J.E.C.L.)
| |
Collapse
|
3
|
|
4
|
Feng W, Valiyaveettil M, Dudiki T, Mahabeleshwar GH, Andre P, Podrez EA, Byzova TV. β 3 phosphorylation of platelet α IIbβ 3 is crucial for stability of arterial thrombus and microparticle formation in vivo. Thromb J 2017; 15:22. [PMID: 28860945 PMCID: PMC5576334 DOI: 10.1186/s12959-017-0145-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/08/2017] [Indexed: 01/08/2023] Open
Abstract
Background It is well accepted that functional activity of platelet integrin αIIbβ3 is crucial for hemostasis and thrombosis. The β3 subunit of the complex undergoes tyrosine phosphorylation shown to be critical for outside-in integrin signaling and platelet clot retraction ex vivo. However, the role of this important signaling event in other aspects of prothrombotic platelet function is unknown. Method Here, we assess the role of β3 tyrosine phosphorylation in platelet function regulation with a knock-in mouse strain, where two β3 cytoplasmic tyrosines are mutated to phenylalanine (DiYF). We employed platelet transfusion technique and intravital microscopy for observing the cellular events involved in specific steps of thrombus growth to investigate in detail the role of β3 tyrosine phosphorylation in arterial thrombosis in vivo. Results Upon injury, DiYF mice exhibited delayed arterial occlusion and unstable thrombus formation. The mean thrombus volume in DiYF mice formed on collagen was only 50% of that in WT. This effect was attributed to DiYF platelets but not to other blood cells and endothelium, which also carry these mutations. Transfusion of isolated DiYF but not WT platelets into irradiated WT mice resulted in reversal of the thrombotic phenotype and significantly prolonged blood vessel occlusion times. DiYF platelets exhibited reduced adhesion to collagen under in vitro shear conditions compared to WT platelets. Decreased platelet microparticle release after activation, both in vitro and in vivo, were observed in DiYF mice compared to WT mice. Conclusion β3 tyrosine phosphorylation of platelet αIIbβ3 regulates both platelet pro-thrombotic activity and the formation of a stable platelet thrombus, as well as arterial microparticle release.
Collapse
Affiliation(s)
- Weiyi Feng
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA.,The First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061 China
| | - Manojkumar Valiyaveettil
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA.,US Army Medical Materiel Development Activity, 1430 Veterans Drive, Fort Detrick, Frederick, MD 21702 USA
| | - Tejasvi Dudiki
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA
| | | | | | - Eugene A Podrez
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA
| | - Tatiana V Byzova
- Department of Molecular Cardiology, The Cleveland Clinic Foundation, Cleveland, 44195 OH USA
| |
Collapse
|
5
|
Hemorrhagic risk due to platelet dysfunction in myelodysplastic patients, correlations with anemia severity and iron overload. Blood Coagul Fibrinolysis 2015; 26:743-9. [DOI: 10.1097/mbc.0000000000000287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Pentamethylquercetin (PMQ) reduces thrombus formation by inhibiting platelet function. Sci Rep 2015; 5:11142. [PMID: 26059557 PMCID: PMC4461919 DOI: 10.1038/srep11142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/12/2015] [Indexed: 11/10/2022] Open
Abstract
Flavonoids exert both anti-oxidant and anti-platelet activities in vitro and in vivo. Pentamethylquercetin (PMQ), a polymethoxylated flavone derivative, has been screened for anti-carcinogenic and cardioprotective effects. However, it is unclear whether PMQ has anti-thrombotic effects. In the present study, PMQ (20 mg/kg) significantly inhibited thrombus formation in the collagen- epinephrine- induced acute pulmonary thrombosis mouse model and the ferric chloride-induced carotid injury model. To explore the mechanism, we evaluated the effects of PMQ on platelet function. We found that PMQ inhibited platelet aggregation and granule secretion induced by low dose agonists, including ADP, collagen, thrombin and U46619. Biochemical analysis revealed that PMQ inhibited collagen-, thrombin- and U46619-induced activation of Syk, PLCγ2, Akt, GSK3β and Erk1/2. Therefore, we provide the first report to show that PMQ possesses anti-thrombotic activity in vivo and inhibited platelet function in vitro, suggesting that PMQ may represent a potential therapeutic candidate for the prevention or treatment of thrombotic disorders.
Collapse
|
7
|
Xiang K, Liu G, Zhou YJ, Hao HZ, Yin Z, He AD, Da XW, Xiang JZ, Wang JL, Ming ZY. 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside (THSG) attenuates human platelet aggregation, secretion and spreading in vitro. Thromb Res 2013; 133:211-7. [PMID: 24332167 DOI: 10.1016/j.thromres.2013.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/07/2013] [Accepted: 11/07/2013] [Indexed: 01/11/2023]
Abstract
INTRODUCTION 2,3,5,4'-tetrahydroxystilbene-2-O-β-D-glucoside(THSG) is a water-soluble component of the rhizome extract from the traditional Chinese herb Polygonum multiflorum. Recent studies have demonstrated that THSG has potent anti-oxidative and anti-inflammatory effects. In this study, we investigated the anti-platelet aggregation, secretion and spreading of THSG with different methods. The purpose was to explore the anti-platelet effect of THSG and the underlying mechanism. MATERIALS AND METHODS We investigated the anti-platelet activity of THSG on platelet aggregation induced by collagen (2 μg/mL), thrombin(0.04U/mL), U46619 (3 μM) and ADP (2 μM). ATP secretion induced by collagen (2 μg/mL) was also investigated. P-selectin expression and PAC-1 binding were measured by flow cytometry. In addition, human platelet spreading on immobilized fibrinogen and immunoblotting were also tested. RESULTS THSG dose-dependently inhibited platelet aggregation and ATP secretion induced by collagen. It inhibited platelet P-selectin expression and PAC-1 binding induced by thrombin(0.1U/mL). THSG also inhibited human platelet spreading on immobilized fibrinogen, a process mediated by platelet outside-in signaling. Western blot analysis showed that THSG could inhibit platelet Fc γ RIIa, Akt(Ser473)and GSK3β(Ser9) phosphorylation. CONCLUSIONS Our study indicates that THSG has potent anti-platelet activity to collagen induced aggregation. THSG is likely to exert protective effects in platelet-associated thromboembolic disorders by modulating human platelet.
Collapse
Affiliation(s)
- Ke Xiang
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Gang Liu
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Ya-Jun Zhou
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Hong-Zhen Hao
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Zhao Yin
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Ao-Di He
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Xing-Wen Da
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Ji-Zhou Xiang
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Jia-Ling Wang
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China
| | - Zhang-Yin Ming
- Department of Pharmacology, Tongji Medical College of Huazhong University of Science & Technology, 13 Hangkong Road, Wuhan 430030, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430030, China.
| |
Collapse
|
8
|
Current diagnostic trends in coagulation disorders among dogs and cats. Vet Clin North Am Small Anim Pract 2013; 43:1349-72, vii. [PMID: 24144095 DOI: 10.1016/j.cvsm.2013.07.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The diagnostic workup to differentiate hemorrhage caused by vascular injury from a systemic hemostatic imbalance typically involves a combination of broad screening tests and specific assays. The characterization of 3 overlapping phases of primary hemostasis, secondary hemostasis, and fibrinolysis provides a simple diagnostic framework for evaluating patients with clinical signs of hemorrhage. New techniques such as flow cytometry, thrombin-generation assays, thrombelastography, and anticoagulant drug monitoring are under investigation for veterinary patients; however, their ability to improve diagnosis or treatment requires further study in clinical trials.
Collapse
|
9
|
Kim K, Lim KM, Shin HJ, Seo DB, Noh JY, Kang S, Chung HY, Shin S, Chung JH, Bae ON. Inhibitory effects of black soybean on platelet activation mediated through its active component of adenosine. Thromb Res 2013; 131:254-61. [PMID: 23332980 DOI: 10.1016/j.thromres.2013.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/26/2012] [Accepted: 01/02/2013] [Indexed: 11/17/2022]
Abstract
Owing to the beneficial health effects on human cardiovascular system, soybeans and soy-related products have been a focus of intensive research. Soy isoflavones are known to be primarily responsible for the soy-related biological effects including anti-platelet activity but its in vivo relevancy has not been fully verified. Here we compared the role of adenosine, an active ingredient abundant in black soybean (BB) extract, in the anti-platelet effects of BB, to that of soy isoflavones. At the concentrations existing in BB, isoflavones such as genistein and daidzein could not attenuate collagen-induced platelet aggregation, however, adenosine significantly inhibited platelet aggregation with an equivalent potency to BB, suggesting that adenosine may be the major bioactive component. Consistently, the anti-aggregatory effects of BB disappeared after treatment of adenosine receptor antagonists. The effects of BB are mediated by adenosine through intracellular cAMP and subsequent attenuation of calcium mobilization. Of note, adenosine and BB significantly reduced platelet fibrinogen binding and platelet adhesion, other critical events for platelet activation, which were not affected by isoflavones. Taken together, we demonstrated that adenosine might be the major active ingredient for BB-induced anti-platelet activity, which will shed new light on the roles of adenosine as a bioactive compound in soybeans and soy-related food.
Collapse
Affiliation(s)
- Keunyoung Kim
- College of Pharmacy, Seoul National University, Seoul 151-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Antiplatelet therapies form the cornerstone of atherothrombosis prevention, reducing the morbidity and mortality associated with cardiovascular disease. Despite these benefits, there is still an unmet need for more effective and safer pharmacological agents. To expedite this process, biological platforms that better reflect the intravascular environment in humans will be required in order to shorten drug development time, enable better determination of dosing regimes, and aid in the design of clinical studies. This article focuses on a unique genetically modified animal model that predicts the in vivo response of antiplatelet agents in humans more accurately than is currently possible using conventional murine models of thrombosis.
Collapse
Affiliation(s)
- Jorge Magallon
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | | | | |
Collapse
|
11
|
Romaniuk MA, Croci DO, Lapponi MJ, Tribulatti MV, Negrotto S, Poirier F, Campetella O, Rabinovich GA, Schattner M. Binding of galectin-1 to αIIbβ₃ integrin triggers "outside-in" signals, stimulates platelet activation, and controls primary hemostasis. FASEB J 2012; 26:2788-2798. [PMID: 22456341 DOI: 10.1096/fj.11-197541] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2025]
Abstract
Understanding noncanonical mechanisms of platelet activation represents an important challenge for the identification of novel therapeutic targets in bleeding disorders, thrombosis, and cancer. We previously reported that galectin-1 (Gal-1), a β-galactoside-binding protein, triggers platelet activation in vitro. Here we investigated the molecular mechanisms underlying this function and the physiological relevance of endogenous Gal-1 in hemostasis. Mass spectrometry analysis, as well as studies using blocking antibodies against the anti-α(IIb) subunit ofα(IIb)β(3) integrin or platelets from patients with Glanzmann's thrombasthenia syndrome (α(IIb)β(3) deficiency), identified this integrin as a functional Gal-1 receptor in platelets. Binding of Gal-1 to platelets triggered the phosphorylation of β(3)-integrin, Syk, MAPKs, PI3K, PLCγ2, thromboxane (TXA(2)) release, and Ca(2+) mobilization. Not only soluble but also immobilized Gal-1 promoted platelet activation. Gal-1-deficient (Lgals1(-/-)) mice showed increased bleeding time (P<0.0002, knockout vs. wild type), which was not associated with an abnormal platelet count. Lgals1(-/-) platelets exhibited normal aggregation to PAR4, ADP, arachidonic acid, or collagen but abnormal ATP release at low collagen concentrations. Impaired spreading on fibrinogen and clot retraction with normal levels of α(IIb)β(3) was also observed in Lgals1(-/-) platelets, indicating a failure in the "outside-in" signaling through this integrin. This study identifies a noncanonical mechanism, based on galectin-integrin interactions, for regulating platelet activation.
Collapse
Affiliation(s)
- Maria A Romaniuk
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (IMEX), National Academy of Medicine, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Platelets play a vital role in maintaining haemostasis. Human platelet activation depends on Ca2+ release, leading to cell activation, granule secretion and aggregation. NAADP (nicotinic acid-adenine dinucleotide phosphate) is a Ca2+-releasing second messenger that acts on acidic Ca2+ stores and is used by a number of mammalian systems. In human platelets, NAADP has been shown to release Ca2+ in permeabilized human platelets and contribute to thrombin-mediated platelet activation. In the present study, we have further characterized NAADP-mediated Ca2+ release in human platelets in response to both thrombin and the GPVI (glycoprotein VI)-specific agonist CRP (collagen-related peptide). Using a radioligand-binding assay, we reveal an NAADP-binding site in human platelets, indicative of a platelet NAADP receptor. We also found that NAADP releases loaded 45Ca2+ from intracellular stores and that total platelet Ca2+ release is inhibited by the proton ionophore nigericin. Ned-19, a novel cell-permeant NAADP receptor antagonist, competes for the NAADP-binding site in platelets and can inhibit both thrombin- and CRP-induced Ca2+ release in human platelets. Ned-19 has an inhibitory effect on platelet aggregation, secretion and spreading. In addition, Ned-19 extends the clotting time in whole-blood samples. We conclude that NAADP plays an important role in human platelet function. Furthermore, the development of Ned-19 as an NAADP receptor antagonist provides a potential avenue for platelet-targeted therapy and the regulation of thrombosis.
Collapse
|
13
|
Affinity of talin-1 for the β3-integrin cytosolic domain is modulated by its phospholipid bilayer environment. Proc Natl Acad Sci U S A 2011; 109:793-8. [PMID: 22210111 DOI: 10.1073/pnas.1117220108] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Binding of the talin-1 FERM (4.1/ezrin/radixin/moesin) domain to the β3 cytosolic tail causes activation of the integrin αIIbβ3. The FERM domain also binds to acidic phospholipids. Although much is known about the interaction of talin-1 with integrins and lipids, the relative contribution of each interaction to integrin regulation and possible synergy between them remain to be clarified. Here, we examined the thermodynamic interplay between FERM domain binding to phospholipid bilayers and to its binding sites in the β3 tail. We found that although both the F0F1 and F2F3 subdomains of the talin-1 FERM domain bind acidic bilayers, the full-length FERM domain binds with an affinity similar to F2F3, indicating that F0F1 contributes little to the overall interaction. When free in solution, the β3 tail has weak affinity for the FERM domain. However, appending the tail to acidic phospholipids increased its affinity for the FERM domain by three orders of magnitude. Nonetheless, the affinity of the FERM for the appended tail was similar to its affinity for binding to bilayers alone. Thus, talin-1 binding to the β3 tail is a ternary interaction dominated by a favorable surface interaction with phospholipid bilayers and set by lipid composition. Nonetheless, interactions between the FERM domain, the β3 tail, and lipid bilayers are not optimized for a high-affinity synergistic interaction, even at the membrane surface. Instead, the interactions appear to be tuned in such a way that the equilibrium between inactive and active integrin conformations can be readily regulated.
Collapse
|
14
|
Magallon J, Chen J, Rabbani L, Dangas G, Yang J, Bussel J, Diacovo T. Humanized mouse model of thrombosis is predictive of the clinical efficacy of antiplatelet agents. Circulation 2011; 123:319-26. [PMID: 21220740 PMCID: PMC3046630 DOI: 10.1161/circulationaha.110.951970] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 11/17/2010] [Indexed: 11/16/2022]
Abstract
BACKGROUND In vivo testing of novel antiplatelet agents requires informative biomarkers. By genetically modifying mouse von Willebrand factor (VWF(R1326H)), we have developed a small animal model that supports human but not mouse platelet-mediated thrombosis. Here, we evaluate the use of this biological platform as a pharmacodynamic biomarker for antithrombotic therapies. METHODS AND RESULTS The antithrombotic effects of several αIIbβ3 inhibitors were determined in VWF(R1326H) mutant mice infused with human platelets. Administration of abciximab, eptifibatide, or tirofiban at doses recommended for percutaneous coronary intervention (per 1 kg of body weight) significantly reduced human platelet-mediated thrombus formation in laser-injured arterioles by > 75% (P < 0.001). In contrast, clot size in wild-type control animals remained essentially unchanged (P > 0.05), results consistent with observed species differences in IC₅₀ values obtained by aggregometry. To further demonstrate that our biological platform is unique among standard mouse models, we evaluated the thrombogenic potential of platelets from healthy volunteers before and after clopidogrel therapy. Consistent with the antithrombotic effect of this agent, platelets postdrug administration formed smaller thrombi than cells before therapy and were less responsive to ADP-induced aggregation (P < 0.001). CONCLUSIONS The ability of αIIbβ3 and P2Y₁₂ inhibitors to limit human platelet clot formation at doses recommended by the American College of Cardiology/American Heart Association suggests that VWF(R1326H) mutant mice can serve as both a pharmacodynamic and a functional response biomarker, attributes essential for not only expediting drug development but also designing clinical studies.
Collapse
Affiliation(s)
- Jorge Magallon
- Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Philip F, Kadamur G, Silos RG, Woodson J, Ross EM. Synergistic activation of phospholipase C-beta3 by Galpha(q) and Gbetagamma describes a simple two-state coincidence detector. Curr Biol 2010; 20:1327-35. [PMID: 20579885 PMCID: PMC2918712 DOI: 10.1016/j.cub.2010.06.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 01/12/2023]
Abstract
BACKGROUND Receptors that couple to G(i) and G(q) often interact synergistically in cells to elicit cytosolic Ca(2+) transients that are several-fold higher than the sum of those driven by each receptor alone. Such synergism is commonly assumed to be complex, requiring regulatory interaction between components, multiple pathways, or multiple states of the target protein. RESULTS We show that cellular G(i)-G(q) synergism derives from direct supra-additive stimulation of phospholipase C-beta3 (PLC-beta3) by G protein subunits Gbetagamma and Galpha(q), the relevant components of the G(i) and G(q) signaling pathways. No additional pathway or proteins are required. Synergism is quantitatively explained by the classical and simple two-state (inactive<-->active) allosteric mechanism. We show generally that synergistic activation of a two-state enzyme reflects enhanced conversion to the active state when both ligands are bound, not merely the enhancement of ligand affinity predicted by positive cooperativity. The two-state mechanism also explains why synergism is unique to PLC-beta3 among the four PLC-beta isoforms and, in general, why one enzyme may respond synergistically to two activators while another does not. Expression of synergism demands that an enzyme display low basal activity in the absence of ligand and becomes significant only when basal activity is = 0.1% of maximal. CONCLUSIONS Synergism can be explained by a simple and general mechanism, and such a mechanism sets parameters for its occurrence. Any two-state enzyme is predicted to respond synergistically to multiple activating ligands if, but only if, its basal activity is strongly suppressed.
Collapse
Affiliation(s)
- Finly Philip
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Ganesh Kadamur
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Rosa González Silos
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
- Universidad de Valladolid, Departamento de Estadística e Investigación Operativa, Facultad de Ciencias, 47011Valladolid, Spain
| | - Jimmy Woodson
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - Elliott M. Ross
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| |
Collapse
|
16
|
Zhang Y, Zhang X, Ma L, Guan D. Relationship Between Platelet Activation and Acute Rejection After Renal Transplantation. Transplant Proc 2009; 41:1547-51. [DOI: 10.1016/j.transproceed.2009.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 03/14/2009] [Accepted: 04/30/2009] [Indexed: 10/20/2022]
|
17
|
Schubert P, Thon JN, Walsh GM, Chen CHI, Moore ED, Devine DV, Kast J. A signaling pathway contributing to platelet storage lesion development: targeting PI3-kinase-dependent Rap1 activation slows storage-induced platelet deterioration. Transfusion 2009; 49:1944-55. [PMID: 19497060 DOI: 10.1111/j.1537-2995.2009.02224.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND The term platelet storage lesion (PSL) describes the structural and biochemical changes in platelets (PLTs) during storage. These are typified by alterations of morphologic features and PLT metabolism leading to reduced functionality and hence reduced viability for transfusion. While the manifestations of the storage lesion are well characterized, the biochemical pathways involved in the initiation of this process are unknown. STUDY DESIGN AND METHODS A complementary proteomic approach has recently been applied to analyze changes in the PLT proteome during storage. By employing stringent proteomic criteria, 12 proteins were identified as significantly and consistently changing in relative concentration over a 7-day storage period. Microscopy, Western blot analysis, flow cytometry, and PLT functionality analyses were used to unravel the involvement of a subset of these 12 proteins, which are connected through integrin signaling in one potential signaling pathway underlying storage lesion development. RESULTS Microscopic analysis revealed changes in localization of glycoprotein IIIa, Rap1, and talin during storage. Rap1 activation was observed to correlate with expression of the PLT activation marker CD62P. PLTs incubated for 7 days with the PI3-kinase inhibitor LY294002 showed diminished Rap1 activation as well as a moderate reduction in integrin alphaIIbbeta3 activation and release of alpha-granules. Furthermore, this inhibitor seemed to improve PLT integrity and quality during storage as several in vitro probes showed a deceleration of PLT activation. CONCLUSION These results provide the first evidence for a signaling pathway mediating PSL in which PI3-kinase-dependent Rap1 activation leads to integrin alphaIIbbeta3 activation and PLT degranulation.
Collapse
Affiliation(s)
- Peter Schubert
- Canadian Blood Services, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Ofosu FA, Dewar L, Song Y, Cedrone AC, Hortelano G, Craven SJ. Early Intraplatelet Signaling Enhances the Release of Human Platelet PAR-1 and -4 Amino-Terminal Peptides in Response to Thrombin. Biochemistry 2009; 48:1562-72. [DOI: 10.1021/bi801399c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Frederick A. Ofosu
- Department of Pathology and Molecular Medicine, McMaster University, and Canadian Blood Services, Hamilton, Ontario L8N 3Z5, Canada
| | - Lori Dewar
- Department of Pathology and Molecular Medicine, McMaster University, and Canadian Blood Services, Hamilton, Ontario L8N 3Z5, Canada
| | - Yingqi Song
- Department of Pathology and Molecular Medicine, McMaster University, and Canadian Blood Services, Hamilton, Ontario L8N 3Z5, Canada
| | - Aisha C. Cedrone
- Department of Pathology and Molecular Medicine, McMaster University, and Canadian Blood Services, Hamilton, Ontario L8N 3Z5, Canada
| | - Gonzalo Hortelano
- Department of Pathology and Molecular Medicine, McMaster University, and Canadian Blood Services, Hamilton, Ontario L8N 3Z5, Canada
| | - Sharon J. Craven
- Department of Pathology and Molecular Medicine, McMaster University, and Canadian Blood Services, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
19
|
Boudreaux MK. Characteristics, diagnosis, and treatment of inherited platelet disorders in mammals. J Am Vet Med Assoc 2008; 233:1251-9, 1190. [DOI: 10.2460/javma.233.8.1251] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Chang HH, Lo SJ. RHODOSTOMIN, A SNAKE VENOM DISINTEGRIN, SERVED AS A MOLECULAR TOOL TO DISSECT THE INTEGRIN FUNCTION. TOXIN REV 2008. [DOI: 10.1080/15569540701209823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Roach TIA, Rebres RA, Fraser IDC, Decamp DL, Lin KM, Sternweis PC, Simon MI, Seaman WE. Signaling and cross-talk by C5a and UDP in macrophages selectively use PLCbeta3 to regulate intracellular free calcium. J Biol Chem 2008; 283:17351-61. [PMID: 18411281 PMCID: PMC2427365 DOI: 10.1074/jbc.m800907200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/09/2008] [Indexed: 01/01/2023] Open
Abstract
Studies in fibroblasts, neurons, and platelets have demonstrated the integration of signals from different G protein-coupled receptors (GPCRs) in raising intracellular free Ca(2+). To study signal integration in macrophages, we screened RAW264.7 cells and bone marrow-derived macrophages (BMDM) for their Ca(2+) response to GPCR ligands. We found a synergistic response to complement component 5a (C5a) in combination with uridine 5'-diphosphate (UDP), platelet activating factor (PAF), or lysophosphatidic acid (LPA). The C5a response was Galpha(i)-dependent, whereas the UDP, PAF, and LPA responses were Galpha(q)-dependent. Synergy between C5a and UDP, mediated by the C5a and P2Y6 receptors, required dual receptor occupancy, and affected the initial release of Ca(2+) from intracellular stores as well as sustained Ca(2+) levels. C5a and UDP synergized in generating inositol 1,4,5-trisphosphate, suggesting synergy in activating phospholipase C (PLC) beta. Macrophages expressed transcripts for three PLCbeta isoforms (PLCbeta2, PLCbeta3, and PLCbeta4), but GPCR ligands selectively used these isoforms in Ca(2+) signaling. C5a predominantly used PLCbeta3, whereas UDP used PLCbeta3 but also PLCbeta4. Neither ligand required PLCbeta2. Synergy between C5a and UDP likewise depended primarily on PLCbeta3. Importantly, the Ca(2+) signaling deficiency observed in PLCbeta3-deficient BMDM was reversed by re-constitution with PLCbeta3. Neither phosphatidylinositol (PI) 3-kinase nor protein kinase C was required for synergy. In contrast to Ca(2+), PI 3-kinase activation by C5a was inhibited by UDP, as was macropinocytosis, which depends on PI 3-kinase. PLCbeta3 may thus provide a selective target for inhibiting Ca(2+) responses to mediators of inflammation, including C5a, UDP, PAF, and LPA.
Collapse
Affiliation(s)
- Tamara I A Roach
- Alliance for Cellular Signaling, Northern California Institute for Research and Education, San Francisco, California 94121, USA.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Arderiu G, Pérez-Pujol S, Escolar G, White JG, Díaz-Ricart M. External calcium facilitates signalling, contractile and secretory mechanisms induced after activation of platelets by collagen. Platelets 2008; 19:172-81. [PMID: 18432518 DOI: 10.1080/09537100701832140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Platelet activation leads to the initiation of intracellular signalling processes, many of which are triggered by Ca2+. We have studied the involvement of exogenous Ca2+ in platelet response to collagen activation. Platelet suspensions were prepared with and without adding external calcium in the suspension buffers. Activation with collagen (Col-I) was carried out, before and after incubation with cytochalasin B (Cyt-B) to block the actin assembly and the cytoskeletal reorganization. We evaluated changes in (i) tyrosine phosphorylation of proteins, in platelet lysates and associated with the cytoskeletal fraction, (ii) the association of contractile proteins to the cytoskeleton, (iii) expression of intraplatelet substances at the surface, and (iv) cytosolic Ca2+ levels ([Ca2+]i). Ultrastructural evaluation of platelets by electron microscopy was also performed. Platelet activation by Col-I in the absence of added Ca2+ was followed by mild association of actin and other contractile proteins, low phosphorylation of proteins at tyrosine residues, lack of expression of intraplatelet substances at the membrane, and absence of aggregation. In the presence of millimolar Ca2+, Col-I induced intense actin filament formation with association of contractile proteins with the cytoskeleton, resulting in profound morphological changes. Under these conditions, Col-I induced signalling through tyrosine phosphorylation, with increases in the [Ca2+]i, release of intragranule content and aggregation. Inhibiting actin polymerization with Cyt-B prevented all these events. Our data indicates that platelet activation by collagen requires external Ca2+. Studies with Cyt-B indicate that assembly of new actin and cytoskeleton-mediated contraction, both dependent on exogenous Ca2+, are key events for platelet activation by collagen. In addition, our results confirm that entrance of exogenous Ca2+ depends on a functional cytoskeleton.
Collapse
Affiliation(s)
- Gemma Arderiu
- Servei d'Hemoteràpia-Hemostàsia, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Villarroel, 170, 08036 Barcelona, Spain
| | | | | | | | | |
Collapse
|
23
|
Sbrana S, Della Pina F, Rizza A, Buffa M, De Filippis R, Gianetti J, Clerico A. Relationships between optical aggregometry (type born) and flow cytometry in evaluating ADP-induced platelet activation. CYTOMETRY PART B-CLINICAL CYTOMETRY 2008; 74:30-9. [PMID: 17630652 DOI: 10.1002/cyto.b.20360] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Platelet response to activating agents is used to monitor the efficacy of anti-aggregation therapies. The aim of our study has been to demonstrate the existence of relationships between early events of ADP-induced platelet activation, measured by flow cytometry and platelet-rich plasma aggregation, quantified by optical aggregometry. METHODS We evaluated peripheral blood of 12 donors. The following parameters were quantified by cytometry after stimulation with adenosine diphosphate (ADP) (0.5, 1, 2, 5, 10, 20 muM): CD62P (P-selectin) and PAC-1 expression, and cytosolic Ca(2+) mobilization. Aggregation was measured by optical aggregometry. We also studied 13 patients, undergoing coronary stenting, treated with aspirin (before procedure) or with aspirin plus clopidogrel (after procedure). We evaluated CD62P and PAC-1 expression, aggregation, and vasodilator-stimulated phopshoprotein phosphorylation (platelet reactivity index, PRI). RESULTS Flow procedures were more sensitive than aggregometry, with a lowest interindividual variability. Linear relationships existed in donors between CD62P expression and Ca(2+) mobilization (P < 0.0001), and between aggregation and Ca(2+) mobilization (P < 0.0001). Linear relationships existed between aggregation and CD62P expression, as percentage (P < 0.0001), or relative fluorescence intensity (RFI) (P < 0.0001). Exponential equations related aggregation and PAC-1 expression, as percentage (P < 0.0001), or RFI (P < 0.0001). Linear relationships between aggregation and CD62P expression (as percentage) existed in the patients before (P = 0.0022) and after procedure (P = 0.0020). Exponential relationships between aggregation and PAC-1 expression (as percentage) existed before (P = 0.0012) and after procedure (P = 0.0024). Linear correlations related aggregation response predicted on CD62P expression, and measured aggregation inhibition after clopidogrel (P = 0.0013) as well as predicted aggregation and PRI inhibition (P = 0.0031). CONCLUSIONS Tight relationships between aggregation and cytometric quantification of platelet markers in whole blood, in particular CD62P, allow to predict aggregation response to ADP from flow data in patients treated with aspirin alone or with aspirin plus clopidogrel.
Collapse
Affiliation(s)
- Silverio Sbrana
- Laboratory of Hematology and Flow Cytometry, CNR Institute of Clinical Physiology, Massa, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Marwali MR, Hu CP, Mohandas B, Dandapat A, Deonikar P, Chen J, Cawich I, Sawamura T, Kavdia M, Mehta JL. Modulation of ADP-induced platelet activation by aspirin and pravastatin: role of lectin-like oxidized low-density lipoprotein receptor-1, nitric oxide, oxidative stress, and inside-out integrin signaling. J Pharmacol Exp Ther 2007; 322:1324-32. [PMID: 17538005 DOI: 10.1124/jpet.107.122853] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lectin-like oxidized low-density lipoprotein (LDL) receptor-1 (LOX-1), a receptor for oxidized-LDL, is up-regulated in activated endothelial cells, and it plays a role in atherothrombosis. However, its role in platelet aggregation is unclear. Both aspirin and HMG CoA reductase inhibitors (statins) reduce LOX-1 expression in endothelial cells. In this study, we investigated the effect of aspirin and pravastatin on LOX-1 expression on plate-lets. After ADP stimulation, mean fluorescence intensity of LOX-1 expression on platelets increased 1.5- to 2.0-fold. Blocking LOX-1 inhibited ADP-induced platelet aggregation in a concentration- and time-dependent manner. We also established that LOX-1 is important for ADP-stimulated inside-out activation of platelet alpha(IIb)beta(3) and alpha(2)beta(1) integrins (fibrinogen receptors). The specificity of this interaction was determined by arginine-glycine-aspartate-peptide inhibition. Furthermore, we found that LOX-1 inhibition of integrin activation is mediated by inhibition of protein kinase C activity. In other experiments, treatment with aspirin (1-10 mM) and pravastatin (1-5 microM) reduced platelet LOX-1 expression, with a synergistic effect of the combination of aspirin and pravastatin. Aspirin and pravastatin both reduced reactive oxygen species (ROS) released by activated platelets measured as malonyldialdehyde (MDA) release and nitrate/nitrite ratio. Aspirin and pravastatin also enhanced nitric oxide (NO) release measured as nitrite/nitrite + nitrate (NOx) ratio in platelet supernates. Small concentrations of aspirin and pravastatin had a synergistic effect on the inhibition of MDA release and enhancement of nitrite/NOx. Thus, LOX-1 is important for ADP-mediated platelet integrin activation, possibly through protein kinase C activation. Furthermore, aspirin and pravastatin inhibit LOX-1 expression on platelets in part by favorably affecting ROS and NO release from activated platelets.
Collapse
Affiliation(s)
- Muhammad R Marwali
- Division of Cardiovascular Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205-7199, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Denis CV, Wagner DD. Platelet adhesion receptors and their ligands in mouse models of thrombosis. Arterioscler Thromb Vasc Biol 2007; 27:728-39. [PMID: 17272754 DOI: 10.1161/01.atv.0000259359.52265.62] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Platelet adhesion and aggregation at sites of vascular injury are two key events in hemostasis and thrombosis. Because of exciting advances in genetic engineering, the mouse has become an important and frequently used model to unravel the molecular mechanisms underlying the multistep process leading to the formation of a stable platelet plug. In gene-targeted mice, the crucial importance of platelet adhesion receptors such as glycoprotein Ib alpha or the alphaIIb beta3 integrin has been confirmed and further clarified. Their absence leads to highly impaired thrombus formation, independent of the model used to induce vascular injury. In contrast, the relative contribution of other receptors, such as glycoprotein VI, or of various platelet ligands may be regulated by the severity of injury, the type of vessel injured, and the signaling pathways that are generated. Murine models have also helped improve understanding of the second wave of events that leads to stabilization of the platelet aggregate. Despite the current limitations due to lack of standardization and the virtual absence of thrombosis models in diseased vessels, there is no doubt that the mouse will play a key role in the discovery and characterization of the next generation of antithrombotic agents. This review focuses on key findings about the molecular mechanisms supporting hemostasis and thrombosis that have been obtained with genetically engineered mouse models deficient in various platelet adhesion receptors and ligands. Combination of these models with sophisticated methods allowing direct visualization of platelet-vessel wall interactions after injury greatly contributed to recent advances in the field.
Collapse
|
26
|
|
27
|
Zahedi RP, Begonja AJ, Gambaryan S, Sickmann A. Phosphoproteomics of human platelets: A quest for novel activation pathways. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1963-76. [PMID: 17049321 DOI: 10.1016/j.bbapap.2006.08.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 07/28/2006] [Accepted: 08/21/2006] [Indexed: 01/05/2023]
Abstract
Besides their role in hemostasis, platelets are also highly involved in the pathogenesis and progression of cardiovascular diseases. Since important and initial steps of platelet activation and aggregation are regulated by phosphorylation events, a comprehensive study aimed at the characterization of phosphorylation-driven signaling cascades might lead to the identification of new target proteins for clinical research. However, it becomes increasingly evident that only a comprehensive phosphoproteomic approach may help to characterize functional protein networks and their dynamic alteration during physiological and pathophysiological processes in platelets. In this review, we discuss current methodologies in phosphoproteome research including their potentials as well as limitations, from sample preparation to classical approaches like radiolabeling and state-of-the-art mass spectrometry techniques.
Collapse
Affiliation(s)
- René P Zahedi
- Protein Mass Spectrometry and Functional Proteomics Group, Rudolf-Virchow-Center for Experimental Biomedicine, University of Wuerzburg, Versbacher Str. 9, 97078 Wuerzburg, Germany
| | | | | | | |
Collapse
|
28
|
Rossi R, Giustarini D, Dalle-Donne I, Milzani A. Protein S-glutathionylation and platelet anti-aggregating activity of disulfiram. Biochem Pharmacol 2006; 72:608-15. [PMID: 16815310 DOI: 10.1016/j.bcp.2006.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 05/26/2006] [Accepted: 05/26/2006] [Indexed: 02/02/2023]
Abstract
Blood platelets are central to haemostasis, and reactions in platelets involving sulfhydryl groups play important roles in platelet function. Reduced glutathione (GSH) plays an important role in platelet aggregation and glutathione-depleting chemicals inhibit platelet aggregation. The lipophilic drug disulfiram, because of its affinity for sulfhydryl groups, is a highly thiol-reacting agent. As a consequence, GSH and sulfhydryl groups of protein cysteines in human platelets, in analogy to other components of human blood, are a potential target of disulfiram. In the present study, we have shown that exposure of human platelets to disulfiram causes the depletion of platelet GSH and augmentation of mixed disulfides between GSH and protein sulfhydryl groups to form protein-glutathione mixed disulfides (S-glutathionylated proteins). The depletion of platelet GSH and the increase in S-glutathionylated proteins occurred at concentrations of disulfiram that inhibited platelet aggregation, suggesting that protein S-glutathionylation is involved in the inhibition of platelet aggregation caused by disulfiram.
Collapse
Affiliation(s)
- Ranieri Rossi
- Department of Neuroscience, University of Siena, I-53100 Siena, Italy
| | | | | | | |
Collapse
|