1
|
Ding N, Xi J, Li Y, Xie X, Shi J, Zhang Z, Li Y, Fang F, Wang S, Yue W, Pei X, Fang X. Global transcriptome analysis for identification of interactions between coding and noncoding RNAs during human erythroid differentiation. Front Med 2016; 10:297-310. [PMID: 27272188 DOI: 10.1007/s11684-016-0452-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/22/2016] [Indexed: 12/26/2022]
Abstract
Studies on coding genes, miRNAs, and lncRNAs during erythroid development have been performed in recent years. However, analysis focusing on the integration of the three RNA types has yet to be done. In the present study, we compared the dynamics of coding genes, miRNA, and lncRNA expression profiles. To explore dynamic changes in erythropoiesis and potential mechanisms that control these changes in the transcriptome level, we took advantage of high throughput sequencing technologies to obtain transcriptome data from cord blood hematopoietic stem cells and the following four erythroid differentiation stages, as well as from mature red blood cells. Results indicated that lncRNAs were promising cell marker candidates for erythroid differentiation. Clustering analysis classified the differentially expressed genes into four subtypes that corresponded to dynamic changes during stemness maintenance, mid-differentiation, and maturation. Integrated analysis revealed that noncoding RNAs potentially participated in controlling blood cell maturation, and especially associated with heme metabolism and responses to oxygen species and DNA damage. These regulatory interactions were displayed in a comprehensive network, thereby inferring correlations between RNAs and their associated functions. These data provided a substantial resource for the study of normal erythropoiesis, which will permit further investigation and understanding of erythroid development and acquired erythroid disorders.
Collapse
Affiliation(s)
- Nan Ding
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiafei Xi
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China
| | - Yanming Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoyan Xie
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China
| | - Jian Shi
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaojun Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanhua Li
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China
| | - Fang Fang
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China
| | - Sihan Wang
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China
| | - Wen Yue
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China.,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China
| | - Xuetao Pei
- Lab of Stem Cell and Regenerative Medicine, Beijing Institute of Transfusion Medicine, AMMS, Beijing, 100850, China. .,South China Research Center for Stem Cell & Regenerative Medicine, AMMS, Guangzhou, 510300, China.
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Salerno L, Cosentino C, Morrone G, Amato F. Computational Modeling of a Transcriptional Switch Underlying B-Lymphocyte Lineage Commitment of Hematopoietic Multipotent Cells. PLoS One 2015; 10:e0132208. [PMID: 26167861 PMCID: PMC4500571 DOI: 10.1371/journal.pone.0132208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/12/2015] [Indexed: 01/09/2023] Open
Abstract
Despite progresses in identifying the cellular mechanisms at the basis of the differentiation of hematopoietic stem/progenitor cells, little is known about the regulatory circuitry at the basis of lineage commitment of hematopoietic multipotent progenitors. To address this issue, we propose a computational approach to give further insights in the comprehension of this genetic mechanism. Differently from T lymphopoiesis, however, there is at present no mathematical model describing lineage restriction of multipotent progenitors to early B-cell precursors. Here, we provide a first model-constructed on the basis of current experimental evidence from literature and of publicly available microarray datasets-of the genetic regulatory network driving the cellular fate determination at the stage of lymphoid lineage commitment, with particular regard to the multipotent-B-cell progenitor transition. By applying multistability analysis methods, we are able to assess the capability of the model to capture the experimentally observed switch-like commitment behavior. These methods allow us to confirm the central role of zinc finger protein 521 (ZNF521) in this process, that we had previously reported, and to identify a novel putative functional interaction for ZNF521, which is essential to realize such characteristic behavior. Moreover, using the devised model, we are able to rigorously analyze the mechanisms underpinning irreversibility of the physiological commitment step and to devise a possible reprogramming strategy, based on the combined modification of the expression of ZNF521 and EBF1.
Collapse
Affiliation(s)
- Luca Salerno
- Laboratory of Biomechatronics, Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Carlo Cosentino
- Laboratory of Biomechatronics, Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Giovanni Morrone
- Laboratory of Molecular Haematopoiesis and Stem Cell Biology, Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Francesco Amato
- Laboratory of Biomechatronics, Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
3
|
Abstract
We recently developed fluorescence-activated cell sorting (FACS)-based methods to purify morphologically and functionally discrete populations of cells, each representing specific stages of terminal erythroid differentiation. We used these techniques to obtain pure populations of both human and murine erythroblasts at distinct developmental stages. RNA was prepared from these cells and subjected to RNA sequencing analyses, creating unbiased, stage-specific transcriptomes. Tight clustering of transcriptomes from differing stages, even between biologically different replicates, validated the utility of the FACS-based assays. Bioinformatic analyses revealed that there were marked differences between differentiation stages, with both shared and dissimilar gene expression profiles defining each stage within transcriptional space. There were vast temporal changes in gene expression across the differentiation stages, with each stage exhibiting unique transcriptomes. Clustering and network analyses revealed that varying stage-specific patterns of expression observed across differentiation were enriched for genes of differing function. Numerous differences were present between human and murine transcriptomes, with significant variation in the global patterns of gene expression. These data provide a significant resource for studies of normal and perturbed erythropoiesis, allowing a deeper understanding of mechanisms of erythroid development in various inherited and acquired erythroid disorders.
Collapse
|
4
|
Abstract
AbstractTraditionally, cytopenias are classified as deficiency mediated, immune mediated, BM failure induced, renal, or idiopathic, with the latter including the so-called idiopathic cytopenias of undetermined significance (ICUS). Clinical findings, symptoms, blood counts, BM findings, and other laboratory parameters are usually sufficient to reveal the type and cause of a marked cytopenia. However, in patients with chronic mild cytopenia, it may be a challenge for the physician to establish a correct diagnosis. In such patients, laboratory features and findings often reflect a diagnostic interface, so that criteria that are otherwise robust may hardly be applicable or are not helpful. Even if the BM is examined, the diagnosis often remains uncertain in these patients. In addition, more than one potential cause of cytopenia may be present, especially in the elderly. A myelodysplastic syndrome (MDS) or another BM disorder, but also an overt autoimmune or other inflammatory disease, may develop during follow-up in these patients. A key problem is that in an early phase of MDS, most laboratory and clinical signs are “nonspecific.” One of the very few reliable peripheral blood parameters distinguishing between an early or “pre-phase” of MDS and most other causes of a mild cytopenia are the numbers of circulating colony-forming progenitor cells. In addition, flow cytometric and molecular investigations may sometimes assist in the delineation between clonal and reactive conditions underlying mild cytopenias. This review provides an overview of diagnostic approaches and algorithms for patients with mild unexplained cytopenia(s).
Collapse
|
5
|
Gpr171, a putative P2Y-like receptor, negatively regulates myeloid differentiation in murine hematopoietic progenitors. Exp Hematol 2012; 41:102-12. [PMID: 23022127 DOI: 10.1016/j.exphem.2012.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 08/29/2012] [Accepted: 09/10/2012] [Indexed: 11/23/2022]
Abstract
Gpr171 is an orphan G-protein-coupled receptor putatively related to the P2Y family of purinergic receptors (P2YRs) for extracellular nucleotides, a group of mediators previously shown to regulate hematopoietic progenitor cells. No information is currently available on the ligand responsible for Gpr171 activation and its biological role remains unknown. We reconstructed Gpr171 phylogenesis in mice and confirmed that Gpr171 is evolutionally related to members of a P2Y gene-cluster localized on mouse chromosome 3. As a first step toward unveiling a role for Gpr171, we investigated its expression profile in murine hematopoietic cells. As opposed to other P2YRs, we found that Gpr171 expression is down-regulated in monocytes and granulocytes, suggesting a negative role in myeloid lineage specification. To test Gpr171 functional role, we next enforced Gpr171 expression in a myeloblastic cell line (32D cells) and in primary Sca-1(+) hematopoietic progenitors, and observed a decreased expression of myeloid markers upon induction of Gpr171, as well as an increased generation of colonies in vitro. Conversely, Gpr171 silencing induced opposite results, diminishing the expression of myeloid markers and the clonogenic potential of 32D cells. In vivo, mice transplanted with hematopoietic progenitor cells overexpressing Gpr171 displayed a significant reduction in the percentage of Mac-1(+)Gr-1(-) cells. As a preliminary step in the investigation of Gpr171 role in murine hematopoiesis, our findings indicate that the orphan receptor Gpr171 negatively regulates myeloid differentiation. Together with phylogenic analyses, our data suggest that Gpr171 may have followed a separate evolutionary pathway as compared to other P2YRs belonging to the same gene cluster.
Collapse
|
6
|
Weiss O, Kaufman R, Michaeli N, Inbal A. Abnormal vasculature interferes with optic fissure closure in lmo2 mutant zebrafish embryos. Dev Biol 2012; 369:191-8. [PMID: 22819672 DOI: 10.1016/j.ydbio.2012.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/16/2012] [Accepted: 06/19/2012] [Indexed: 01/13/2023]
Abstract
Ocular coloboma is a potentially blinding congenital eye malformation caused by failure of optic fissure closure during early embryogenesis. The optic fissure is a ventral groove that forms during optic cup morphogenesis, and through which hyaloid artery and vein enter and leave the developing eye, respectively. After hyaloid artery and vein formation, the optic fissure closes around them. The mechanisms underlying optic fissure closure are poorly understood, and whether and how this process is influenced by hyaloid vessel development is unknown. Here we show that a loss-of-function mutation in lmo2, a gene specifically required for hematopoiesis and vascular development, results in failure of optic fissure closure in zebrafish. Analysis of ocular blood vessels in lmo2 mutants reveals that some vessels are severely dilated, including the hyaloid vein. Remarkably, reducing vessel size leads to rescue of optic fissure phenotype. Our results reveal a new mechanism leading to coloboma, whereby malformed blood vessels interfere with eye morphogenesis.
Collapse
Affiliation(s)
- Omri Weiss
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
7
|
Duff C, Smith-Miles K, Lopes L, Tian T. Mathematical modelling of stem cell differentiation: the PU.1-GATA-1 interaction. J Math Biol 2011; 64:449-68. [PMID: 21461760 DOI: 10.1007/s00285-011-0419-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 02/08/2011] [Indexed: 11/28/2022]
Abstract
The transcription factors PU.1 and GATA-1 are known to be important in the development of blood progenitor cells. Specifically they are thought to regulate the differentiation of progenitor cells into the granulocyte/macrophage lineage and the erythrocyte/megakaryocite lineage. While several mathematical models have been proposed to investigate the interaction between the transcription factors in recent years, there is still debate about the nature of the progenitor state in the dynamical system, and whether the existing models adequately capture new knowledge about the interactions gleaned from experimental data. Further, the models utilise different formalisms to represent the genetic regulation, and it appears that the resulting dynamical system depends upon which formalism is adopted. In this paper we analyse the four existing models, and propose an alternative model which is shown to demonstrate a rich variety of dynamical systems behaviours found across the existing models, including both bistability and tristability required for modelling the undifferentiated progenitors.
Collapse
Affiliation(s)
- Campbell Duff
- School of Mathematical Sciences, Monash University, Melbourne, VIC, 3800, Australia
| | | | | | | |
Collapse
|
8
|
Role of helix-loop-helix proteins during differentiation of erythroid cells. Mol Cell Biol 2011; 31:1332-43. [PMID: 21282467 DOI: 10.1128/mcb.01186-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Helix-loop-helix (HLH) proteins play a profound role in the process of development and cellular differentiation. Among the HLH proteins expressed in differentiating erythroid cells are the ubiquitous proteins Myc, USF1, USF2, and TFII-I, as well as the hematopoiesis-specific transcription factor Tal1/SCL. All of these HLH proteins exhibit distinct functions during the differentiation of erythroid cells. For example, Myc stimulates the proliferation of erythroid progenitor cells, while the USF proteins and Tal1 regulate genes that specify the differentiated phenotype. This minireview summarizes the known activities of Myc, USF, TFII-I, and Tal11/SCL and discusses how they may function sequentially, cooperatively, or antagonistically in regulating expression programs during the differentiation of erythroid cells.
Collapse
|
9
|
Chiang SF, Lin TY, Chow KC, Chiou SH. SARS spike protein induces phenotypic conversion of human B cells to macrophage-like cells. Mol Immunol 2010; 47:2575-86. [PMID: 20667598 PMCID: PMC7112600 DOI: 10.1016/j.molimm.2010.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 06/28/2010] [Accepted: 06/29/2010] [Indexed: 12/25/2022]
Abstract
Massive aggregations of macrophages are frequently detected in afflicted lungs of patients with severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection. In vitro, ectopic expression of transcription factors, in particular CCAAT/enhancer-binding protein alpha (C/EBPα) and C/EBPβ, can convert B cells into functional macrophages. However, little is known about the specific ligands responsible for such phenotype conversion. Here, we investigated whether spike protein of SARS-CoV can act as a ligand to trigger the conversion of B cells to macrophages. We transduced SARS-CoV spike protein-displayed recombinant baculovirus (SSDRB), vAtEpGS688, into peripheral B cells and B lymphoma cells. Cell surface expression of CD19 or Mac-1 (CD11b) was determined by flow cytometry. SSDRB-mediated changes in gene expression profiles of B lymphoma cells were analyzed by microarray. In this report, we showed that spike protein of SARS virus could induce phenotypic conversion of human B cells, either from peripheral blood or B lymphoma cells, to macrophage-like cells that were steadily losing the B-cell marker CD19 and in turn expressing the macrophage-specific marker Mac-1. Furthermore, we found that SSDRB enhanced the expression of CD86, hypoxia-inducible factor-1α (HIF1α), suppressor of cytokine signaling (SOCS or STAT-induced STAT inhibitor)-3, C/EBPβ, insulin-like growth factor-binding protein 3 (IGFBP3), Krüpple-like factor (KLF)-5, and CD54, without marked influence on C/EBPα or PU.1 expression in transduced cells. Prolonged exposure to hypoxia could also induce macrophage-like conversion of B cells. These macrophage-like cells were defective in phagocytosis of red fluorescent beads. In conclusion, our results suggest that conversion of B cells to macrophage-like cells, similar to a pathophysiological response, could be mediated by a devastating viral ligand, in particular spike protein of SARS virus, or in combination with severe local hypoxia, which is a condition often observed in afflicted lungs of SARS patients.
Collapse
Affiliation(s)
- Shu-Fen Chiang
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, 250 Kuo Kuang Road, Taichung 40227, Taiwan
| | | | | | | |
Collapse
|
10
|
Halley JD, Burden FR, Winkler DA. Stem cell decision making and critical-like exploratory networks. Stem Cell Res 2009; 2:165-77. [DOI: 10.1016/j.scr.2009.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/24/2009] [Accepted: 03/06/2009] [Indexed: 10/21/2022] Open
|
11
|
Specific Lineage-Priming of Bone Marrow Mesenchymal Stem Cells Provides the Molecular Framework for Their Plasticity. Stem Cells 2009; 27:1142-51. [DOI: 10.1002/stem.34] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Chickarmane V, Enver T, Peterson C. Computational modeling of the hematopoietic erythroid-myeloid switch reveals insights into cooperativity, priming, and irreversibility. PLoS Comput Biol 2009; 5:e1000268. [PMID: 19165316 PMCID: PMC2613533 DOI: 10.1371/journal.pcbi.1000268] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 12/05/2008] [Indexed: 11/24/2022] Open
Abstract
Hematopoietic stem cell lineage choices are decided by genetic networks that are turned ON/OFF in a switch-like manner. However, prior to lineage commitment, genes are primed at low expression levels. Understanding the underlying molecular circuitry in terms of how it governs both a primed state and, at the other extreme, a committed state is of relevance not only to hematopoiesis but also to developmental systems in general. We develop a computational model for the hematopoietic erythroid-myeloid lineage decision, which is determined by a genetic switch involving the genes PU.1 and GATA-1. Dynamical models based upon known interactions between these master genes, such as mutual antagonism and autoregulation, fail to make the system bistable, a desired feature for robust lineage determination. We therefore suggest a new mechanism involving a cofactor that is regulated as well as recruited by one of the master genes to bind to the antagonistic partner that is necessary for bistability and hence switch-like behavior. An interesting fallout from this architecture is that suppression of the cofactor through external means can lead to a loss of cooperativity, and hence to a primed state for PU.1 and GATA-1. The PU.1-GATA-1 switch also interacts with another mutually antagonistic pair, C/EBPalpha-FOG-1. The latter pair inherits the state of its upstream master genes and further reinforces the decision due to several feedback loops, thereby leading to irreversible commitment. The genetic switch, which handles the erythroid-myeloid lineage decision, is an example of a network that implements both a primed and a committed state by regulating cooperativity through recruitment of cofactors. Perturbing the feedback between the master regulators and downstream targets suggests potential reprogramming strategies. The approach points to a framework for lineage commitment studies in general and could aid the search for lineage-determining genes.
Collapse
Affiliation(s)
- Vijay Chickarmane
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Tariq Enver
- MRC Molecular Biology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, United Kingdom
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
| | - Carsten Peterson
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, Lund, Sweden
- Computational Biology and Biological Physics, Department of Theoretical Physics, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Bohne A, Schlee C, Mossner M, Thibaut J, Heesch S, Thiel E, Hofmann WK, Baldus CD. Epigenetic control of differential expression of specific ERG isoforms in acute T-lymphoblastic leukemia. Leuk Res 2008; 33:817-22. [PMID: 19108891 DOI: 10.1016/j.leukres.2008.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 12/31/2022]
Abstract
Expression of ERG is of prognostic significance in acute myeloid leukemia (AML) and T-lymphoblastic leukemia (T-ALL) pointing to its role in leukemogenesis. To unravel its transcriptional regulation we analyzed the expression of ERG specific isoforms. Expression of the two main isoforms ERG2 and ERG3 was found in AML and normal CD34+ cells, whereas T-ALL blasts only expressed ERG isoforms harboring exon 5 (ERG3) lacking expression of ERG2. Bisulfite sequencing revealed hypermethylation of a CpG island within the ERG2 promoter region in T-ALL. Treatment of the T-lymphoblastic cell line BE13 with decitabine led to re-expression of ERG2 and pyrosequencing showed concordant DNA hypomethylation, thus confirming a methylation regulated expression of ERG2. Moreover, the identification of a new ERG isoform (ERG3Deltaex12) suggests the association with different interaction partners and adds to the complexity of downstream pathways mediated by the expression of specific ERG transcripts in acute leukemia.
Collapse
Affiliation(s)
- Arend Bohne
- Department of Hematology and Oncology, Charité, University Hospital Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Gemelli C, Orlandi C, Zanocco Marani T, Martello A, Vignudelli T, Ferrari F, Montanari M, Parenti S, Testa A, Grande A, Ferrari S. The vitamin D3/Hox-A10 pathway supports MafB function during the monocyte differentiation of human CD34+ hemopoietic progenitors. THE JOURNAL OF IMMUNOLOGY 2008; 181:5660-72. [PMID: 18832725 DOI: 10.4049/jimmunol.181.8.5660] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although a considerable number of reports indicate an involvement of the Hox-A10 gene in the molecular control of hemopoiesis, the conclusions of such studies are quite controversial given that they support, in some cases, a role in the stimulation of stem cell self-renewal and myeloid progenitor expansion, whereas in others they implicate this transcription factor in the induction of monocyte-macrophage differentiation. To clarify this issue, we analyzed the biological effects and the transcriptome changes determined in human primary CD34(+) hemopoietic progenitors by retroviral transduction of a full-length Hox-A10 cDNA. The results obtained clearly indicated that this homeogene is an inducer of monocyte differentiation, at least partly acting through the up-regulation of the MafB gene, recently identified as the master regulator of such a maturation pathway. By using a combined approach based on computational analysis, EMSA experiments, and luciferase assays, we were able to demonstrate the presence of a Hox-A10-binding site in the promoter region of the MafB gene, which suggested the likely molecular mechanism underlying the observed effect. Stimulation of the same cells with the vitamin D(3) monocyte differentiation inducer resulted in a clear increase of Hox-A10 and MafB transcripts, indicating the existence of a precise transactivation cascade involving vitamin D(3) receptor, Hox-A10, and MafB transcription factors. Altogether, these data allow one to conclude that the vitamin D(3)/Hox-A10 pathway supports MafB function during the induction of monocyte differentiation.
Collapse
Affiliation(s)
- Claudia Gemelli
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Halley JD, Winkler DA, Burden FR. Toward a Rosetta stone for the stem cell genome: Stochastic gene expression, network architecture, and external influences. Stem Cell Res 2008; 1:157-68. [DOI: 10.1016/j.scr.2008.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/17/2008] [Accepted: 03/21/2008] [Indexed: 02/05/2023] Open
|
16
|
Bartunek P, Karafiat V, Bartunkova J, Pajer P, Dvorakova M, Kralova J, Zenke M, Dvorak M. Impact of chicken thrombopoietin and its receptor c-Mpl on hematopoietic cell development. Exp Hematol 2008; 36:495-505. [DOI: 10.1016/j.exphem.2007.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/29/2007] [Accepted: 12/03/2007] [Indexed: 12/14/2022]
|
17
|
Shin S, Wakabayashi N, Misra V, Biswal S, Lee GH, Agoston ES, Yamamoto M, Kensler TW. NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol Cell Biol 2007; 27:7188-97. [PMID: 17709388 PMCID: PMC2168916 DOI: 10.1128/mcb.00915-07] [Citation(s) in RCA: 268] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 06/29/2007] [Accepted: 08/08/2007] [Indexed: 12/15/2022] Open
Abstract
The NF-E2 p45-related factor 2 (NRF2) and the aryl hydrocarbon receptor (AHR) are transcription factors controlling pathways modulating xenobiotic metabolism. AHR has recently been shown to affect Nrf2 expression. Conversely, this study demonstrates that NRF2 regulates expression of Ahr and subsequently modulates several downstream events of the AHR signaling cascade, including (i) transcriptional control of the xenobiotic metabolism genes Cyp1a1 and Cyp1b1 and (ii) inhibition of adipogenesis in mouse embryonic fibroblasts (MEFs). Constitutive expression of AHR was affected by Nrf2 genotype. Moreover, a pharmacological activator of NRF2 signaling, CDDO-IM {1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole}, induced Ahr, Cyp1a1, and Cyp1b1 transcription in Nrf2+/+ MEFs but not in Nrf2-/- MEFs. Reporter analysis and chromatin immunoprecipitation assay revealed that NRF2 directly binds to one antioxidant response element (ARE) found in the -230-bp region of the promoter of Ahr. Since AHR negatively controls adipocyte differentiation, we postulated that NRF2 would inhibit adipogenesis through the interaction with the AHR pathway. Nrf2-/- MEFs showed markedly accelerated adipogenesis upon stimulation, while Keap1-/- MEFs (which exhibit higher NRF2 signaling) differentiated slowly compared to their congenic wild-type MEFs. Ectopic expression of Ahr and dominant-positive Nrf2 in Nrf2-/- MEFs also substantially delayed differentiation. Thus, NRF2 directly modulates AHR signaling, highlighting bidirectional interactions of these pathways.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adipocytes/physiology
- Adipogenesis/physiology
- Animals
- Cell Differentiation/physiology
- Cells, Cultured
- Cytoskeletal Proteins/genetics
- Cytoskeletal Proteins/metabolism
- Fibroblasts/cytology
- Fibroblasts/physiology
- Gene Expression Regulation
- Genes, Reporter
- Kelch-Like ECH-Associated Protein 1
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Promoter Regions, Genetic
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Signal Transduction/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Soona Shin
- Department of Pharmacology and Molecular Sciences, School of Medicine, The Johns Hopkins University, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Ferrari F, Bortoluzzi S, Coppe A, Basso D, Bicciato S, Zini R, Gemelli C, Danieli GA, Ferrari S. Genomic expression during human myelopoiesis. BMC Genomics 2007; 8:264. [PMID: 17683550 PMCID: PMC2045681 DOI: 10.1186/1471-2164-8-264] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Accepted: 08/03/2007] [Indexed: 01/01/2023] Open
Abstract
Background Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where multipotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. Results Gene expression data from 24 experiments for 8 different cell types of the human myelopoietic lineage were used to generate an integrated myelopoiesis dataset of 9,425 genes, each reliably associated to a unique genomic position and chromosomal coordinate. Lists of genes constitutively expressed or silent during myelopoiesis and of genes differentially expressed in commitment phase of myelopoiesis were first identified using a classical data analysis procedure. Then, the genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. This approach allowed identifying specific chromosomal regions significantly highly or weakly expressed, and clusters of differentially expressed genes and of transcripts related to specific functional modules. Conclusion The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.
Collapse
Affiliation(s)
- Francesco Ferrari
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100, Modena, Italy
| | - Stefania Bortoluzzi
- Department of Biology, University of Padova, via G. Colombo 3, 35131, Padova, Italy
| | - Alessandro Coppe
- Department of Biology, University of Padova, via G. Colombo 3, 35131, Padova, Italy
| | - Dario Basso
- Department of Chemical Engineering Processes, University of Padova via F. Marzolo 9, 35131, Padova, Italy
| | - Silvio Bicciato
- Department of Chemical Engineering Processes, University of Padova via F. Marzolo 9, 35131, Padova, Italy
| | - Roberta Zini
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100, Modena, Italy
| | - Claudia Gemelli
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100, Modena, Italy
| | - Gian Antonio Danieli
- Department of Biology, University of Padova, via G. Colombo 3, 35131, Padova, Italy
| | - Sergio Ferrari
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100, Modena, Italy
| |
Collapse
|
19
|
Attema JL, Papathanasiou P, Forsberg EC, Xu J, Smale ST, Weissman IL. Epigenetic characterization of hematopoietic stem cell differentiation using miniChIP and bisulfite sequencing analysis. Proc Natl Acad Sci U S A 2007; 104:12371-6. [PMID: 17640913 PMCID: PMC1924790 DOI: 10.1073/pnas.0704468104] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hematopoietic stem cells (HSC) produce all blood cell lineages by virtue of their capacity to self-renew and differentiate into progenitors with decreasing cellular potential. Recent studies suggest that epigenetic mechanisms play an important role in controlling stem cell potency and cell fate decisions. To investigate this hypothesis in HSC, we have modified the conventional chromatin immunoprecipitation assay allowing for the analysis of 50,000 prospectively purified stem and progenitor cells. Together with bisulfite sequencing analysis, we found that methylated H3K4 and AcH3 and unmethylated CpG dinucleotides colocalize across defined regulatory regions of lineage-affiliated genes in HSC. These active epigenetic histone modifications either accumulated or were replaced by increased DNA methylation and H3K27 trimethylation in committed progenitors consistent with gene expression. We also observed bivalent histone modifications at a lymphoid-affiliated gene in HSC and downstream transit-amplifying progenitors. Together, these data support a model in which epigenetic modifications serve as an important mechanism to control HSC multipotency.
Collapse
Affiliation(s)
- Joanne L. Attema
- *Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; and
- To whom correspondence may be addressed: or
| | - Peter Papathanasiou
- *Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - E. Camilla Forsberg
- *Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; and
| | - Jian Xu
- Howard Hughes Medical Institute, Molecular Biology Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Stephen T. Smale
- Howard Hughes Medical Institute, Molecular Biology Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095
| | - Irving L. Weissman
- *Institute of Stem Cell Biology and Regenerative Medicine, Departments of Pathology and Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305; and
- To whom correspondence may be addressed: or
| |
Collapse
|
20
|
Loose M, Swiers G, Patient R. Transcriptional networks regulating hematopoietic cell fate decisions. Curr Opin Hematol 2007; 14:307-14. [PMID: 17534154 DOI: 10.1097/moh.0b013e3281900eee] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
PURPOSE OF REVIEW We provide a summary of the temporal cascade of transcriptional networks giving rise to the hematopoietic stem cell (HSC) and controlling differentiation of the erythroid lineage from it. We focus on the mechanisms by which cell fate decisions are made and comment on recent developments and additions to the networks. RECENT FINDINGS A role for an SCL/LMO2 complex in HSC emergence, as well as in subsequent erythroid differentiation, has received support. Connections between the transcriptional networks and signaling molecules are being made but more work is needed in this area. Evidence that transcriptional cross-antagonistic switches underlie the choice between lineage pathways is increasing, and we highlight how the dynamics of earlier lineage decisions can influence later ones. Mathematical models are being built and reveal a surprising degree of power in these simple motifs to explain lineage choices. SUMMARY New links in the transcriptional networks underlying cell-fate decisions are constantly emerging, and their incorporation into the evolving networks will make mathematical modeling more precise in its predictions of cell behavior, which can be tested experimentally.
Collapse
Affiliation(s)
- Matt Loose
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham, UK
| | | | | |
Collapse
|
21
|
Chateauvieux S, Ichanté JL, Delorme B, Frouin V, Piétu G, Langonné A, Gallay N, Sensebé L, Martin MT, Moore KA, Charbord P. Molecular profile of mouse stromal mesenchymal stem cells. Physiol Genomics 2006; 29:128-38. [PMID: 17179208 DOI: 10.1152/physiolgenomics.00197.2006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We determined a transcriptional profile specific for clonal stromal mesenchymal stem cells from adult and fetal hematopoietic sites. To identify mesenchymal stem cell-like stromal cell lines, we evaluated the adipocytic, osteoblastic, chondrocytic, and vascular smooth muscle differentiation potential and also the hematopoietic supportive (stromal) capacity of six mouse stromal cell lines from adult bone marrow and day 14.5 fetal liver. We found that two lines were quadripotent and also supported hematopoiesis, BMC9 from bone marrow and AFT024 from fetal liver. We then ascertained the set of genes differentially expressed in the intersection set of AFT024 and BMC9 compared with those expressed in the union set of two negative control lines, 2018 and BFC012 (both from fetal liver); 346 genes were upregulated and 299 downregulated. Using Ingenuity software, we found two major gene networks with highly significant scores. One network contained downregulated genes that are known to be implicated in osteoblastic differentiation, proliferation, or transformation. The other network contained upregulated genes that belonged to two categories, cytoskeletal genes and genes implicated in the transcriptional machinery. The data extend the concept of stromal mesenchymal stem cells to clonal cell populations derived not only from bone marrow but also from fetal liver. The gene networks described should discriminate this cell type from other types of stem cells and help define the stem cell state.
Collapse
Affiliation(s)
- Sebastien Chateauvieux
- Institut National de la Santé et de la Recherche Médicale, Equipe-ESPRI/EA-3855, Université François Rabelais, Faculté de Médecine, Tours, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|