1
|
Aberrant BLID expression is associated with breast cancer progression. Tumour Biol 2014; 35:5449-52. [PMID: 24532431 DOI: 10.1007/s13277-014-1710-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 01/29/2014] [Indexed: 12/20/2022] Open
Abstract
In our previous study, we have found that BH3-like motif containing, cell death inducer (BLID) was a tumor suppressor in breast cancer, and its downregulation was correlated with both poor disease-free and overall survival. In the present study, we aimed to explore the possible role of BLID in breast cancer progression. We found that BLID was strongly expressed in all normal breast tissues, and it became lower and wreaker gradually in the progression from normal, UDH (usual ductal hyperplasia), ADH (atypical ductal hyperplasia), and DCIS (ductal carcinoma in situ) to breast cancer. Statistical analysis demonstrated significant different BLID expressions between proliferative and cancerous breast lesions. Our data suggested that loss of BLID may contribute to the progression of intraductal proliferation lesions to breast cancer. Our finding gives a new clue that BLID might be a potential indicator for progression of breast cancer in the future.
Collapse
|
2
|
Li X, Kong X, Wang Y, Yang Q. BRCC2 inhibits breast cancer cell growth and metastasis in vitro and in vivo via downregulating AKT pathway. Cell Death Dis 2013; 4:e757. [PMID: 23928696 PMCID: PMC3763451 DOI: 10.1038/cddis.2013.290] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 12/12/2022]
Abstract
In our previous study, we demonstrated that the BRCC2 (breast cancer cell 2) gene is a proapoptotic molecule that interacts with Bcl-XL. BRCC2 downregulation is associated with poor disease-free and overall survival in breast cancer. In this study, we aimed to investigate the role of BRCC2 in tumor suppression in breast cancer. In clinical breast cancer samples, we found that BRCC2 expression was significantly downregulated in cancer lesions compared with paired normal breast tissues. By silencing or overexpressing BRCC2 in breast cancer cells, we found that BRCC2 could inhibit cell growth and metastasis in vitro. An in vivo assay showed that BRCC2 not only dramatically inhibited breast cancer cell xenograft formation and growth but also inhibited breast cancer cell metastasis in a lung metastasis model. Moreover, we demonstrated that BRCC2 inhibited breast cancer metastasis via regulation of the Akt pathway. Thus, our study provided evidence that BRCC2 functions as a novel tumor suppressor in breast cancer and may be a potential therapeutic target for breast cancer management.
Collapse
Affiliation(s)
- X Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No.107, Ji'nan 250012, China
| | | | | | | |
Collapse
|
3
|
Yoo TH, Ryu BK, Lee MG, Chi SG. CD81 is a candidate tumor suppressor gene in human gastric cancer. Cell Oncol (Dordr) 2012; 36:141-53. [PMID: 23264205 DOI: 10.1007/s13402-012-0119-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2012] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND CD81 is a transmembrane protein that serves as a putative receptor for hepatitis C virus. In addition, CD81 has been suggested to be involved in a broad range of other cellular functions. Its putative implication in tumorigenesis has so far, however, remained largely unexplored. To assess the candidacy of CD81 as a tumor suppressor in gastric cancer development, we investigated its expression and function in a series of primary gastric tumors and gastric tumor-derived cell lines. METHODS The expression and concomitant methylation status of the CD81 gene and its effect on tumor development and cellular signaling were evaluated. RESULTS CD81 mRNA levels were found to be low in 16 of 40 (40 %) primary tumors and 9 of 14 (64.2 %) cell lines, and these low expression levels were found to correlate with the stage and grade of the tumors. Genomic alterations of CD81 were not encountered, whereas its expression could be re-activated in low expressing cells upon 5-aza-dC treatment. Bisulfite DNA sequencing analysis of 10 CpG sites within the 5' proximal region of the CD81 gene promoter revealed that the observed transcriptional silencing was tightly associated with aberrant hypermethylation. Subsequent restoration of CD81 expression induced a G1 cell cycle arrest and apoptosis, whereas siRNA-mediated CD81 down-regulation promoted cell proliferation and attenuated cellular responses to various apoptotic stress stimuli. Also the colony-forming ability of the tumor cells could be inhibited and enhanced through CD81 up- and down-regulation, respectively. CD81 was found to inhibit p38 (but not ERK, JNK and AKT) phosphorylation and its growth suppressive effect could be abolished through p38 up- and down-regulation. CONCLUSION From our data we conclude that epigenetic inactivation of CD81 is a common feature of gastric tumors and that this inactivation may render growth and survival advantages to the tumor cells, at least partially through p38 signaling.
Collapse
Affiliation(s)
- Tae-Hyoung Yoo
- School of Life Sciences and Biotechnology, Korea University, 136-701, Seoul, Republic of Korea
| | | | | | | |
Collapse
|
4
|
Wilkerson PM, Reis-Filho JS. the 11q13-q14 amplicon: Clinicopathological correlations and potential drivers. Genes Chromosomes Cancer 2012; 52:333-55. [DOI: 10.1002/gcc.22037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/01/2012] [Indexed: 01/04/2023] Open
|
5
|
Wikman H, Sielaff-Frimpong B, Kropidlowski J, Witzel I, Milde-Langosch K, Sauter G, Westphal M, Lamszus K, Pantel K. Clinical relevance of loss of 11p15 in primary and metastatic breast cancer: association with loss of PRKCDBP expression in brain metastases. PLoS One 2012; 7:e47537. [PMID: 23118876 PMCID: PMC3485301 DOI: 10.1371/journal.pone.0047537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 09/12/2012] [Indexed: 11/18/2022] Open
Abstract
The occurrence of brain metastases among breast cancer patients is currently rising with approximately 20-25% incidence rates, underlining the importance of the identification of new therapeutic and prognostic markers. We have previously screened for new markers for brain metastasis by array CGH. We found that loss of 11p15 is common among these patients. In this study, we investigated the clinical significance of loss of 11p15 in primary breast cancer (BC) and breast cancer brain metastases (BCBM). 11p15 aberration patterns were assessed by allelic imbalance (AI) analysis in primary BC (n = 78), BCBM (n = 21) and metastases from other distant sites (n = 6) using six different markers. AI at 11p15 was significantly associated with BCBM (p = 0.002). Interestingly, a subgroup of primary BC with a later relapse to the brain had almost equally high AI rates as the BCBM cases. In primary BC, AI was statistically significantly associated with high grade, negative hormone receptor status, and triple-negative (TNBC) tumors. Gene expression profiling identified PRKCDBP in the 11p15 region to be significantly downregulated in both BCBM and primary BC with brain relapse compared to primary tumors without relapse or bone metastasis (fdr<0.05). qRT-PCR confirmed these results and methylation was shown to be a common way to silence this gene. In conclusion, we found loss at 11p15 to be a marker for TNBC primary tumors and BCBM and PRKCDBP to be a potential target gene in this locus.
Collapse
Affiliation(s)
- Harriet Wikman
- Institute of Tumor Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Mazumder Indra D, Mitra S, Singh RK, Dutta S, Roy A, Mondal RK, Basu PS, Roychoudhury S, Panda CK. Inactivation of CHEK1and EI24is associated with the development of invasive cervical carcinoma: Clinical and prognostic implications. Int J Cancer 2011; 129:1859-1871. [DOI: 10.1002/ijc.25849] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
7
|
Sinha S, Singh RK, Bhattacharya N, Mukherjee N, Ghosh S, Alam N, Roy A, Roychoudhury S, Panda CK. Frequent alterations of LOH11CR2A, PIG8 and CHEK1 genes at chromosomal 11q24.1-24.2 region in breast carcinoma: clinical and prognostic implications. Mol Oncol 2011; 5:454-64. [PMID: 21803008 PMCID: PMC5528301 DOI: 10.1016/j.molonc.2011.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/28/2011] [Indexed: 11/24/2022] Open
Abstract
To understand the importance of frequent deletions at chromosome 11q24.1-24.2 region in breast carcinoma, alterations (deletion/methylation) of the candidate genes LOH11CR2A, ROBO3, ROBO4, HEPACAM, PIG8 and CHEK1 located in this region were analyzed in 106 breast carcinoma samples. Among these genes, LOH11CR2A showed highest frequency of deletion (56%), followed by PIG8 (35%), CHEK1 (31%) and ROBO3/ROBO4/HEPACAM loci (28%). Comparable frequency of promoter methylation (26-35%) was observed for LOH11CR2A, CHEK1 and PIG8. Overall alterations (deletion/methylation) of these genes were in the following order: LOH11CR2A (60%) > PIG8 (46%) > CHEK1 (41%) and showed significant association with each other. Breast carcinoma samples that were estrogen/progesterone receptor negative showed significantly high deletion and overall alterations than estrogen/progesterone receptor positive samples for LOH11CR2A, CHEK1 and PIG8. The methylation and overall alteration of LOH11CR2A were significantly associated with tumor stages in breast carcinoma. However, in early/late onset and estrogen/progesterone receptor positive/negative breast carcinoma, the overall alterations of LOH11CR2A, PIG8 and CHEK1 were differentially associated with advanced stages, tumor grade and lymph node metastasis. Alterations of PIG8 and CHEK1 were significantly associated with poor prognosis in patients with early age of onset of the disease indicating significant prognostic importance. Quantitative mRNA expression analysis detected reduced expression of the genes in the order LOH11CR2A > CHEK1 > PIG8. Immunohistochemical analysis showed reduced protein expression of PIG8 and CHEK1 that was concordant with their molecular alterations. Thus, our study suggests that LOH11CR2A, PIG8 and CHEK1 are candidate tumor suppressor genes associated with breast carcinoma and have significant clinical as well as prognostic importance.
Collapse
MESH Headings
- Adult
- Aged
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms, Male/genetics
- Breast Neoplasms, Male/pathology
- Cell Line, Tumor
- Checkpoint Kinase 1
- Chromosome Deletion
- Chromosomes, Human, Pair 11/genetics
- DNA Methylation/genetics
- Female
- Genes, Neoplasm/genetics
- Humans
- Immunohistochemistry
- Kaplan-Meier Estimate
- Male
- Middle Aged
- Mutation/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Polymorphism, Single Nucleotide/genetics
- Prognosis
- Promoter Regions, Genetic
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Receptors, Estrogen/metabolism
- Receptors, Progesterone/metabolism
- Young Adult
Collapse
Affiliation(s)
- Satyabrata Sinha
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ratnesh K. Singh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nilanjana Bhattacharya
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nupur Mukherjee
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Susmita Ghosh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anup Roy
- Department of Pathology, Midnapur Medical College and Hospital, Midnapur, India
| | - Susanta Roychoudhury
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
8
|
Cavalli LR, Noone AM, Makambi KH, Rone JD, Kasid UN, Haddad BR. Frequent loss of the BLID gene in early-onset breast cancer. Cytogenet Genome Res 2011; 135:19-24. [PMID: 21846966 DOI: 10.1159/000330265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2011] [Indexed: 12/27/2022] Open
Abstract
The BH3-like motif-containing inducer of cell death (BLID) is an intronless gene localized on 11q24.1. Loss of that region has frequently been reported in early-onset breast cancer and is significantly associated with poor prognosis and reduced survival. Downregulation of BLID is associated with younger age, triple-negative phenotype, and reduced disease-free and overall survival of breast cancer patients. In this study, we investigated allelic loss of BLID in breast tumor specimens from 78 women with invasive breast cancer using 2 dinucleotide polymorphic markers closely linked to the BLID gene (no intragenic marker for BLID is available). Seventy-three cases were informative. Overall, loss of heterozygosity (LOH) at the BLID locus was detected in 32% of the informative cases (23/73). However, in patients 40 years old and younger, LOH was detected in 50% of the cases (9/18). Patients aged 40 years and younger were significantly more likely to experience LOH than those aged 41-55 years (p = 0.04). Specifically, the odds of BLID loss for patients aged 40 years and younger were 3.7 times the odds of loss for patients aged 41-55 years (95% CI, 1.1-13). Our findings suggest a tumor suppressor role of the BLID gene in early-onset breast cancer.
Collapse
Affiliation(s)
- L R Cavalli
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., USA
| | | | | | | | | | | |
Collapse
|
9
|
Stromal expression of β-arrestin-1 predicts clinical outcome and tamoxifen response in breast cancer. J Mol Diagn 2011; 13:340-51. [PMID: 21497294 DOI: 10.1016/j.jmoldx.2011.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 12/28/2010] [Accepted: 01/31/2011] [Indexed: 12/28/2022] Open
Abstract
The G-protein coupled receptor associated protein β-arrestin-1 is crucial for the regulation of numerous biological processes involved in cancer progression, such as intracellular signaling and cell motility. The encoding gene ARRB1 is harbored in the same chromosomal region as the CCND1 gene (11q13). Amplification of CCND1, frequently encountered in breast cancer, often involves coamplification of additional oncogenes, as well as deletion of distal 11q genes. We investigated the clinical relevance of β-arrestin-1 in breast cancer and elucidated a potential link between β-arrestin-1 expression and CCND1 amplification. β-Arrestin-1 protein expression was evaluated in two breast cancer patient cohorts, comprising 179 patients (cohort I) and 500 patients randomized to either tamoxifen or no adjuvant treatment (cohort II). Additionally, migration after β-arrestin-1 overexpression or silencing was monitored in two breast cancer cell lines. Overexpression of β-arrestin-1 reduced the migratory propensity of both cell lines, whereas silencing increased migration. In cohort I, high expression of stromal β-arrestin-1 was linked to reduced patient survival, whereas in cohort II both high and absent stromal expression predicted a poor clinical outcome. Patients exhibiting low or moderate levels of stromal β-arrestin-1 did not benefit from tamoxifen, in contrast to patients exhibiting absent or high expression. Furthermore, CCND1 amplification was inversely correlated with tumor cell expression of β-arrestin-1, indicating ARRB1 gene deletion in CCND1-amplified breast cancers.
Collapse
|
10
|
Mazumder Indra D, Mitra S, Roy A, Mondal RK, Basu PS, Roychoudhury S, Chakravarty R, Panda CK. Alterations of ATM and CADM1 in chromosomal 11q22.3-23.2 region are associated with the development of invasive cervical carcinoma. Hum Genet 2011; 130:735-48. [PMID: 21643982 DOI: 10.1007/s00439-011-1015-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 05/22/2011] [Indexed: 12/29/2022]
Abstract
To understand the importance of chr11q22.3-23.2 region in the development of cervical cancer, we have studied the genetic and epigenetic alterations of the candidate genes ATM, PPP2R1B, SDHD and CADM1 in cervical intraepithelial neoplasia (CIN) and cervical carcinoma (CACX) samples. Our study revealed low expression and high alterations (methylation/deletion) (55-59%) of ATM and CADM1 genes along with poor patient outcome. The alterations of ATM and CADM1 are associated with the progression of tumor from CIN to Stage I/II, thus implying their role in early invasiveness. The two genes, PPP2R1B and SDHD, lying in between ATM and CADM1, have low frequency of alterations, and majority of the alterations are in CACX samples, indicating that their alterations might be associated with disease progression. Expressions (mRNA/protein) of the genes showed concordance with their molecular alterations. Significant co-alteration of ATM and CADM1 points to their synergic action for the development of CACX. Mutation is, however, a rare phenomenon for inactivation of ATM. Association between the alteration of ATM and CHEK1 and poor survival of the patients having co-alterations of ATM and CHEK1 points to the DNA damage response pathway disruption in development of CACX. Thus, our data suggest that inactivation of ATM-CHEK1-associated DNA damage response pathway and CADM1-associated signaling network might have an important role in the development of CACX.
Collapse
Affiliation(s)
- Dipanjana Mazumder Indra
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700026, India
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Dedes KJ, Lopez-Garcia MA, Geyer FC, Lambros MBK, Savage K, Vatcheva R, Wilkerson P, Wetterskog D, Lacroix-Triki M, Natrajan R, Reis-Filho JS. Cortactin gene amplification and expression in breast cancer: a chromogenic in situ hybridisation and immunohistochemical study. Breast Cancer Res Treat 2010; 124:653-66. [PMID: 20213079 DOI: 10.1007/s10549-010-0816-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 02/20/2010] [Indexed: 12/15/2022]
Abstract
Amplification of 11q13 is found in approximately 15% of breast cancers. Cyclin D1 (CCND1) has been reported to be the 'driver' of this amplicon, however, multiple genes map to the smallest region of amplification of 11q13. Out of these genes, cortactin (CTTN) has been shown to be consistently overexpressed at the mRNA level in tumours harbouring 11q13 amplification. The aims of this study are to define whether CTTN is consistently co-amplified with the main core of the 11q13 amplicon, whether it is consistently overexpressed when amplified and to determine correlations between CTTN amplification and overexpression with clinicopathological features of breast cancers and survival of breast cancer patients. CTTN and CCND1 chromogenic in situ hybridisation (CISH) probes and a validated monoclonal antibody against CTTN were applied to a tissue microarray of a cohort of breast cancers from patients treated with anthracycline-based chemotherapy. CTTN and CCND1 amplifications were found in 12.3 and 12.4% of cases, respectively. All cases harbouring CTTN amplification also displayed CCND1 amplification. High expression of CTTN was found in 10.8% of cases and was associated with CTTN amplification, expression of 'basal' markers and topoisomerase IIα. Exploratory subgroup analysis of tumours devoid of 11q13 amplification revealed that high expression of CTTN in the absence of CTTN gene amplification was associated with lymph node negative disease, lack of hormone receptors and FOXA1, expression of 'basal' markers, high Ki-67 indices, p53 nuclear expression, and basal-like and triple negative phenotypes. CTTN expression and CTTN gene amplification were not associated with disease-, metastasis-free and overall survival. In conclusion, CTTN is consistently co-amplified with CCND1 and expressed at higher levels in breast cancers harbouring 11q13 amplification, suggesting that CTTN may also constitute one of the drivers of this amplicon. CTTN expression is not associated with the outcome of breast cancer patients treated with anthracycline-based chemotherapy.
Collapse
Affiliation(s)
- Konstantin J Dedes
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London, SW3 6JB, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sinha S, Singh RK, Alam N, Roy A, Roychoudhury S, Panda CK. Alterations in candidate genes PHF2, FANCC, PTCH1 and XPA at chromosomal 9q22.3 region: pathological significance in early- and late-onset breast carcinoma. Mol Cancer 2008; 7:84. [PMID: 18990233 PMCID: PMC2633285 DOI: 10.1186/1476-4598-7-84] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 11/06/2008] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION Younger women with breast carcinoma (BC) exhibits more aggressive pathologic features compared to older women; young age could be an independent predictor of adverse prognosis. To find any existing differences in the molecular pathogenesis of BC in both younger and older women, alterations at chromosomal (chr.) 9q22.32-22.33 region were studied owing to its association in wide variety of tumors. Present work focuses on comparative analysis of alterations of four candidate genes; PHF2, FANCC, PTCH1 and XPA located within 4.4 Mb region of the afore-said locus in two age groups of BC, as well as the interrelation and prognostic significance of alterations of these genes. METHODS Deletion analysis of PHF2, FANCC, PTCH1 and XPA were examined in a subset of 47 early-onset (group-A: < or = 40 years) and 59 late-onset (group-B: > 40 years) breast carcinomas using both microsatellite and exonic markers. Methylation Sensitive Restriction analysis (MSRA) was done to check for promoter methylation. Quantitative real-time polymerase chain reaction (Q-PCR) and immunohistochemisty (IHC) was done in some genes to see their relative mRNA and protein expressions respectively. Clinico-pathological correlation of different parameters as well as patient survival was calculated using different statistical softwares like EpiInfo 6.04b, SPSS 10.0 etc. RESULTS Either age group exhibited high frequency of overall alterations in PHF2, FANCC and PTCH1 compared to XPA. Samples with alteration (deletion/methylation) in these genes showed reduced level of mRNA expression as seen by Q-PCR. Immunohistochemical analysis of FANCC and PTCH1 also supported this observation. Poor patient survival was noted in both age groups having alterations in FANCC. Similar result was also seen with PTCH1 and XPA alterations in group-A and PHF2 alterations in group-B. This reflected their roles as prognostic tools in the respective groups in which they were altered. CONCLUSION Overall alterations of PHF2, FANCC and PTCH1 were comparatively higher than XPA. Differential association of alterations in FANCC and PTCH1 with that of PHF2, XPA and two breast cancer susceptibility genes (BRCA1/BRCA2) in the two age groups suggests differences in their molecular pathogenesis and dysregulation of multiple DNA repair pathways as well as hedgehog dependent stem cell renewal pathway.
Collapse
Affiliation(s)
- Satyabrata Sinha
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ratnesh K Singh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | - Neyaz Alam
- Department of Surgical Oncology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Anup Roy
- Department of Pathology, Medical College, Kolkata, India
| | - Susanta Roychoudhury
- Molecular and Human Genetics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
13
|
Sinha S, Singh RK, Alam N, Roy A, Roychoudhury S, Panda CK. Frequent alterations of hMLH1 and RBSP3/HYA22 at chromosomal 3p22.3 region in early and late-onset breast carcinoma: clinical and prognostic significance. Cancer Sci 2008; 99:1984-91. [PMID: 19016758 PMCID: PMC11158254 DOI: 10.1111/j.1349-7006.2008.00952.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/03/2008] [Accepted: 06/21/2008] [Indexed: 01/08/2023] Open
Abstract
Young age can be an independent prognostic factor for adverse prognosis in women with breast carcinoma (BC). In younger women, BC exhibited more aggressive pathological features than older women, indicating differences in biology. Frequent alterations in chromosomal (chr.) 3p22.3 in different malignancies indicated the existence of multiple candidate tumor suppressor genes (TSG) in this region, yet its association with BC remains unclear. In an effort to understand the differences in molecular pathogenesis in two age groups of BC, detailed analysis of alterations at chr.3p22.3 region was carried out in 47 early onset (group-A: < or =40 years) and 59 late-onset (group-A: >40 years) BC samples. Deletion mapping of the four candidate TSG, hMLH1, APRG1, ITGA9 and RBSP3/HYA22, located within 1 Mb of chr.3p22.3 showed high deletion in hMLH1 and RBSP3/HYA22 genes. Frequent methylation was also observed in these genes and significantly associated with their deletion. Quantitative messenger RNA (mRNA) expression and immunohistochemical analysis showed down-regulation of these genes. Alterations (deletion/methylation) of hMLH1 were significantly associated with RBSP3/HYA22 in group-A (P = 0.02). Significant poor survival in group-A patients with alterations in hMLH1 and RBSP3/HYA22 and the same in group-B patients with hMLH1 alterations indicated their importance as prognostic markers. Differential association of alterations of these genes with higher histological grades, more advanced stages and positive lymph node involvement were also seen. Thus, the present study suggests hMLH1 and RBSP3/HYA22 to be candidate TSG associated with development of both early and late-onset BC undergoing frequent genetic and epigenetic alteration and having significant prognostic implications.
Collapse
Affiliation(s)
- Satyabrata Sinha
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | | | | | | | | | | |
Collapse
|
14
|
Qiao LF, Xu YJ, Liu XS, Xie JG, Wang J, Du CL, Zhang J, Ni W, Chen SX. PKC promotes proliferation of airway smooth muscle cells by regulating cyclinD1 expression in asthmatic rats. Acta Pharmacol Sin 2008; 29:677-86. [PMID: 18501114 PMCID: PMC7091861 DOI: 10.1111/j.1745-7254.2008.00795.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aim: To determine whether protein kinase C (PKC) has any effect on the expression of cyclinD1, a key regulator of growth control and G1/S transition, and to investigate the underlying molecular mechanisms of PKC involving the remodeling of the asthmatic airway smooth muscle (ASM). Methods: The treatment of synchronized ASM cells from asthmatic rats with PKC-specific agonist phorbol 12-myristate 13-acetate (PMA) and antagonist 2-{1-[3-(amidinothio) propyl]-1H-indol-3-yl}-3-(1-methylindol-3-yl) maleimide methanesulfonate salt (Ro31-8220) was followed by the proliferation assay. PKCα and cyclinD1 expressions in ASM cells (ASMC) were detected by RT-PCR and Western blotting. The relation between PKCα and cyclinD1 was assessed by linear regression analysis. The effect of the construct recombinant plasmid pcDNA3.1-antisense cyclinD1 (pcDNA3.1-ascyclinD1) on the proliferation of ASMC was found to be induced by PMA. Results: The data showed phorbol ester-dependent PKCα promoted the proliferation of ASMC. The closely-positive correlation existed between the expression of PKCα and cyclinD1 at the transcriptional (r=0.821, P<0.01) and transla-tional (r=0.940, P<0.01) levels. pcDNA3.1-ascyclinD1 could inhibit the proliferation of ASMC. pcDNA3.1-ascyclinD1 almost completely attenuated the PMA-induced proliferation effect as Ro31-8220+pcDNA3.1. Conclusion: The proliferation of ASMC by PKC might by regulated by the cyclinD1 expression in asthmatic rats.
Collapse
Affiliation(s)
- Li-fen Qiao
- Department of Respiratory Medicine, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yong-jian Xu
- Department of Respiratory Medicine, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xian-sheng Liu
- Department of Respiratory Medicine, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jun-gang Xie
- Department of Respiratory Medicine, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jin Wang
- Department of Emergency Medicine, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Chun-ling Du
- Department of Respiratory Medicine, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jian Zhang
- Department of Respiratory Medicine, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wang Ni
- Department of Respiratory Medicine, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shi-xin Chen
- Department of Respiratory Medicine, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
15
|
Lee JH, Byun DS, Lee MG, Ryu BK, Kang MJ, Chae KS, Lee KY, Kim HJ, Park H, Chi SG. Frequent epigenetic inactivation of hSRBC in gastric cancer and its implication in attenuated p53 response to stresses. Int J Cancer 2008; 122:1573-84. [PMID: 18059034 DOI: 10.1002/ijc.23166] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
hSRBC is a putative tumor suppressor located at 11p15.4, at which frequent genomic loss has been observed in several human malignancies. To explore the candidacy of hSRBC as a suppressor of gastric tumorigenesis, we analyzed the expression and mutation status of hSRBC in gastric tissues and cell lines. hSRBC transcript was expressed in all normal and benign tumor tissues examined, but undetectable or very low in 73% (11/15) cancer cell lines and 41% (46/111) primary tumors. Loss or reduction of hSRBC expression was tumor-specific and correlated with stage and grade of tumors. While allelic loss or somatic mutations of the gene were infrequent, its expression was restored in tumor cells by 5-aza-2'-deoxycytidine treatment and aberrant hypermethylation of 23 CpG sites in the promoter region showed a tight association with altered expression. Transient or stable expression of hSRBC led to a G(1) cell cycle arrest and apoptosis of tumor cells, and strongly suppresses colony forming ability and xenograft tumor growth. In addition, hSRBC elevated apoptotic sensitivity of tumor cells to genotoxic agents, such as 5-FU, etoposide and ultraviolet. Interestingly, hSRBC increased the protein stability of p53 and expression of p53 target genes, such as p21(Waf1), PUMA and NOXA, while hSRBC-mediated cell cycle arrest and apoptosis were abolished by blockade of p53 function. Our findings suggest that hSRBC is a novel tumor suppressor whose epigenetic inactivation contributes to the malignant progression of gastric tumors, in part, through attenuated p53 response to stresses.
Collapse
Affiliation(s)
- Jin-Hee Lee
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sinha S, Chunder N, Mukherjee N, Alam N, Roy A, Roychoudhury S, Kumar Panda C. Frequent deletion and methylation in SH3GL2 and CDKN2A loci are associated with early- and late-onset breast carcinoma. Ann Surg Oncol 2008; 15:1070-80. [PMID: 18239974 DOI: 10.1245/s10434-007-9790-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 12/10/2007] [Accepted: 12/10/2007] [Indexed: 11/18/2022]
Abstract
BACKGROUND This study attempts to understand the association of candidate tumour suppressor genes SH3GL2, CDKN2A (p16-p14) and CDKN2B (p15) in development of early-onset (group A) and late-onset (group B) breast carcinoma (BC). METHODS Deletion, methylation, and mutation of the candidate tumour suppressor genes (TSGs) were analysed in 47 group A and 59 group B samples. Immunohistochemical analysis was used to identify the expression status of SH3GL2 and p16. Clinicopathological correlation of the alterations was analysed by the chi-square and log-rank tests. RESULTS Higher frequency of overall alterations (46-62%) in SH3GL2 and p16-p14 than p15 (22-26%) indicated their importance in BC. Deletion frequencies were in the following order: group A: p14 (43%) > p16 (42%) > SH3GL2 (38%) > p15 (33%) and group B: p14 (36%) > p16 (33%) > SH3GL2 (31%) > p15 (14%) while, methylation frequencies were: group A: SH3GL2 (34%) > p16 (28%) > p14 (26%) > p15 (15%) and group B: SH3GL2 (36%) > p16 (31%) > p14 (29%) > p15 (15%). Infrequent mutation was observed only in CDKN2A common exon-2. Immunohistochemical analysis showed significant association between expression of SH3GL2 and p16 with their deletion (P = 0.01 and 0.02, respectively) and methylation status (P = 0.007 and 0.01, respectively). In group A, overall alterations of SH3GL2 showed significant association with CDKN2A locus with significant prognostic implications, whereas CDKN2A and CDKN2B loci were associated in both groups. CONCLUSIONS The molecular mechanisms involving CDKN2A inactivation seem to follow similar pathway in the pathogenesis of both age groups of BC while significant association of SH3GL2 with CDKN2A might play a synergistic role in the development of group A.
Collapse
Affiliation(s)
- Satyabrata Sinha
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | | | | | | | | | | | | |
Collapse
|
17
|
Singh RK, Indra D, Mitra S, Mondal RK, Basu PS, Roy A, Roychowdhury S, Panda CK. Deletions in chromosome 4 differentially associated with the development of cervical cancer: evidence of slit2 as a candidate tumor suppressor gene. Hum Genet 2007; 122:71-81. [PMID: 17609981 DOI: 10.1007/s00439-007-0375-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Accepted: 04/30/2007] [Indexed: 01/11/2023]
Abstract
The aim of this study was to locate the candidate tumor suppressor genes (TSGs) loci in the chromosomal 4p15-16, 4q22-23 and 4q34-35 regions associated with the development of uterine cervical carcinoma (CA-CX). Deletion mapping of the regions by microsatellite markers identified six discrete areas with high frequency of deletions, viz. 4p16.2 (D1: 40%), 4p15.31 (D2: 35-38%), 4p15.2 (D3: 37-40%), 4q22.2 (D4: 34%), 4q34.2-34.3 (D5: 37-59%) and 4q35.1 (D6: 40-50%). Significant correlation was noted among the deleted regions D1, D2 and D3. The deletions in D1, D2, D5 and D6 regions are suggested to be associated with the cervical intraepithelial neoplasia (CIN), and deletions in the D2, D3, D5 and D6 regions seems to be associated with progression of CA-CX. The deletions in the D2 and D6 regions showed significant prognostic implications (P = 0.001; 0.02). The expression of the candidate TSG SLIT2 mapped to D2 region gradually reduced from normal cervix uteri -->CIN --> CA-CX. SLIT2 promoter hypermethylation was seen in 28% CIN samples and significantly increased with tumor progression (P = 0.04). Significant correlation was seen between SLIT2 deletion and its promoter methylation (P = 0.001), indicating that both these phenomena could occur simultaneously to inactivate this gene. Immunohistochemical analysis showed reduced expression of SLIT2 in cervical lesions and CA-CX cell lines. Although no mutation was detected in the SLIT2 promoter region (-432 to + 55 bp), CC and AA haplotypes were seen in -227 and -195 positions, respectively. Thus, it indicates that inactivation of SLIT2-ROBO1 signaling pathway may have an important role in CA-CX development.
Collapse
MESH Headings
- Adult
- Aged
- Carcinoma, Squamous Cell/complications
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/mortality
- Chromosome Deletion
- Chromosomes, Human, Pair 4
- DNA Methylation
- DNA Mutational Analysis
- Female
- Gene Expression Regulation, Neoplastic
- Genes, Tumor Suppressor
- Genetic Predisposition to Disease
- HeLa Cells
- Humans
- Intercellular Signaling Peptides and Proteins/genetics
- Intercellular Signaling Peptides and Proteins/metabolism
- Middle Aged
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Papillomavirus Infections/complications
- Papillomavirus Infections/epidemiology
- Promoter Regions, Genetic
- RNA, Messenger/metabolism
- Survival Analysis
- Tumor Cells, Cultured
- Uterine Cervical Neoplasms/complications
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/mortality
Collapse
Affiliation(s)
- Ratnesh Kumar Singh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, 700026, India
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hicks J, Krasnitz A, Lakshmi B, Navin NE, Riggs M, Leibu E, Esposito D, Alexander J, Troge J, Grubor V, Yoon S, Wigler M, Ye K, Børresen-Dale AL, Naume B, Schlicting E, Norton L, Hägerström T, Skoog L, Auer G, Månér S, Lundin P, Zetterberg A. Novel patterns of genome rearrangement and their association with survival in breast cancer. Genome Res 2007; 16:1465-79. [PMID: 17142309 PMCID: PMC1665631 DOI: 10.1101/gr.5460106] [Citation(s) in RCA: 255] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Representational Oligonucleotide Microarray Analysis (ROMA) detects genomic amplifications and deletions with boundaries defined at a resolution of approximately 50 kb. We have used this technique to examine 243 breast tumors from two separate studies for which detailed clinical data were available. The very high resolution of this technology has enabled us to identify three characteristic patterns of genomic copy number variation in diploid tumors and to measure correlations with patient survival. One of these patterns is characterized by multiple closely spaced amplicons, or "firestorms," limited to single chromosome arms. These multiple amplifications are highly correlated with aggressive disease and poor survival even when the rest of the genome is relatively quiet. Analysis of a selected subset of clinical material suggests that a simple genomic calculation, based on the number and proximity of genomic alterations, correlates with life-table estimates of the probability of overall survival in patients with primary breast cancer. Based on this sample, we generate the working hypothesis that copy number profiling might provide information useful in making clinical decisions, especially regarding the use or not of systemic therapies (hormonal therapy, chemotherapy), in the management of operable primary breast cancer with ostensibly good prognosis, for example, small, node-negative, hormone-receptor-positive diploid cases.
Collapse
Affiliation(s)
- James Hicks
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gallagher E, Mc Goldrick A, Chung WY, Mc Cormack O, Harrison M, Kerin M, Dervan PA, Mc Cann A. Gain of imprinting of SLC22A18 sense and antisense transcripts in human breast cancer. Genomics 2006; 88:12-7. [PMID: 16624517 DOI: 10.1016/j.ygeno.2006.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 01/27/2006] [Accepted: 02/04/2006] [Indexed: 11/28/2022]
Abstract
The 11p15.5 region harbors three imprinted sense/antisense transcript pairs, SLC22A18/SLC22A18AS, IGF2/IGF2AS (PEG8), and KCNQ1/KCNQ1OT1 (LIT1). SLC22A18 (solute carrier family 22 (organic cation transporter) member 18) and its antisense transcript SLC22A18AS are paternally suppressed in fetal samples. In adult tissue, SLC22A18 displays polymorphic imprinting, but the imprinting status of SLC22A18AS remains elusive. SLC22AI8 DNA-PCR-RFLP analysis using NlaIII restriction digestion identified SLC22A18 heterozygotes within this breast tissue cohort (n = 89). Commercial sequencing identified informative SLC22A18AS samples. Random hexamer-primed cDNA synthesis, SLC22A18/SLC22A18AS-specific PCR, and imprinting evaluation by commercial sequencing demonstrated that SLC22A18AS displays a nonimprinted profile in reduction mastectomies (n = 6). However, SLC22A18 showed a gain of imprinting (GOI) in 1/4 of these normal cases. In the malignant cohort, GOI was also demonstrated in 18% for SLC22A18 and 14% for SLC22A18AS, occurring concomitantly in one case. This study reports the imprinting status of SLC22A18AS in adult tissue, and shows that GOI affects both the sense, and antisense transcripts at this locus in human breast tissue.
Collapse
Affiliation(s)
- E Gallagher
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, Belfield, Dublin 4, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ho BCS, Tan PH. Flat epithelial atypia: concepts and controversies of an intraductal lesion of the breast. Pathology 2005; 37:105-11. [PMID: 16028837 DOI: 10.1080/00313020500058532] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Image-guided biopsies of the breast play an integral role in the diagnostic evaluation of mammographically detected calcifications. Apart from cancer, on these biopsies we are increasingly recognising a hitherto poorly categorised group of benign to atypical entities collectively known as columnar cell lesions. A variant of this theme is flat epithelial atypia, a columnar lesion characterised by mildly atypical epithelial cells. There is emerging evidence to suggest that flat epithelial atypia may represent a precursor of or the earliest morphologically recognisable form of low-grade ductal carcinoma in situ. In addition, these lesions are often associated with tubular carcinomas and lobular neoplasia. This article reviews the current concepts and controversies surrounding flat epithelial atypia, with special emphasis on the biology, histological and clinical features. Potential diagnostic challenges faced by pathologists in the evaluation of these atypical columnar lesions are also discussed.
Collapse
|
21
|
Chunder N, Mandal S, Roy A, Roychoudhury S, Panda CK. Differential association of BRCA1 and BRCA2 genes with some breast cancer-associated genes in early and late onset breast tumors. Ann Surg Oncol 2005; 11:1045-55. [PMID: 15576832 DOI: 10.1245/aso.2004.02.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
BACKGROUND Accumulating evidence indicating more aggressive features of breast carcinoma (BC) in young women than their older counterparts have raised the question of whether these differences are present at the genetic level. METHODS For this purpose, we performed a comparative analysis of the frequency of deletions of BRCA1, BRCA2, BRCAX, TP53, ATM, and RB1 and amplification of Cyclin D1 and also studied the interrelation and prognostic significance of these genetic alterations in 30 early onset (< or =40 years) and 33 late onset (>40 years) cases of BC. These gene alterations were also studied in 11 other types of breast lesions. RESULTS A differential pattern of alterations (deletion/amplification) was observed in the two age groups, with the sequence in younger women being BRCA1 (72%), TP53 (71%), ATM (64%), BRCA2 (62%), RB1 (60%), Cyclin D1 (43%), and BRCAX (24%) and that in the older group being TP53 (66%), RB1 (63%), BRCA1 (56%), ATM (53%), BRCA2 (45%), Cyclin D1 (24%), and BRCAX (23%). Similar, differential correlations were also seen with several clinicopathological parameters, prognosis, and combinations of alterations among these genes in the two age groups. CONCLUSIONS Differential frequencies and interrelationships of genetic alterations and prognoses in these two age groups indicate that the molecular pathways for the development of tumors in both age groups may not be similar, though the ultimate effect is deregulation of cell cycle checkpoints and defects in the DNA repair pathway.
Collapse
Affiliation(s)
- Neelanjana Chunder
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata, India
| | | | | | | | | |
Collapse
|
22
|
Singh RK, Dasgupta S, Bhattacharya N, Chunder N, Mondal R, Roy A, Mandal S, Roychowdhury S, Panda CK. Deletion in chromosome 11 and Bcl-1/Cyclin D1 alterations are independently associated with the development of uterine cervical carcinoma. J Cancer Res Clin Oncol 2005; 131:395-406. [PMID: 15856299 DOI: 10.1007/s00432-004-0655-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Accepted: 10/15/2004] [Indexed: 10/25/2022]
Abstract
PURPOSE The aim of this study was to understand whether there is any association between specific deleted regions in chromosome 11 (chr.11) and alteration (amplification/rearrangement) of Bcl-1/Cyclin D1 locus, located at 11q13, in uterine cervical carcinoma (CA-CX). METHODS The deletion mapping of chr.11 was studied using 17 highly polymorphic microsatellite markers in 65 primary uterine cervical lesions. The Bcl-1/Cyclin D1 alterations were analyzed by Southern blot and/or polymerase chain reaction (PCR) method in respective cervical lesions. RESULTS Chr.11 deletion was found to be significantly associated with progression of CA-CX. High frequency (48-65%) of deletion was found in 11p15.5 (D1), 11q22.3-23.1(D2), and 11q23.3-24.1(D3) regions and significant association was seen among deletions in D2 and D3 regions. Bcl-1/Cyclin D1 locus alteration was observed in overall 27% cervical lesions. Co-amplification of Bcl-1/Cyclin D1 locus was seen in 10% samples. However, no association was found between the deleted regions and Bcl-1/Cyclin D1 locus alterations. CONCLUSIONS Our study suggests that there is no co-operativity between the deleted regions (D1- D3) in chr.11 and Bcl-1/Cyclin D1 alterations, but these alterations may provide cumulative effect in progression of the tumor. The D1-D3 regions may harbor candidate tumor suppressor gene(s) (TSGs) associated with the development of CA-CX.
Collapse
Affiliation(s)
- Ratnesh Kumar Singh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, 700026, Kolkata, India
| | | | | | | | | | | | | | | | | |
Collapse
|