1
|
Li Y, Meng Y, Wang Y, Wang Y, Wang Z. Application of Mineralized Chitosan Scaffolds in Bone Tissue Engineering. COATINGS 2023; 13:1644. [DOI: 10.3390/coatings13091644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Chitosan (CS) is a natural cationic polysaccharide obtained via the N-deacetylation of chitin. It has various outstanding biological properties such as nontoxicity, biodegradability, biocompatibility, and antimicrobial properties. Minerals can be deposited on the CS template using different methods to construct composites with structures and functions similar to those of natural bone tissue. These ideal scaffolds can produce bone via osteogenesis, osteoinduction, and osteoconduction, with good biocompatibility and mechanical properties, and are thus considered promising novel biomaterials for repairing hard tissue defects. In the last decade, the field of mineralized CS scaffolds has provided novel fundamental knowledge and techniques to better understand the aforementioned fascinating phenomenon. This study mainly focused on the basic structures and properties of mineralized CS scaffolds to understand the current research progress and explore further development. Further, it summarizes the types, preparation methods, components, properties, and applications of mineralized CS scaffolds in bone tissue engineering during the last 5 years. The defects and shortcomings of the scaffolds are discussed, and possible improvement measures are put forward. We aimed to provide complete research progress on mineralized CS scaffolds in bone tissue engineering for researchers and clinicians, and also ideas for the next generation of mineralized CS scaffolds.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Yufeng Meng
- Division of Nanomaterials & Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Institute of Energy, Hefei Comprehensive National Science Center, CAS Center for Excellence in Nanoscience, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials University of Science and Technology of China, Hefei 230026, China
| | - Yuning Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Yun Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Zuolin Wang
- Department of Oral Implantology & Department of Oral and Maxillofacial Surgery, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| |
Collapse
|
2
|
Jafari N, Habashi MS, Hashemi A, Shirazi R, Tanideh N, Tamadon A. Application of bioactive glasses in various dental fields. Biomater Res 2022; 26:31. [PMID: 35794665 PMCID: PMC9258189 DOI: 10.1186/s40824-022-00274-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/09/2022] [Indexed: 12/16/2022] Open
Abstract
AbstractBioactive glasses are a group of bioceramic materials that have extensive clinical applications. Their properties such as high biocompatibility, antimicrobial features, and bioactivity in the internal environment of the body have made them useful biomaterials in various fields of medicine and dentistry. There is a great variation in the main composition of these glasses and some of them whose medical usage has been approved by the US Food and Drug Administration (FDA) are called Bioglass. Bioactive glasses have appropriate biocompatibility with the body and they are similar to bone hydroxyapatite in terms of calcium and phosphate contents. Bioactive glasses are applied in different branches of dentistry like periodontics, orthodontics, endodontics, oral and maxillofacial surgery, esthetic and restorative dentistry. Also, some dental and oral care products have bioactive glasses in their compositions. Bioactive glasses have been used as dental implants in the human body in order to repair and replace damaged bones. Other applications of bioactive glasses in dentistry include their usage in periodontal disease, root canal treatments, maxillofacial surgeries, dental restorations, air abrasions, dental adhesives, enamel remineralization, and dentin hypersensitivity. Since the use of bioactive glasses in dentistry is widespread, there is a need to find methods and extensive resources to supply the required bioactive glasses. Various techniques have been identified for the production of bioactive glasses, and marine sponges have recently been considered as a rich source of it. Marine sponges are widely available and many species have been identified around the world, including the Persian Gulf. Marine sponges, as the simplest group of animals, produce different bioactive compounds that are used in a wide range of medical sciences. Numerous studies have shown the anti-tumor, anti-viral, anti-inflammatory, and antibiotic effects of these compounds. Furthermore, some species of marine sponges due to the mineral contents of their structural skeletons, which are made of biosilica, have been used for extracting bioactive glasses.
Collapse
|
3
|
Cho JW, Kim BS, Yeo DH, Lim EJ, Sakong S, Lim J, Park S, Jeong YH, Jung TG, Choi H, Oh CW, Kim HJ, Park JW, Oh JK. 3D-printed, bioactive ceramic scaffold with rhBMP-2 in treating critical femoral bone defects in rabbits using the induced membrane technique. J Orthop Res 2021; 39:2671-2680. [PMID: 33580542 DOI: 10.1002/jor.25007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
Although autogenous bone grafts are an optimal filling material for the induced membrane technique, limited availability and complications at the harvest site have created a need for alternative graft materials. We aimed to investigate the effect of an rhBMP-2-coated, 3D-printed, macro/microporous CaO-SiO2 -P2 O5 -B2 O3 bioactive ceramic scaffold in the treatment of critical femoral bone defects in rabbits using the induced membrane technique. A 15-mm segmental bone defect was made in the metadiaphyseal area of the distal femur of 14 rabbits. The defect was filled with polymethylmethacrylate cement and stabilized with a 2.0 mm locking plate. After the membrane matured for 4 weeks, the scaffold was implanted in two randomized groups: Group A (3D-printed bioceramic scaffold) and Group B (3D-printed, bioceramic scaffold with rhBMP-2). Eight weeks after implantation, the radiographic assessment showed that the healing rate of the defect was significantly higher in Group B (7/7, 100%) than in Group A (2/7, 29%). The mean volume of new bone formation around and inside the scaffold doubled in Group B compared to that in Group A. The mean static and dynamic stiffness were significantly higher in Group B. Histological examination revealed newly formed bone in both groups. Extensive cortical bone formation along the scaffold was found in Group B. Successful bone reconstruction in critical-sized bone defects could be obtained using rhBMP-2-coated, 3D-printed, macro/microporous bioactive ceramic scaffolds. This grafting material demonstrated potential as an alternative graft material in the induced membrane technique for reconstructing critical-sized bone defects.
Collapse
Affiliation(s)
- Jae-Woo Cho
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Beom-Soo Kim
- Department of Orthopaedic Surgery, Dongsan Medical Center, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Do-Hyun Yeo
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Eic Ju Lim
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Seungyeob Sakong
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Junyoung Lim
- 3D Innovation Center, R&D of 3D Printing Medical Devices on Bio-ceramics, CGBIO, Gyeonggi-do, Republic of Korea
| | - SungNam Park
- 3D Innovation Center, R&D of 3D Printing Medical Devices on Bio-ceramics, CGBIO, Gyeonggi-do, Republic of Korea
| | - Yong-Hoon Jeong
- Department of Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju-si, Republic of Korea
| | - Tae-Gon Jung
- Department of Medical Device Development Center, Osong Medical Innovation Foundation, Cheongju-si, Republic of Korea
| | - Hyuk Choi
- Department of Medical Sciences, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Chang-Wug Oh
- Department of Orthopedic Surgery, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hak Jun Kim
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Jong Woong Park
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| | - Jong-Keon Oh
- Department of Orthopaedic Surgery, Korea University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
4
|
Kang TY, Seo JY, Ryu JH, Kim KM, Kwon JS. Improvement of the mechanical and biological properties of bioactive glasses by the addition of zirconium oxide (ZrO 2 ) as a synthetic bone graft substitute. J Biomed Mater Res A 2021; 109:1196-1208. [PMID: 33012133 DOI: 10.1002/jbm.a.37113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 11/08/2022]
Abstract
In this study, mechanical properties of bioactive glass (BAG) synthetic bone graft substitute was improved by containing ZrO2 (ZrO2 -BAG), while maintaining advantageous biological properties of BAG such as osteoinductive and osteoconductive properties. The ZrO2 -BAG was produced by adding ZrO2 in the following proportions to replace Na2 O in 45S5 BAG: 1% (Zr1-BAG), 3% (Zr3-BAG), 6% (Zr6-BAG), and 12% (Zr12-BAG). Properties including XRD, XPS, SEM, DSC, fracture toughness, and Vickers microhardness were evaluated. To assess the biological properties, Ca/P apatite formation, ion release, degradation rate, cell proliferation, ALP activity (ALP), and alizarin red S staining assay (ARS) were evaluated. Also, expression of osteogenic differentiation markers, Osteopontin (OPN), confirmed by immunofluorescence staining. Finally, an in vivo test was carried out to by implanting ZrO2 -BAG into the subcutaneous tissue of rats. The results of each test were statistically analyzed with one-way ANOVA followed by Tukey's post hoc statistical test. Amorphous ZrO2 -BAG was successfully produced with increased mechanical properties as the ZrO2 content was increased. Additionally, ZrO2 -BAG exhibited a slower ion release and degradation rate compare to BAG without ZrO2 . Bioactivity of ZrO2 -BAG was confirmed with apatite layer formed on the surface, significantly higher proliferation rate and significantly enhanced ALP and the degree of ARS of the cells compare to respective controls. The tissue reactions observed in the in vivo study showed neo-formed vessels after implantation of ZrO2 -BAG.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
- Brain Korea 21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ji-Young Seo
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jeong-Hyun Ryu
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
- Brain Korea 21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
- Brain Korea 21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul, South Korea
- Brain Korea 21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
5
|
Bioactive glass granules S53P4 in osteotomy Le Fort I. Sci Rep 2020; 10:12690. [PMID: 32728040 PMCID: PMC7391678 DOI: 10.1038/s41598-020-68932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 06/30/2020] [Indexed: 11/08/2022] Open
Abstract
We evaluated bioactive glass graft (S53P4) in patients undergoing Le Fort I osteotomy, with non-grafted patients as controls. Computed tomography facial scans of the 25 patients submitted for Le Fort I were divided into two groups: Group 1-S53P4 group and Group 2-without grafting. CT scans were analyzed in the immediate postoperative period (T1) and 6 months later (T2), for linear bone gap measurements, tomographic radiodensity and behavior of the maxillary sinus. A Kruskal-Wallis test on bone gap data adopted α significance levels (p ≤ 0.05). The Friedman test (p ≤ 0.05) was used to evaluate sinus reaction cores. For gap measurements, we observed a decrease in median data between T1 and T2 in both groups, with statistical significances observed between groups in T0; G1 presented statistical difference in its two studied times (p ≤ 0.0001). For bone density, the studied data behaved inversely. G1's bone density decreased from T1 to T2, whereas in G2 there was an increase from T1 to T2. S53P4 did not elicit increased reactions and/or sinus infections in the G1 group (p ≥ 1.00). S53P4 did not impact on Le Fort I osteotomies as a coadjuvant and a favorable factor in bone formation, and appeared innocuous in the maxillary sinus.
Collapse
|
6
|
Mahato A, Sandy Z, Bysakh S, Hupa L, Das I, Bhattacharjee P, Kundu B, De G, Nandi SK, Vallittu P, Balla VK, Bhattacharya M. Development of nano-porous hydroxyapatite coated e-glass for potential bone-tissue engineering application: An in vitro approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110764. [PMID: 32279774 DOI: 10.1016/j.msec.2020.110764] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 02/15/2020] [Accepted: 02/17/2020] [Indexed: 01/29/2023]
Abstract
To reconstruct the defects caused by craniectomies autologous, bone grafting was usually used, but they failed most commonly due to bone resorption, infections and donor-site morbidity. In the present investigation, an effort has been made for the first time to check the feasibility and advantage of using hydroxyapatite (HAp) coated e-glass as component of bone implants. Sol-gel synthesized coatings were found to be purely hydroxyapatite from XRD with graded and interconnected pores all over the surface observable in TEM. The interconnected porous nature of ceramics are found to increase bioactivity by acting to up-regulate the process of osseointegration through enhanced nutrient transfer and induction of angiogenesis. From TEM studies and nano indentation studies, we have shown that pores were considered to be appropriate for nutrient supply without compromising the strength of sample while in contact with physiological fluid. After SBF immersion test, porous surface was found to be useful for nucleation of apatite crystals, hence increasing the feasibility and bioactivity of sample. However, our quasi-dynamic study showed less crystallization but had significant formation of apatite layer. Overall, the in vitro analyses show that HAp coated e-glass leads to significant improvement of implant properties in terms of biocompatibility, cell viability and proliferation, osteoinductivity and osteoconductivity. HAp coating of e-glass can potentially be utilized in fabricating durable and strong bioactive non-metallic implants and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Arnab Mahato
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | - Zhang Sandy
- Process Chemistry Centre, ÅboAkademi University, Finland
| | - Sandip Bysakh
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | - Leena Hupa
- Process Chemistry Centre, ÅboAkademi University, Finland
| | - Indranee Das
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | | | - Biswanath Kundu
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India.
| | - Goutam De
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | - Samit K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences (WBUAFS), Kolkata, India
| | - Pekka Vallittu
- Institute of Dentistry and Turku Clinical Biomaterials Centre - TCBC, University of Turku, Turku, Finland
| | - Vamsi K Balla
- CSIR-Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India
| | | |
Collapse
|
7
|
Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. Bioactive Glass Applications in Dentistry. Int J Mol Sci 2019; 20:E5960. [PMID: 31783484 PMCID: PMC6928922 DOI: 10.3390/ijms20235960] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
At present, researchers in the field of biomaterials are focusing on the oral hard and soft tissue engineering with bioactive ingredients by activating body immune cells or different proteins of the body. By doing this natural ground substance, tissue component and long-lasting tissues grow. One of the current biomaterials is known as bioactive glass (BAG). The bioactive properties make BAG applicable to several clinical applications involving the regeneration of hard tissues in medicine and dentistry. In dentistry, its uses include dental restorative materials, mineralizing agents, as a coating material for dental implants, pulp capping, root canal treatment, and air-abrasion, and in medicine it has its applications from orthopedics to soft-tissue restoration. This review aims to provide an overview of promising and current uses of bioactive glasses in dentistry.
Collapse
Affiliation(s)
| | - Dinesh Rokaya
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 7000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 7000, Vietnam
| | - Zohaib Khurshid
- Prosthodontic and Dental Implantology Department, College of Dentistry, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia;
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Islamic International Dental College, Riphah International University Islamabad 44000, Pakistan
| |
Collapse
|
8
|
Synthesis and evaluation of the bioactivity of fluorapatite-45S5 bioactive glass nanocomposite. Prog Biomater 2019; 8:77-89. [PMID: 30977097 PMCID: PMC6556168 DOI: 10.1007/s40204-019-0112-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
This research study concerns the evaluations of nano-biocomposite ceramics’ characteristics and biocompatibility. A nanocomposite with 45S5 bioactive glass base has been synthesized by sol–gel method. The synthesized nanocomposites were characterized with the help of different techniques, using field-emission scanning electron microscope, X-ray powder diffraction, energy-dispersive X-ray spectroscopy to evaluate the crystal structure, microstructure, and the morphology of the nanocomposite. The results indicated that the synthesis of 45S5 bioactive glass–fluorapatite nanocomposites produced an average particle size of about 20–30 nm and percentages of crystallinity of about 70–90%. fluorapatite–45S5 bioactive glass nanocomposites were characterized in terms of their degradation by determining the weight change percentages, pH changes, the ion release and in terms of bioactivity by checking the apatite layer formation using a solution of simulated body fluid (SBF). The results showed non-cytotoxicity and the formation of a thick apatite layer on the synthesized nanocomposites within 28 days after soaking in SBF. This is an indication of desirable bioactivity in the synthesized particles.
Collapse
|
9
|
Razavi SM, Rismanchian M, Jafari-Pozve N, Nosouhian S. Comparing the Efficacy of Three Different Nano-scale Bone Substitutes: In vivo Study. Adv Biomed Res 2017; 6:64. [PMID: 28603705 PMCID: PMC5458404 DOI: 10.4103/2277-9175.192627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background: Synthetic biocompatible bone substitutions have been used widely for bone tissue regeneration as they are safe and effective. The aim of this animal study is to compare the effectiveness of three different biocompatible bone substitutes, including nano-hydroxyapatite (nano-HA) nano-bioglass (nano-BG) and forstrite scaffolds. Materials and Methods: In this interventional and experimental study, four healthy dogs were anesthetized, and the first to fourth premolars were extracted in each quadrant. After healing, the linear incision on the crestal ridge from molar to anterior segment prepared in each quadrant and 16 defects in each dog were prepared. Nano-HA, nano-BG, and forstrite scaffold was prepared according to the size of defects and placed in the 12 defects randomly, four defects remained as a control group. The dogs were sacrificed in four time intervals (15, 30, 45, and 60 days after) and the percentage of different types of regenerated bones (lamellar and woven) and connective tissue were recorded in histological process. The data were analyzed using Mann–Whitney test (α = 0.05). Results: The difference in nano-HA and nano-BG with the control group was significant in three-time intervals regarding the amount of bone formation (P < 0.01). After 15 days, the nano-HA showed the highest amount of woven and lamellar bone regeneration (18.37 ± 1.06 and 30.44 ± 0.54). Conclusion: Nano-HA and nano-BG groups showed a significant amount of bone regeneration, especially after 30 days, but paying more surveys and observation to these materials as bone substitutes seem to be needed.
Collapse
Affiliation(s)
- Sayed Mohammad Razavi
- Dental Implants Research Center, Department of Oral Pathology, School of Dentitry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Rismanchian
- Dental Implants Research Center, Department of Prosthodontics, School of Dentitry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nasim Jafari-Pozve
- Department of Oral and Maxillofacial Radiology, School of Dentitry, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Oral and Maxillofacial Radiology, School of Dentitry, Islamic Azad University, Khorasgan Branch, Isfahan, Iran
| | - Saied Nosouhian
- Dental Implants Research Center, Department of Prosthodontics, School of Dentitry, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Profeta AC, Prucher GM. Bioactive-glass in periodontal surgery and implant dentistry. Dent Mater J 2017; 34:559-71. [PMID: 26438980 DOI: 10.4012/dmj.2014-233] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bioactive-glass (B-G) is a material known for its favorable biological response when in contact with surrounding fibro-osseous tissues, due not only to an osteoconductive property, but also to an osteostimulatory capacity, and superior biocompatibility for use in human body. The objectives of this paper are to review recent studies on B-G in periodontal and implant therapy, describing its basic properties and mechanism of activity as well as discoursing about state of art and future perspective of utilization. From a demonstrated clinical benefit as bone graft for the elimination of osseous defects due to periodontal disease (intrabony/furcation defects) and surgeries (alveolar ridge preservation, maxillary sinus augmentation), to a potential use for manufacturing bioactive dental implants, possibly allowing wider case selection criteria together with improved integration rates even in the more challenging osteoporotic and medically compromised patients, this biomaterial represents an important field of study with high academic, clinical and industrial importance.
Collapse
Affiliation(s)
- Andrea Corrado Profeta
- Department of Restorative Dentistry, Biomaterials Science, Biomimetics and Biophotonics (B3) Research Group, King's College London Dental Institute
| | | |
Collapse
|
11
|
Profeta AC, Huppa C. Bioactive-glass in Oral and Maxillofacial Surgery. Craniomaxillofac Trauma Reconstr 2015; 9:1-14. [PMID: 26889342 DOI: 10.1055/s-0035-1551543] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/24/2015] [Indexed: 10/23/2022] Open
Abstract
The use of synthetic materials to repair craniofacial defects is increasing today and will increase further in the future. Because of the complexity of the anatomy in the head and neck region, reconstruction and augmentation of this area pose a challenge to the surgeon. This review discusses key facts and applications of traditional reconstruction bone substitutes, also offering comparative information. It then describes the properties and clinical applications of bioactive-glass (B-G) and its variants in oral and maxillofacial surgery, and provides clinical findings. The discussion of each compound includes a description of its composition and structure, the advantages and shortcomings of the material, and its current uses in the field of osteoplastic and reconstructive surgery. With a better understanding of the available alloplastic implants, the surgeon can make a more informed decision as to which implant would be most suitable in a particular patient.
Collapse
Affiliation(s)
- Andrea Corrado Profeta
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, Jena, Germany
| | - Christoph Huppa
- Department of Oral and Maxillofacial Surgery, King's College Hospital NHS Foundation Trust, Denmark Hill, London, United Kingdom
| |
Collapse
|
12
|
Yorgancilar E, Firat U, Gun R, Bakir S, Dasdag S, Akkus Z, Gokalp O, Topcu I. Histopathologic Effects of Glass Ionomer Bone Cements Application to Maxillofacial Area: An Experimental Study in Rabbits. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.5504/bbeq.2011.0150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
13
|
Ma AN, Gong N, Lu JM, Huang JL, Hao B, Guo Y, Zhong J, Xu Y, Chang J, Wang YX. Local protective effects of oral 45S5 bioactive glass on gastric ulcers in experimental animals. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:803-809. [PMID: 23329370 DOI: 10.1007/s10856-012-4844-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/20/2012] [Indexed: 06/01/2023]
Abstract
Bioactive glass has been shown to stimulate bone regeneration and soft tissue healing. In this study, we evaluated the local protective effects of bioactive glass on experimental gastric ulcers, in comparison with omeprazole and hydrotalcite. Single and multiple gavage of 45S5 bioactive glass dose-dependently protected stress ulcers in mice and chronic ulcers in rats. Multi-daily gavage of bioactive glass for 7 days prevented chronic ulcer recurrence by 50 %. Bioactive glass ionic dissolution produced marked proliferation of ethanol-injured GES-1 human gastric mucosa epithelial cells 48 and 72 h after exposure. Bioactive glass was shown to be hardly absorbed after single or multi-daily gavage. This study, for the first time, demonstrates that bioactive glass is effective in protecting against gastric ulcers, with its high efficacy comparable to omeprazole and superior to hydrotalcite. The lack of oral absorption makes bioactive glass a potential for treatment of peptic ulcers omitting systemic toxicity or side-effects.
Collapse
Affiliation(s)
- Ai-niu Ma
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Pryor LS, Gage E, Langevin CJ, Herrera F, Breithaupt AD, Gordon CR, Afifi AM, Zins JE, Meltzer H, Gosman A, Cohen SR, Holmes R. Review of bone substitutes. Craniomaxillofac Trauma Reconstr 2011; 2:151-60. [PMID: 22110809 DOI: 10.1055/s-0029-1224777] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Bone substitutes are being increasingly used in craniofacial surgery and craniomaxillofacial trauma. We will review the history of the biomaterials and describe the ideal characteristics of bone substitutes, with a specific emphasis on craniofacial reconstruction. Some of the most commonly used bone substitutes are discussed in more depth, such as calcium phosphate and hydroxyapatite ceramics and cements, bioactive glass, and polymer products. Areas of active research and future directions include tissue engineering, with an increasing emphasis on bioactivity of the implant.
Collapse
|
15
|
Neumann A, Kevenhoerster K. Biomaterials for craniofacial reconstruction. GMS CURRENT TOPICS IN OTORHINOLARYNGOLOGY, HEAD AND NECK SURGERY 2011; 8:Doc08. [PMID: 22073101 PMCID: PMC3199817 DOI: 10.3205/cto000060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Biomaterials for reconstruction of bony defects of the skull comprise of osteosynthetic materials applied after osteotomies or traumatic fractures and materials to fill bony defects which result from malformation, trauma or tumor resections. Other applications concern functional augmentations for dental implants or aesthetic augmentations in the facial region. For ostheosynthesis, mini- and microplates made from titanium alloys provide major advantages concerning biocompatibility, stability and individual fitting to the implant bed. The necessity of removing asymptomatic plates and screws after fracture healing is still a controversial issue. Risks and costs of secondary surgery for removal face a low rate of complications (due to corrosion products) when the material remains in situ. Resorbable osteosynthesis systems have similar mechanical stability and are especially useful in the growing skull. The huge variety of biomaterials for the reconstruction of bony defects makes it difficult to decide which material is adequate for which indication and for which site. The optimal biomaterial that meets every requirement (e.g. biocompatibility, stability, intraoperative fitting, product safety, low costs etc.) does not exist. The different material types are (autogenic) bone and many alloplastics such as metals (mainly titanium), ceramics, plastics and composites. Future developments aim to improve physical and biological properties, especially regarding surface interactions. To date, tissue engineered bone is far from routine clinical application.
Collapse
|
16
|
Kobayashi H, Turner AS, Seim HB, Kawamoto T, Bauer TW. Evaluation of a silica-containing bone graft substitute in a vertebral defect model. J Biomed Mater Res A 2010; 92:596-603. [PMID: 19235208 DOI: 10.1002/jbm.a.32397] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Orthopedic and spine surgeons are in need of supplements or replacements for autograft. We investigated the histological properties of three formulations of Calcium Sodium Phosphosilicate [calcium sodium phosphosilicate putty with or without autograft and NovaBone 45S5 Bioglass particulate (NovaBone, LLC, Jacksonville, FL)] using a sheep vertebral bone void model. Bone voids were surgically created in L3, L4, and L5 in each of 22 sheep, and the voids were filled with one of the tested biomaterials or left empty as a control. Histological evaluations were performed at either: 0, 6, or 12 weeks after surgery. Undecalcified sections were digitized, and the areas of the original defect and new bone were quantified. Decalcified sections were evaluated qualitatively. Histomorphometry showed a significant increase in the amount of bone between 6 and 12 weeks in all groups, but there was no significant difference in new bone formation among the formulations or between any formulation and the empty defects. The granules of all three formulations were associated with an inflammatory reaction. Many of the particles appear to have a hollow center, and the narrow tunnel through the center of the particles was sometimes associated with acute inflammation especially at 6 weeks. These particles were also associated with chronic inflammation at both 6 and 12 weeks, although the extent of inflammation decreased between 6 and 12 weeks. The search for the optimum bone graft substitute/extender will continue.
Collapse
Affiliation(s)
- Hideo Kobayashi
- Department of Anatomic Pathology, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
17
|
Sun XJ, Xia LG, Chou LL, Zhong W, Zhang XL, Wang SY, Zhao J, Jiang XQ, Zhang ZY. Maxillary sinus floor elevation using a tissue engineered bone complex with BMP-2 gene modified bMSCs and a novel porous ceramic scaffold in rabbits. Arch Oral Biol 2010; 55:195-202. [PMID: 20144455 DOI: 10.1016/j.archoralbio.2010.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 01/05/2010] [Accepted: 01/16/2010] [Indexed: 01/30/2023]
Abstract
OBJECTIVES To study the effects of maxillary sinus floor elevation by a tissue engineered bone complex with bone morphogenetic protein-2 (BMP-2) gene modified bone marrow stromal cells (bMSCs) and a novel porous ceramic scaffold (OsteoBone) in rabbits. MATERIALS AND METHODS bMSCs derived from New Zealand rabbit bone marrow were cultured and transduced with adenovirus AdBMP-2 and with AdEGFP gene (without BMP-2 gene sequence) as a control, respectively, in vitro. These bMSCs were then combined with OsteoBone scaffold at a concentration of 2 x 10(7)cells/ml and used to elevate the maxillary sinus floor in rabbits. Eight rabbits were randomly allocated into groups and sacrificed at weeks 2 and 4. For each time point, 8 maxillary sinus floor elevation surgeries were made bilaterally in 4 rabbits for the two groups (n=4 per group): group A (AdBMP-2-bMSCs/material) and group B (AdEGFP-bMSCs/material). All samples were evaluated by histologic and histomorphometric analysis. RESULTS The augmented maxillary sinus height was maintained for both groups over the entire experimental period, while new bone area increased over time for group A. At week 4 after operation, bone area in group A was significantly more than that in group B (P<0.05), and was more obviously detected in the center of the elevated space. Under a confocal microscope, green fluorescence in newly formed bone was observed in the EGFP group, which suggests that those implanted bMSCs had contributed to the new bone formation. CONCLUSION bMSCs modified with AdBMP-2 gene can promote new bone formation in elevating the rabbit maxillary sinus. OsteoBone scaffold could be an ideal carrier for gene enhanced bone tissue engineering.
Collapse
Affiliation(s)
- X-Juan Sun
- Ninth People's Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai 200011, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Biomaterials in Craniofacial Surgery. Plast Reconstr Surg 2010. [DOI: 10.1007/978-1-84882-513-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Application-specific selection of biomaterials for pediatric craniofacial reconstruction: developing a rational approach to guide clinical use (invited discussion). Plast Reconstr Surg 2009; 123:1123-1124. [PMID: 19319085 DOI: 10.1097/prs.0b013e31819c93a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Abstract
The past 10 years have witnessed many advances in craniofacial surgery. Advances in surgical techniques, such as distraction osteogenesis and endoscopic procedures, combined with refinements in surgical equipment, such as resorbable plating and distractors, have improved surgical outcomes, while minimizing morbidity. Technological advances in 3-dimensional imaging, computer simulation, and intraoperative navigation facilitate diagnosis, preoperative planning, and surgical execution. Rising cases of deformational plagiocephaly owing to increased supine infant sleep positioning necessitated the development of appropriate diagnosis and treatment and the avoidance of unnecessary surgery. A greater understanding of the genetic basis of craniofacial disorders has allowed better preoperative assessment and counseling. Finally, efforts to develop better bone graft substitutes with gene therapy and nanotechnology are ongoing.
Collapse
Affiliation(s)
- Sherard A Tatum
- Central New York Cleft and Craniofacial Center, Division of Facial Plastic and Reconstructive Surgery, State University of New York, Upstate Medical University, 750 E Adams St, Syracuse, NY 13210, USA.
| | | |
Collapse
|
21
|
Application-Specific Selection of Biomaterials for Pediatric Craniofacial Reconstruction: Developing a Rational Approach to Guide Clinical Use. Plast Reconstr Surg 2009; 123:319-330. [DOI: 10.1097/prs.0b013e318193478c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Abstract
With the long history of use of many materials in dental surgery, biocompatibility concerns are not as great a concern as other issues, such as long-term degradation, mechanical strength problems, and prevention of secondary caries. It is important, however, not to forget that the potential exists for adverse tissue responses to synthetic materials used in repair, augmentation, and repair of natural tissue structures. As new materials and repair techniques become available and the sophistication of cell-level and subcellular response evaluations increases, the concerns to be addressed and the methods to be used may change. The advent of tissue-engineered medical products may mean that new questions must be addressed.
Collapse
Affiliation(s)
- Kenneth R St John
- Department of Biomedical Materials Science, University of Mississippi Medical Center School of Dentistry, 2500 North State Street, Jackson 39216, USA.
| |
Collapse
|
23
|
Tuusa SMR, Peltola MJ, Tirri T, Puska MA, Röyttä M, Aho H, Sandholm J, Lassila LVJ, Vallittu PK. Reconstruction of critical size calvarial bone defects in rabbits with glass–fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater 2008; 84:510-9. [PMID: 17618510 DOI: 10.1002/jbm.b.30898] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
UNLABELLED The aim of this study was to evaluate glass-fiber-reinforced composite as a bone reconstruction material in the critical size defects in rabbit calvarial bones. The bone defect healing process and inflammatory reactions were evaluated histologically at 4 and 12 weeks postoperatively. Possible neuropathological effects on brain tissue were evaluated. The release of residual monomers from the fiber-reinforced composite (FRC) was analyzed by high performance liquid chromatograph (HPLC). RESULTS At 4 weeks postoperatively, fibrous connective tissue ingrowth to implant structures was seen. Healing had started as new bone formation from defect margins, as well as woven bone islets in the middle of the defect. Woven bone was also seen inside the implant. Inflammation reaction was slight. At 12 weeks, part of the new bone had matured to lamellar-type, and inflammation reaction was slight to moderate. Control defects had healed by fibrous connective tissue. Histological examinations of the brain revealed no obvious damage to brain morphology. In HPLC analysis, the release of residual 1,4-butanedioldimethacrylate and methylmethacrylate from polymerized FRC was low. CONCLUSIONS This FRC-implant was shown to promote the healing process of critical size calvarial bone defect in rabbits. After some modifications to the material properties, this type of implant has the potential to become an alternative for the reconstruction of bone defects in the head and neck area in the future.
Collapse
Affiliation(s)
- Sari M-R Tuusa
- Department of Prosthetic Dentistry and Biomaterials Science, Institute of Dentistry, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cranial Defect Reconstruction in an Experimental Model Using Different Mixtures of Bioglass and Autologous Bone. J Craniofac Surg 2007; 18:1290-5. [DOI: 10.1097/scs.0b013e3180f610c7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
25
|
Silva GA, Ducheyne P, Reis RL. Materials in particulate form for tissue engineering. 1. Basic concepts. J Tissue Eng Regen Med 2007; 1:4-24. [DOI: 10.1002/term.2] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|