1
|
Goldschagg MGE, Hockman D. FGF18. Differentiation 2024; 139:100735. [PMID: 38007374 DOI: 10.1016/j.diff.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 11/27/2023]
Abstract
FGF18 was discovered in 1998. It is a pleiotropic growth factor that stimulates major signalling pathways involved in cell proliferation and growth, and is involved in the development and homeostasis of many tissues such as bone, lung, and central nervous system. The gene consists of five exons that code for a 207 amino acid glycosylated protein. FGF18 is widely expressed in developing and adult chickens, mice, and humans, being seen in the mesenchyme, brain, skeleton, heart, and lungs. Knockout studies of FGF18 in mice lead to perinatal death, characterised by distinct phenotypes such as cleft palate, smaller body size, curved long bones, deformed ribs, and reduced crania. As can be expected from a protein involved in so many functions FGF18 is associated with various diseases such as idiopathic pulmonary fibrosis, congenital diaphragmatic hernia, and most notably various types of cancer such as breast, lung, and ovarian cancer.
Collapse
Affiliation(s)
- Michael G E Goldschagg
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
2
|
Li L, Liu Y, Qian X, Zhou L, Fan Y, Yang X, Luo K, Chen Y. Modulating the phenotype and function of bone marrow-derived macrophages via mandible and femur osteoblasts. Int Immunopharmacol 2024; 132:112000. [PMID: 38583238 DOI: 10.1016/j.intimp.2024.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
Various studies have been investigated the phenotypic and functional distinctions of craniofacial and long bone cells involved in bone regeneration. However, the process of bone tissue regeneration after bone grafting involves complicated interactions between different cell types at the donor-recipient site. Additionally, differences in alterations of the immune microenvironment at the recipient site remained to be explored. Osteoblasts (OBs) and macrophages (MØ) play essential roles in the bone restoration and regeneration processes in the bone and immune systems, respectively. The modulation of MØ on OBs has been extensively explored in the literature, whereas limited research has been conducted on the influence of OBs on the MØ phenotype and function. In the present study, OBs from the mandible and femur (MOBs and FOBs, respectively) promoted cranial defect regeneration in rats, with better outcomes noted in the MOBs-treated group. After MOBs transplantation, a significant inflammatory response was induced, accompanied by an early increase in IL-10 secretion. And then, there was an upregulation in M2-MØ-related cell markers and inflammatory factor expression. Condition media (CM) of OBs mildly inhibited apoptosis in MØ, enhanced their migration and phagocytic functions, and concurrently increased iNOS and Arg1 expression, with MOB-CM demonstrating more pronounced effects compared to FOB-CM. In conclusion, our investigation showed that MOBs and FOBs have the ability to modulate MØ phenotype and function, with MOBs exhibiting a stronger regulatory potential. These findings provide a new direction for improving therapeutic strategies for bone regeneration in autologous bone grafts from the perspective of the immune microenvironment.
Collapse
Affiliation(s)
- Li Li
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Yijuan Liu
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Xueshen Qian
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Ling Zhou
- Fujian Provincial Governmental Hospital, Fuzhou 350003, People's Republic of China
| | - Yujie Fan
- The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361021, People's Republic of China
| | - Xue Yang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China
| | - Kai Luo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian 350002, People's Republic of China; Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China.
| | - Yuling Chen
- Institute of Stomatology & Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou 350002, People's Republic of China.
| |
Collapse
|
3
|
Hu S, Chen S, Zeng H, Ruan X, Lin X, Vlashi R, Zhou C, Wang H, Chen G. Ap-2β regulates cranial osteogenic potential via the activation of Wnt/β-catenin signaling pathway. Dev Biol 2023; 501:S0012-1606(23)00114-8. [PMID: 37355029 DOI: 10.1016/j.ydbio.2023.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
The skull is a fundamental bone that protects the development of brain and consists of several bony elements, such as the frontal and parietal bones. Frontal bone exhibited superior in osteogenic potential and regeneration of cranial defects compared to parietal bone. However, how this regional difference is regulated remains largely unknown. In this study, we identified an Ap-2β transcriptional factor with a higher expression in frontal bone, but its molecular function in osteoblasts needs to be elucidated. We found that Ap-2β knockdown in preosteoblasts leads to reduced proliferation, increased cell death and impaired differentiation. Through RNA-seq analysis, we found that Ap-2β influences multiple signaling pathways including the Wnt pathway, and overexpression of Ap-2β showed increased nuclear β-catenin and its target genes expressions in osteoblasts. Pharmacological activation of Wnt/β-catenin signaling using LiCl treatment cannot rescue the reduced luciferase activities of the β-catenin/TCF/LEF reporter in Ap-2β knockdown preosteoblasts. Besides, transient expression of Ap-2β via the lentivirus system could sufficiently rescue the inferior osteogenic potential in parietal osteoblasts, while Ap-2β knockdown in frontal osteoblasts resulted in reduced osteoblast activity, reduced active β-catenin and target genes expressions. Taken together, our data demonstrated that Ap-2β modulates osteoblast proliferation and differentiation through the regulation of Wnt/β-catenin signaling pathway and plays an important role in regulating regional osteogenic potential in frontal and parietal bone.
Collapse
Affiliation(s)
- Sujie Hu
- Department of Biopharmacy, College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sisi Chen
- Department of Biopharmacy, College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haozu Zeng
- Department of Biopharmacy, College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xinyi Ruan
- Department of Biopharmacy, College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xinyi Lin
- Department of Biopharmacy, College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Rexhina Vlashi
- Department of Biopharmacy, College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chenhe Zhou
- Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
| | - Haidong Wang
- Department of Orthopedics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, 314001, China.
| | - Guiqian Chen
- Department of Biopharmacy, College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Liao J, Huang Y, Wang Q, Chen S, Zhang C, Wang D, Lv Z, Zhang X, Wu M, Chen G. Gene regulatory network from cranial neural crest cells to osteoblast differentiation and calvarial bone development. Cell Mol Life Sci 2022; 79:158. [PMID: 35220463 PMCID: PMC11072871 DOI: 10.1007/s00018-022-04208-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/02/2022] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
Abstract
Calvarial bone is one of the most complex sequences of developmental events in embryology, featuring a uniquely transient, pluripotent stem cell-like population known as the cranial neural crest (CNC). The skull is formed through intramembranous ossification with distinct tissue lineages (e.g. neural crest derived frontal bone and mesoderm derived parietal bone). Due to CNC's vast cell fate potential, in response to a series of inductive secreted cues including BMP/TGF-β, Wnt, FGF, Notch, Hedgehog, Hippo and PDGF signaling, CNC enables generations of a diverse spectrum of differentiated cell types in vivo such as osteoblasts and chondrocytes at the craniofacial level. In recent years, since the studies from a genetic mouse model and single-cell sequencing, new discoveries are uncovered upon CNC patterning, differentiation, and the contribution to the development of cranial bones. In this review, we summarized the differences upon the potential gene regulatory network to regulate CNC derived osteogenic potential in mouse and human, and highlighted specific functions of genetic molecules from multiple signaling pathways and the crosstalk, transcription factors and epigenetic factors in orchestrating CNC commitment and differentiation into osteogenic mesenchyme and bone formation. Disorders in gene regulatory network in CNC patterning indicate highly close relevance to clinical birth defects and diseases, providing valuable transgenic mouse models for subsequent discoveries in delineating the underlying molecular mechanisms. We also emphasized the potential regenerative alternative through scientific discoveries from CNC patterning and genetic molecules in interfering with or alleviating clinical disorders or diseases, which will be beneficial for the molecular targets to be integrated for novel therapeutic strategies in the clinic.
Collapse
Affiliation(s)
- Junguang Liao
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuping Huang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Qiang Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sisi Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Chenyang Zhang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Dan Wang
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhengbing Lv
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, 314001, China
| | - Mengrui Wu
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Institute of Genetics, College of Life Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Chen G, Xu H, Yao Y, Xu T, Yuan M, Zhang X, Lv Z, Wu M. BMP Signaling in the Development and Regeneration of Cranium Bones and Maintenance of Calvarial Stem Cells. Front Cell Dev Biol 2020; 8:135. [PMID: 32211409 PMCID: PMC7075941 DOI: 10.3389/fcell.2020.00135] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
The bone morphogenetic protein (BMP) signaling pathway is highly conserved across many species, and its importance for the patterning of the skeletal system has been demonstrated. A disrupted BMP signaling pathway results in severe skeletal defects. Murine calvaria has been identified to have dual-tissue lineages, namely, the cranial neural-crest cells and the paraxial mesoderm. Modulations of the BMP signaling pathway have been demonstrated to be significant in determining calvarial osteogenic potentials and ossification in vitro and in vivo. More importantly, the BMP signaling pathway plays a role in the maintenance of the homeostasis of the calvarial stem cells, indicating a potential clinic significance in calvarial bone and in expediting regeneration. Following the inherent evidence of BMP signaling in craniofacial biology, we summarize recent discoveries relating to BMP signaling in the development of calvarial structures, functions of the suture stem cells and their niche and regeneration. This review will not only provide a better understanding of BMP signaling in cranial biology, but also exhibit the molecular targets of BMP signaling that possess clinical potential for tissue regeneration.
Collapse
Affiliation(s)
- Guiqian Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Haodong Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yifeng Yao
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Tingting Xu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mengting Yuan
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Zhengbing Lv
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Mengrui Wu
- Institute of Genetics, Life Science College, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Kim B, Shin H, Kim W, Kim H, Cho Y, Yoon H, Baek J, Woo K, Lee Y, Ryoo H. PIN1 Attenuation Improves Midface Hypoplasia in a Mouse Model of Apert Syndrome. J Dent Res 2019; 99:223-232. [PMID: 31869252 DOI: 10.1177/0022034519893656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Premature fusion of the cranial suture and midface hypoplasia are common features of syndromic craniosynostosis caused by mutations in the FGFR2 gene. The only treatment for this condition involves a series of risky surgical procedures designed to correct defects in the craniofacial bones, which must be performed until brain growth has been completed. Several pharmacologic interventions directed at FGFR2 downstream signaling have been tested as potential treatments for premature coronal suture fusion in a mouse model of Apert syndrome. However, there are no published studies that have targeted for the pharmacologic treatment of midface hypoplasia. We used Fgfr2S252W/+ knock-in mice as a model of Apert syndrome and morphometric analyses to identify causal hypoplastic sites in the midface region. Three-dimensional geometric and linear analyses of Fgfr2S252W/+ mice at postnatal day 0 demonstrated distinct morphologic variance. The premature fusion of anterior facial bones, such as the maxilla, nasal, and frontal bones, rather than the cranium or cranial base, is the main contributing factor toward the anterior-posterior skull length shortening. The cranial base of the mouse model had a noticeable downward slant around the intersphenoid synchondrosis, which is related to distortion of the airway. Within a skull, the facial shape variance was highly correlated with the cranial base angle change along Fgfr2 S252W mutation-induced craniofacial anomalies. The inhibition of an FGFR2 downstream signaling enzyme, PIN1, via genetic knockdown or use of a PIN1 inhibitor, juglone, attenuated the aforementioned deformities in a mouse model of Apert syndrome. Overall, these results indicate that FGFR2 signaling is a key contributor toward abnormal anterior-posterior dimensional growth in the midface region. Our study suggests a novel therapeutic option for the prevention of craniofacial malformations induced by mutations in the FGFR2 gene.
Collapse
Affiliation(s)
- B Kim
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - H Shin
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - W Kim
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - H Kim
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - Y Cho
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea.,Department of Periodontology, School of Dentistry and Dental Research Institute, BK21 Program, Seoul National University, Seoul, Republic of Korea
| | - H Yoon
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - J Baek
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - K Woo
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - Y Lee
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| | - H Ryoo
- Department of Molecular Genetics and Dental Pharmacology, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Chen G, Yao Y, Xu G, Zhang X. Regional difference in microRNA regulation in the skull vault. Dev Dyn 2019; 248:1009-1019. [PMID: 31397024 DOI: 10.1002/dvdy.97] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The murine calvaria has several membrane bones with different tissue origins (e.g., neural crest-derived frontal bone vs. mesoderm-derived parietal bone). Neural crest-derived frontal bone exhibits superior osteogenic activities and bone regeneration. MicroRNA (miRNA) has been emerged as a crucial regulator during organogenesis and is involved in a range of developmental processes. However, the underlying roles of miRNA regulation in frontal bone and parietal bone is unknown. RESULTS Total of 83 significantly expressed known miRNAs were identified in frontal bones versus parietal bones. The significantly enriched gene ontology and KEGG pathway that were predicted by the enrichment miRNAs were involved in several biological processes (cell differentiation, cell adhesion, and transcription), and multiple osteogenic pathways (e.g., focal adhesion, MAPK, VEGF, Wnt, and insulin signaling pathway. Focal adhesion and insulin signaling pathway were selected for target verification and functional analysis, and several genes were predicted to be targets genes by the differentially expressed miRNAs, and these targets genes were tested with significant expressions. CONCLUSIONS Our results revealed a novel pattern of miRNAs in murine calvaria with dual tissue origins, and explorations of these miRNAs will be valuable for the translational studies to enhance osteogenic potential and bone regeneration in the clinic.
Collapse
Affiliation(s)
- Guiqian Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Yifeng Yao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, China
| | - Guangtao Xu
- Department of Pathology and Molecular Medicine, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing University, Jiaxing, China
| | - Xingen Zhang
- Department of Orthopedics, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
8
|
Crespo-Enriquez I, Hodgson T, Zakaria S, Cadoni E, Shah M, Allen S, Al-Khishali A, Mao Y, Yiu A, Petzold J, Villagomez-Olea G, Pitsillides AA, Irvine KD, Francis-West P. Dchs1-Fat4 regulation of osteogenic differentiation in mouse. Development 2019; 146:146/14/dev176776. [PMID: 31358536 DOI: 10.1242/dev.176776] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
In human, mutations of the protocadherins FAT4 and DCHS1 result in Van Maldergem syndrome, which is characterised, in part, by craniofacial abnormalities. Here, we analyse the role of Dchs1-Fat4 signalling during osteoblast differentiation in mouse. We show that Fat4 and Dchs1 mutants mimic the craniofacial phenotype of the human syndrome and that Dchs1-Fat4 signalling is essential for osteoblast differentiation. In Dchs1/Fat4 mutants, proliferation of osteoprogenitors is increased and osteoblast differentiation is delayed. We show that loss of Dchs1-Fat4 signalling is linked to increased Yap-Tead activity and that Yap is expressed and required for proliferation in osteoprogenitors. In contrast, Taz is expressed in more-committed Runx2-expressing osteoblasts, Taz does not regulate osteoblast proliferation and Taz-Tead activity is unaffected in Dchs1/Fat4 mutants. Finally, we show that Yap and Taz differentially regulate the transcriptional activity of Runx2, and that the activity of Yap-Runx2 and Taz-Runx2 complexes is altered in Dchs1/Fat4 mutant osteoblasts. In conclusion, these data identify Dchs1-Fat4 as a signalling pathway in osteoblast differentiation, reveal its crucial role within the early Runx2 progenitors, and identify distinct requirements for Yap and Taz during osteoblast differentiation.
Collapse
Affiliation(s)
- Ivan Crespo-Enriquez
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Tina Hodgson
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Sana Zakaria
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Erika Cadoni
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Mittal Shah
- Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, NW1 0TU, UK
| | - Stephen Allen
- Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, NW1 0TU, UK
| | - Ayman Al-Khishali
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Yaopan Mao
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Angela Yiu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Jonna Petzold
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Guillermo Villagomez-Olea
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Andrew A Pitsillides
- Comparative Biomedical Sciences, Royal Veterinary College, Camden, London, NW1 0TU, UK
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
9
|
Osteogenic and angiogenic characterization of mandible and femur osteoblasts. J Mol Histol 2019; 50:105-117. [PMID: 30635760 DOI: 10.1007/s10735-019-09810-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
|
10
|
Homayounfar N, Khan MM, Ji Y, Khoury ZH, Oates TW, Goodlett DR, Chellaiah M, Masri R. The effect of embryonic origin on the osteoinductive potential of bone allografts. J Prosthet Dent 2018; 121:651-658. [PMID: 30598313 DOI: 10.1016/j.prosdent.2018.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 11/15/2022]
Abstract
STATEMENT OF PROBLEM Allografts with osteoinduction potential are widely used to augment bone in surgical and prosthetic rehabilitations. However, osteoinduction potential varies among commercially available allografts. Donor bones are derived from different embryonic origins, either the neural crest or mesoderm. Whether the origin of the bones affects the osteoinductivity of allograftsis is unclear. PURPOSE The purpose of this ex vivo study was to investigate the osteoinduction potential of allografts derived from bones with distinct embryonic origins. MATERIAL AND METHODS Allografts were obtained from human frontal and parietal bones at 2 different ages (fetal and adult). The specimens were divided into 4 groups: adult frontal (n=5), adult parietal (n=5), fetal frontal (n=10), and fetal parietal (n=10). Two investigations were conducted to assess the osteoinductive potential of these allografts. First, the osteogenesis of human osteoblasts exposed to these allografts were evaluated by analyzing the expression of runt-related transcription factor 2 (RUNX2), collagen type 1 alpha 2 chain (COL1A2), and bone gamma-carboxyglutamate protein (BGLAP) genes using quantitative real-time polymerase chain reaction (qRT-PCR). Second, the protein content of the adult frontal and parietal bone matrices was analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS). One-way ANOVA and the t test were used for statistical analyses of the gene and protein expression of the groups (α=.05). RESULTS No difference was found in the gene expression of the cells exposed to frontal or parietal bones. However, all 3 genes were significantly overexpressed in cells treated with fetal bones compared with adult bones. No difference was found in protein expression between adult frontal and adult parietal bones. CONCLUSIONS No difference was found in the osteoinductive capacity of frontal and parietal bones used as allografts. However, the osteoinductivity of fetal bones can be higher than that of adult bones. Further microanalyses are needed to determine the protein content of fetal bones.
Collapse
Affiliation(s)
- Negar Homayounfar
- Assistant Professor, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Md.
| | - Mohd M Khan
- Graduate student, University of Maryland School of Medicine, Baltimore, Md
| | - Yadong Ji
- Research Scientist, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Md
| | - Zaid H Khoury
- Graduate student, Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Md
| | - Thomas W Oates
- Professor, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Md
| | - David R Goodlett
- Professor, Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Md
| | - Meenakshi Chellaiah
- Professor, Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, Md
| | - Radi Masri
- Associate Professor, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Md
| |
Collapse
|
11
|
ACVR1 is essential for periodontium development and promotes alveolar bone formation. Arch Oral Biol 2018; 95:108-117. [PMID: 30098439 DOI: 10.1016/j.archoralbio.2018.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/10/2018] [Accepted: 07/30/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To explore the role of a BMP type I receptor (ACVR1) in regulating periodontium development, Acvr1 was conditionally disrupted in Osterix-expressing cells. METHODS Mandibles from both control (Acvr1 fx/+; Osterix-Cre (+)/(-)) and cKO (Acvr1 fx/-; Osterix-Cre (+)/(-)) mice at postnatal day 21 (PN21) were scanned by micro-CT, followed by decalcification and histological observations. Distributions and levels of differentiation markers of fibroblasts, osteoblasts and cementocytes in the periodontium were detected by immunohistochemical (IHC) staining. RESULTS Micro-CT results showed that bone mass and bone mineral density of the alveolar bones in the cKO mice were lower than those in the controls. Histomorphometry within the alveolar bones revealed that the lower bone mass observed in the cKO mice was caused by increased numbers and resorption activities of osteoclasts. The markers for osteoblast differentiation, Col I and DMP1, were reduced and the signals of the RANKL/OPG ratio were increased in the alveolar bones of the cKO mice compared to those of the control mice. The periodontal ligament in the cKO mice exhibited disorganized collagen fibers with weaker signals of Col I and periostin. However, there was no difference in terms of the cellular cementum between the two groups. CONCLUSION ACVR1 is essential for normal periodontium development. ACVR1 in the osteoblasts negatively regulates osteoclast differentiation in association with the RANKL/OPG axis and thus promotes alveolar bone formation.
Collapse
|
12
|
Characterization of Reversibly Immortalized Calvarial Mesenchymal Progenitor Cells. J Craniofac Surg 2016; 26:1207-13. [PMID: 26080159 DOI: 10.1097/scs.0000000000001717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bone morphogenetic proteins (BMPs) play a sentinel role in osteoblastic differentiation, and their implementation into clinical practice can revolutionize cranial reconstruction. Preliminary data suggest a therapeutic role of adenoviral gene delivery of BMPs in murine calvarial defect healing. Poor transgene expression inherent in direct adenoviral therapy prompted investigation of cell-based strategies. OBJECTIVE To isolate and immortalize calvarial cells as a potential progenitor source for osseous tissue engineering. MATERIALS AND METHODS Cells were isolated from murine skulls, cultured, and transduced with a retroviral vector bearing the loxP-flanked SV40 large T antigen. Immortalized calvarial cells (iCALs) were evaluated via light microscopy, immunohistochemistry, and flow cytometry to determine whether the immortalization process altered cell morphology or progenitor cell profile. Immortalized calvarial cells were then infected with adenoviral vectors encoding BMP-2 or GFP and assessed for early and late stages of osteogenic differentiation. RESULTS Immortalization of calvarial cells did not alter cell morphology as demonstrated by phase contrast microscopy. Mesenchymal progenitor cell markers CD166, CD73, CD44, and CD105 were detected at varying levels in both primary cells and iCALs. Significant elevations in alkaline phosphatase activity, osteocalcin mRNA transcription, and matrix mineralization were detected in BMP-2 treated iCALs compared with GFP-treated cells. Gross and histological analyses revealed ectopic bone production from treated cells compared with controls in an in vivo stem cell implantation assay. CONCLUSION We have established an immortalized osteoprogenitor cell line from juvenile calvarial cells that retain a progenitor cell phenotype and can successfully undergo osteogenic differentiation upon BMP-2 stimulation. These cells provide a valuable platform to investigate the molecular mechanisms underlying intramembranous bone formation and to screen for factors/small molecules that can facilitate the healing of osseous defects in the craniofacial skeleton.
Collapse
|
13
|
Homayounfar N, Park SS, Afsharinejad Z, Bammler TK, MacDonald JW, Farin FM, Mecham BH, Cunningham ML. Transcriptional analysis of human cranial compartments with different embryonic origins. Arch Oral Biol 2015; 60:1450-60. [PMID: 26188427 PMCID: PMC4750879 DOI: 10.1016/j.archoralbio.2015.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Previous investigations suggest that the embryonic origins of the calvarial tissues (neural crest or mesoderm) may account for the molecular mechanisms underlying sutural development. The aim of this study was to evaluate the differences in the gene expression of human cranial tissues and assess the presence of an expression signature reflecting their embryonic origins. METHODS Using microarray technology, we investigated global gene expression of cells from the frontal and parietal bones and the metopic and sagittal intrasutural mesenchyme (ISM) of four human foetal calvaria. qRT-PCR of a selected group of genes was done to validate the microarray analysis. Paired comparison and correlation analyses were performed on microarray results. RESULTS Of six paired comparisons, frontal and parietal compartments (distinct tissue types of calvaria, either bone or intrasutural mesenchyme) had the most different gene expression profiles despite being composed of the same tissue type (bone). Correlation analysis revealed two distinct gene expression profiles that separate frontal and metopic compartments from parietal and sagittal compartments. TFAP2A, TFAP2B, ICAM1, SULF1, TNC and FOXF2 were among differentially expressed genes. CONCLUSION Transcriptional profiles of two groups of tissues, frontal and metopic compartments vs. parietal and sagittal compartments, suggest differences in proliferation, differentiation and extracellular matrix production. Our data suggest that in the second trimester of human foetal development, a gene expression signature of neural crest origin still exists in frontal and metopic compartments while gene expression of parietal and sagittal compartments is more similar to mesoderm.
Collapse
Affiliation(s)
- Negar Homayounfar
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 - 9th Avenue, Seattle, WA 98101, United States; Department of Oral Health Sciences, Dental School, University of Washington, United States; Department of Endodontics, Prosthodontics and Operative Dentistry, School of Dentistry, University of Maryland, Baltimore, United States.
| | - Sarah S Park
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 - 9th Avenue, Seattle, WA 98101, United States
| | - Zahra Afsharinejad
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, # 100, Seattle, WA 98105-6099, United States
| | - Theodor K Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, # 100, Seattle, WA 98105-6099, United States
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, # 100, Seattle, WA 98105-6099, United States
| | - Federico M Farin
- Department of Environmental and Occupational Health Sciences, University of Washington, 4225 Roosevelt Way NE, # 100, Seattle, WA 98105-6099, United States
| | - Brigham H Mecham
- Trialomics, 1700 7th Avenue, # 116, Seattle, WA 98101, United States
| | - Michael L Cunningham
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, 1900 - 9th Avenue, Seattle, WA 98101, United States; Seattle Children's Craniofacial Center, 4800 Sand Point Way NE, Seattle, WA 98105, United States
| |
Collapse
|
14
|
Teven CM, Rossi MT, Shenaq DS, Ameer GA, Reid RR. Bone morphogenetic protein-9 effectively induces osteogenic differentiation of reversibly immortalized calvarial mesenchymal progenitor cells. Genes Dis 2015; 2:268-275. [PMID: 30258869 PMCID: PMC6147177 DOI: 10.1016/j.gendis.2015.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 06/09/2015] [Indexed: 12/23/2022] Open
Abstract
Critical-sized craniofacial defect repair represents a significant challenge to reconstructive surgeons. Many strategies have been employed in an effort to achieve both a functionally and cosmetically acceptable outcome. Bone morphogenetic proteins (BMPs) provide a robust osteoinductive cue to stimulate bony growth and remodeling. Previous studies have suggested that the BMP-9 isoform is particularly effective in promoting osteogenic differentiation of mesenchymal progenitor cells. The aim of this study is to characterize the osteogenic capacity of BMP-9 on calvarial mesenchymal progenitor cell differentiation. Reversibly immortalized murine calvarial progenitor cells (iCALs) were infected with adenoviral vectors encoding BMP-9 or GFP and assessed for early and late stages of osteogenic differentiation in vitro and for osteogenic differentiation via in vivo stem cell implantation studies. Significant elevations in alkaline phosphatase (ALP) activity, osteocalcin (OCN) mRNA transcription, osteopontin (OPN) protein expression, and matrix mineralization were detected in BMP-treated cells compared to control. Specifically, ALP activity was elevated on days 3, 7, 9, 11, and 13 post-infection and OCN mRNA expression was elevated on days 8, 10, and 14 in treated cells. Additionally, treatment groups demonstrated increased OPN protein expression on day 10 and matrix mineralization on day 14 post-infection relative to control groups. BMP-9 also facilitated the formation of new bone in vivo as detailed by gross, microcomputed tomography, and histological analyses. Therefore, we concluded that BMP-9 significantly stimulates osteogenic differentiation in iCALs, and should be considered an effective agent for calvarial tissue regeneration.
Collapse
Affiliation(s)
- Chad M Teven
- The Laboratory of Craniofacial Development and Biology, Section of Plastic and Reconstructive Surgery, University of Chicago Medicine, Chicago, IL, USA
| | - Michael T Rossi
- The Laboratory of Craniofacial Development and Biology, Section of Plastic and Reconstructive Surgery, University of Chicago Medicine, Chicago, IL, USA
| | - Deana S Shenaq
- The Laboratory of Craniofacial Development and Biology, Section of Plastic and Reconstructive Surgery, University of Chicago Medicine, Chicago, IL, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA.,Department of Surgery, Northwestern University, Chicago, IL, USA
| | - Russell R Reid
- The Laboratory of Craniofacial Development and Biology, Section of Plastic and Reconstructive Surgery, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
15
|
Lenton K, James AW, Manu A, Brugmann SA, Birker D, Nelson ER, Leucht P, Helms JA, Longaker MT. Indian hedgehog positively regulates calvarial ossification and modulates bone morphogenetic protein signaling. Genesis 2011; 49:784-96. [DOI: 10.1002/dvg.20768] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/26/2011] [Accepted: 04/28/2011] [Indexed: 12/17/2022]
|
16
|
Levaot N, Simoncic PD, Dimitriou ID, Scotter A, La Rose J, Ng AHM, Willett TL, Wang CJ, Janmohamed S, Grynpas M, Reichenberger E, Rottapel R. 3BP2-deficient mice are osteoporotic with impaired osteoblast and osteoclast functions. J Clin Invest 2011; 121:3244-57. [PMID: 21765218 DOI: 10.1172/jci45843] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 06/01/2011] [Indexed: 12/29/2022] Open
Abstract
A fine balance between bone resorption by osteoclasts and bone formation by osteoblasts maintains bone homeostasis. In patients with cherubism, gain-of-function mutations in 3BP2, which is encoded by SH3-domain binding protein 2 (SH3BP2), cause cystic lesions with activated osteoclasts that lead to craniofacial abnormalities. However, little is known about the function of wild-type 3BP2 in regulating bone homeostasis. Here we have shown that 3BP2 is required for the normal function of both osteoblasts and osteoclasts. Initial analysis showed that Sh3bp2-/-mice developed osteoporosis as a result of reduced bone formation despite the fact that bone resorption was impaired. We demonstrated using reciprocal bone marrow chimeras, a cell-intrinsic defect of the osteoblast and osteoclast compartments in vivo. Further, Sh3bp2-/- osteoblasts failed to mature and form mineralized nodules in vitro, while Sh3bp2-/- osteoclasts spread poorly and were unable to effectively degrade dentine matrix in vitro. Finally, we showed that 3BP2 was required for Abl activation in osteoblasts and Src activation in osteoclasts, and demonstrated that the in vitro defect of each cell type was restored by the respective expression of activated forms of these kinases. These findings reveal an unanticipated role for the 3BP2 adapter protein in osteoblast function and in coordinating bone homeostatic signals in both osteoclast and osteoblast lineages.
Collapse
Affiliation(s)
- Noam Levaot
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Hospital, University Health Network, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Levi B, James AW, Nelson ER, Li S, Peng M, Commons GW, Lee M, Wu B, Longaker MT. Human adipose-derived stromal cells stimulate autogenous skeletal repair via paracrine Hedgehog signaling with calvarial osteoblasts. Stem Cells Dev 2010; 20:243-57. [PMID: 20698749 DOI: 10.1089/scd.2010.0250] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human adipose-derived stromal cells (hASCs) have the proven capacity to ossify skeletal defects. The mechanisms whereby hASCs stimulate bone repair are not fully understood. In this study, we examined the potential for hASCs to stimulate autogenous repair of a mouse calvarial defect. Immunofluoresence, osteogenic stains, and surface electron microscopy were used to demonstrate osteogenic differentiation of hASCs. hASCs were engrafted into 4 mm calvarial defects in athymic mice using an osteoconductive scaffold. Analysis included microcomputed tomography, histology, in situ hybridization, and quantitative real-time-polymerase chain reaction. Next, the in vitro interaction between hASCs and mouse calvarial osteoblasts (mOBs) was assessed by the conditioned medium and coculture assays. The medium was supplemented with Hedgehog signaling modifiers, including recombinant N-terminal Sonic hedgehog, smoothened agonist, and cyclopamine. Finally, cyclopamine was delivered in vivo to hASC-engrafted defects. Significant calvarial healing was observed among hASC-engrafted defects compared with control groups (no treatment or scaffold alone) (*P<0.05). hASCs showed evidence of stimulation of host mouse osteogenesis, including (1) increased expression of bone markers at the defect edge by in situ hybridization, and (2) increased host osteogenic gene expression by species-specific quantitative real-time polymerase chain reaction. Using the conditioned medium or coculture assays, hASCs stimulated mOB osteogenic differentiation, accompanied by Hedgehog signaling activation. N-terminal Sonic hedgehog or smoothened agonist replicated, while cyclopamine reversed, the pro-osteogenic effect of the conditioned medium on mOBs. Finally, cyclopamine injection arrested bone formation in vivo. hASCs heal critical-sized mouse calvarial defects, this is, at least in part, via stimulation of autogenous healing of the host defect. Our studies suggest that hASC-derived Hedgehog signaling may play a paracrine role in skeletal repair.
Collapse
Affiliation(s)
- Benjamin Levi
- Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine, Stanford, California 94305-5148, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Paracrine interaction between adipose-derived stromal cells and cranial suture-derived mesenchymal cells. Plast Reconstr Surg 2010; 126:806-821. [PMID: 20811214 DOI: 10.1097/prs.0b013e3181e5f81a] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Adipose-derived stromal cells are a potential cell source for the successful healing of skeletal defects. In this study, the authors sought to investigate the potential for cranial suture-derived mesenchymal cells to promote the osteogenic differentiation of adipose-derived stromal cells. Various reports have previously examined the unique in vitro attributes of suture-derived mesenchymal cells; this study sought to extend those findings. METHODS Suture-derived mesenchymal cells were isolated from wild-type mice (n = 30) from both fusing posterofrontal and patent sagittal sutures. Cells were placed in Transwell inserts with human adipose-derived stromal cells (n = 5 patients) with osteogenic differentiation medium with or without recombinant Noggin (10 to 400 ng/ml). Specific gene expression of osteogenic markers and Hedgehog pathway were assayed; standard osteogenic assays (alkaline phosphatase and alizarin red staining) were performed. All assays were performed in triplicate. RESULTS Both posterofrontal and sagittal suture-derived mesenchymal cells induced osteogenic differentiation of adipose-derived stromal cells (p < 0.05). Posterofrontal suture-derived mesenchymal cells induced adipose-derived stromal cell osteogenesis to a greater degree than sagittal suture-derived mesenchymal cells (p < 0.05). This was accompanied by an increase in bone morphogenetic protein expression (p < 0.05). Finally, recombinant Noggin mitigated the pro-osteogenic effects of co-culture accompanied by a reduction in Hedgehog signaling (p < 0.05). CONCLUSIONS Suture-derived mesenchymal cells secrete paracrine factors that induce osteogenic differentiation of multipotent stromal cells (human adipose-derived stromal cells). Cells derived from the fusing posterofrontal suture do this to a significantly greater degree than cells from the patent sagittal suture. Enhanced bone morphogenetic protein and Hedgehog signaling may underlie this paracrine effect.
Collapse
|
19
|
Levi B, James AW, Glotzbach JP, Wan DC, Commons GW, Longaker MT. Depot-Specific Variation in the Osteogenic and Adipogenic Potential of Human Adipose-Derived Stromal Cells. Plast Reconstr Surg 2010; 126:822-834. [DOI: 10.1097/prs.0b013e3181e5f892] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Elucidating Mechanisms of Osteogenesis in Human Adipose-Derived Stromal Cells via Microarray Analysis. J Craniofac Surg 2010; 21:1136-41. [DOI: 10.1097/scs.0b013e3181e488d6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
21
|
Degistirici Ö, Grabellus F, Irsen S, Schmid KW, Thie M. Using human neural crest-derived progenitor cells to investigate osteogenesis: An in vitro study. Matrix Biol 2010; 29:219-27. [DOI: 10.1016/j.matbio.2009.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 11/26/2022]
|
22
|
Xu Y, Hammerick KE, James AW, Carre AL, Leucht P, Giaccia AJ, Longaker MT. Inhibition of histone deacetylase activity in reduced oxygen environment enhances the osteogenesis of mouse adipose-derived stromal cells. Tissue Eng Part A 2010; 15:3697-707. [PMID: 19505250 DOI: 10.1089/ten.tea.2009.0213] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Recent studies suggest that oxygen tension has a great impact on the osteogenic differentiation capacity of mesenchymal cells derived from adipose tissue: reduced oxygen impedes osteogenesis. We have found that expansion of mouse adipose-derived stromal cells (mASCs) in reduced oxygen tension (10%) results in increased cell proliferation along with induction of histone deacetylase (HDAC) activity. In this study, we utilized two HDAC inhibitors (HDACi), sodium butyrate (NaB) and valproic acid (VPA), and studied their effects on mASCs expanded in various oxygen tensions (21%, 10%, and 1% O(2)). Significant growth inhibition was observed with NaB or VPA treatment in each oxygen tension. Osteogenesis was enhanced by treatment with NaB or VPA, particularly in reduced oxygen tensions (10% and 1% O(2)). Conversely, adipogenesis was decreased with treatments of NaB or VPA at all oxygen tensions. Finally, NaB- or VPA-treated, reduced oxygen tension-exposed (1% O(2)) ASCs were grafted into surgically created mouse tibial defects and resulted in significantly increased bone regeneration. In conclusion, HDACi significantly promote the osteogenic differentiation of mASCs exposed to reduced oxygen tension; HDACi may hold promise for future clinical applications of ASCs for skeletal regeneration.
Collapse
Affiliation(s)
- Yue Xu
- Plastic and Reconstructive Surgery Division, Hagey Pediatric Regenerative Research Laboratory, Department of Surgery, Stanford University School of Medicine, Stanford University, Stanford, California 94305-5148, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Hinton RJ, Serrano M, So S. Differential gene expression in the perichondrium and cartilage of the neonatal mouse temporomandibular joint. Orthod Craniofac Res 2009; 12:168-77. [PMID: 19627518 DOI: 10.1111/j.1601-6343.2009.01450.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Our goal was to discover genes differentially expressed in the perichondrium (PC) of the mandibular condylar cartilage (MCC) that might enhance regenerative medicine or orthopaedic therapies directed at the tissues of the temporomandibular joint. We used targeted gene arrays (osteogenesis, stem cell) to identify genes preferentially expressed in the PC and the cartilaginous (C) portions of the MCC in 2-day-old mice. Genes with higher expression in the PC sample related to growth factor ligand-receptor interactions [FGF-13 (6.4x), FGF-18 (4x), NCAM (2x); PGDF receptors, transforming growth factor (TGF)-beta and IGF-1], the Notch isoforms (especially Notch 3 and 4) and their ligands or structural proteins/proteoglycans [collagen XIV (21x), collagen XVIII (4x), decorin (2.5x)]. Genes with higher expression in the C sample consisted mostly of known cartilage-specific genes [aggrecan (11x), procollagens X (33x), XI (14x), IX (4.5x), Sox 9 (4.4x) and Indian hedgehog (6.7x)]. However, the functional or structural roles of several genes that were expressed at higher levels in the PC sample are unclear [myogenic factor (Myf) 9 (9x), tooth-related genes such as tuftelin (2.5x) and dentin sialophosphoprotein (1.6x), VEGF-B (2x) and its receptors (3-4x) and sclerostin (1.7x)]. FGF, Notch and TGF-beta signalling may be important regulators of MCC proliferation and differentiation; the relatively high expression of genes such as Myf6 and VEGF-B and its receptors suggests a degree of unsuspected plasticity in PC cells.
Collapse
Affiliation(s)
- R J Hinton
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, TX 75246, USA.
| | | | | |
Collapse
|
24
|
Lin JM, Callon KE, Lin JS, Watson M, Empson V, Tong PC, Grey A, Naot D, Green CR, Reid IR, Cornish J. Actions of fibroblast growth factor-8 in bone cells in vitro. Am J Physiol Endocrinol Metab 2009; 297:E142-50. [PMID: 19383871 DOI: 10.1152/ajpendo.90743.2008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fibroblast growth factors (FGFs) are a group of at least 25 structurally related peptides that are involved in many biological processes. Some FGFs are active in bone, including FGF-1, FGF-2, and FGF-18, and recent evidence indicates that FGF-8 is osteogenic, particularly in mesenchymal stem cells. In the current study, we found that FGF-8 was expressed in rat primary osteoblasts and in osteoblastic UMR-106 and MC3T3-E1 cells. Both FGF-8a and FGF-8b potently stimulated the proliferation of osteoblastic cells, whereas they inhibited the formation of mineralized bone nodules in long-term cultures of osteoblasts and reduced the levels of osteoblast differentiation markers, osteocalcin, and bone sialoprotein. FGF-8a induced the phosphorylation of p42/p44 mitogen-activated protein kinase (MAPK) in osteoblastic cells; however, its mitogenic actions were not blocked by either the MAPK kinase (MEK) inhibitor U-0126 or the PI 3-kinase (PI3K) inhibitor LY-294002. Interestingly, FGF-8a, unlike FGF-8b and other members of the family, inhibited osteoclastogenesis in mouse bone marrow cultures, and this was via a receptor activator of NF-kappaB ligand (RANKL)/osteoprotegerin (OPG)-independent manner. However, FGF-8a did not affect osteoclastogenesis in RAW 264.7 cells (a macrophage cell line devoid of stromal cells) exogenously stimulated by RANKL, nor did it affect mature osteoclast function as assessed in rat calvarial organ cultures and isolated mature osteoclasts. In summary, we have demonstrated that FGF-8 is active in bone cells, stimulating osteoblast proliferation in a MAPK-independent pathway and inhibiting osteoclastogenesis via a RANKL/OPG-independent mechanism. These data suggest that FGF-8 may have a physiological role in bone acting in an autocrine/paracrine manner.
Collapse
Affiliation(s)
- Jian-Ming Lin
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|