1
|
Bioactive gelatin cryogels with BMP‐2 biomimetic peptide and VEGF: A potential scaffold for synergistically induced osteogenesis. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
2
|
Ware AD, Brewer N, Meyers C, Morris C, McCarthy E, Shore EM, James AW. Differential Vascularity in Genetic and Nonhereditary Heterotopic Ossification. Int J Surg Pathol 2019; 27:859-867. [PMID: 31250694 DOI: 10.1177/1066896919857135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction. Nonhereditary heterotopic ossification (NHO) is a common complication of trauma. Progressive osseous heteroplasia (POH) and fibrodysplasia ossificans progressiva (FOP) are rare genetic causes of heterotopic bone. In this article, we detail the vascular patterning associated with genetic versus NHO. Methods. Vascular histomorphometric analysis was performed on patient samples from POH, FOP, and NHO. Endpoints for analysis included blood vessel (BV) number, area, density, size, and wall thickness. Results. Results demonstrated conserved temporal dynamic changes in vascularity across all heterotopic ossification lesions. Immature areas had the highest BV number, while the more mature foci had the highest BV area. Most vascular parameters were significantly increased in genetic as compared with NHO. Discussion. In sum, both genetic and NHO show temporospatial variation in vascularity. These findings suggest that angiogenic pathways are potential therapeutic targets in both genetic and nonhereditary forms of heterotopic ossification.
Collapse
|
3
|
Cocks M, Mohan A, Meyers CA, Ding C, Levi B, McCarthy E, James AW. Vascular patterning in human heterotopic ossification. Hum Pathol 2017; 63:165-170. [PMID: 28315426 PMCID: PMC5529164 DOI: 10.1016/j.humpath.2017.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/15/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
Heterotopic ossification (HO, also termed myositis ossificans) is the formation of extra-skeletal bone in muscle and soft tissues. HO is a tissue repair process gone awry, and is a common complication of surgery and traumatic injury. Medical strategies to prevent and treat HO fall well short of addressing the clinical need. Better characterization of the tissues supporting HO is critical to identifying therapies directed against this common and sometimes devastating condition. The physiologic processes of osteogenesis and angiogenesis are highly coupled and interdependent. However, few efforts have been made to document the vascular patterning within heterotopic ossification. Here, surgical pathology case files of 29 human HO specimens were examined by vascular histomorphometric analysis. Results demonstrate a temporospatial patterning of HO vascularity that depends on the "maturity" of the bony lesion. In sum, human HO demonstrates a time- and space-dependent pattern of vascularization suggesting a coupled pathophysiologic process involving the coordinate processes of osteogenesis and angiogenesis. Further imaging studies may be used to further characterize vasculogenesis within HO and whether anti-angiogenic therapies are a conceivable future therapy for this common condition.
Collapse
Affiliation(s)
- Margaret Cocks
- Department of Pathology, Johns Hopkins University, 21205
| | - Aditya Mohan
- Department of Pathology, Johns Hopkins University, 21205
| | | | - Catherine Ding
- Department of Pathology, Johns Hopkins University, 21205
| | - Benjamin Levi
- Department of Surgery, University of Michigan, 48109
| | | | - Aaron W James
- Department of Pathology, Johns Hopkins University, 21205.
| |
Collapse
|
4
|
Davies OG, Liu Y, Player DJ, Martin NRW, Grover LM, Lewis MP. Defining the Balance between Regeneration and Pathological Ossification in Skeletal Muscle Following Traumatic Injury. Front Physiol 2017; 8:194. [PMID: 28421001 PMCID: PMC5376571 DOI: 10.3389/fphys.2017.00194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/15/2017] [Indexed: 12/15/2022] Open
Abstract
Heterotopic ossification (HO) is characterized by the formation of bone at atypical sites. This type of ectopic bone formation is most prominent in skeletal muscle, most frequently resulting as a consequence of physical trauma and associated with aberrant tissue regeneration. The condition is debilitating, reducing a patient's range of motion and potentially causing severe pathologies resulting from nerve and vascular compression. Despite efforts to understand the pathological processes governing HO, there remains a lack of consensus regarding the micro-environmental conditions conducive to its formation, and attempting to define the balance between muscle regeneration and pathological ossification remains complex. The development of HO is thought to be related to a complex interplay between factors released both locally and systemically in response to trauma. It develops as skeletal muscle undergoes significant repair and regeneration, and is likely to result from the misdirected differentiation of endogenous or systemically derived progenitors in response to biochemical and/or environmental cues. The process can be sequentially delineated by the presence of inflammation, tissue breakdown, adipogenesis, hypoxia, neo-vasculogenesis, chondrogenesis and ossification. However, exactly how each of these stages contributes to the formation of HO is at present not well understood. Our previous review examined the cellular contribution to HO. Therefore, the principal aim of this review will be to comprehensively outline changes in the local tissue micro-environment following trauma, and identify how these changes can alter the balance between skeletal muscle regeneration and ectopic ossification. An understanding of the mechanisms governing this condition is required for the development and advancement of HO prophylaxis and treatment, and may even hold the key to unlocking novel methods for engineering hard tissues.
Collapse
Affiliation(s)
- Owen G Davies
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK.,School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Yang Liu
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough UniversityLoughborough, UK
| | - Darren J Player
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| | - Liam M Grover
- School of Chemical Engineering, University of BirminghamBirmingham, UK
| | - Mark P Lewis
- National Centre for Sport and Exercise Medicine, Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, School of Sport, Exercise and Health Sciences, Loughborough UniversityLoughborough, UK
| |
Collapse
|
5
|
Bone Healing After Secondary Surgery on Hand Allografts Under Sirolimus-Based Maintenance Immunosuppression. Ann Plast Surg 2011; 66:667-9. [DOI: 10.1097/sap.0b013e318212686b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Edlund U, Sauter T, Albertsson AC. Covalent VEGF protein immobilization on resorbable polymeric surfaces. POLYM ADVAN TECHNOL 2010. [DOI: 10.1002/pat.1811] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Edlund U, Sauter T, Albertsson AC. Covalent VEGF protein immobilization on resorbable polymeric surfaces. POLYM ADVAN TECHNOL 2010. [DOI: 10.1002/pat.1772] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
8
|
Ho STB, Hutmacher DW, Ekaputra AK, Hitendra D, Hui JH. The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model. Tissue Eng Part A 2010; 16:1123-41. [PMID: 19863255 DOI: 10.1089/ten.tea.2009.0471] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Conventional clinical therapies are unable to resolve osteochondral defects adequately; hence, tissue engineering solutions are sought to address the challenge. A biphasic implant that was seeded with mesenchymal stem cells (MSCs) and coupled with an electrospun membrane was evaluated as an alternative. This dual phase construct comprised of a polycaprolactone (PCL) cartilage scaffold and a PCL-tricalcium phosphate osseous matrix. Autologous MSCs were seeded into the entire implant via fibrin and the construct was inserted into critically sized osteochondral defects located at the medial condyle and patellar groove of pigs. The defect was resurfaced with a PCL-collagen electrospun mesh, which served as a substitute for periosteal flap in preventing cell leakage. Controls without either implanted MSCs or resurfacing membrane were included. After 6 months, cartilaginous repair was observed with a low occurrence of fibrocartilage at the medial condyle. Osteochondral repair was promoted and host cartilage degeneration was arrested as shown by superior glycosaminoglycan maintenance. This positive morphological outcome was supported by a higher relative Young's modulus, which indicated functional cartilage restoration. Bone ingrowth and remodeling occurred in all groups, with a higher degree of mineralization in the experimental group. Tissue repair was compromised in the absence of the implanted cells or the resurfacing membrane. Moreover, healing was inferior at the patellar groove when compared with the medial condyle and this was attributed to the native biomechanical features.
Collapse
|
9
|
Ho STB, Ekaputra AK, Hui JH, Hutmacher DW. An electrospun polycaprolactone-collagen membrane for the resurfacing of cartilage defects. POLYM INT 2010. [DOI: 10.1002/pi.2792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Degidi M, Artese L, Rubini C, Perrotti V, Iezzi G, Piattelli A. Microvessel density in sinus augmentation procedures using anorganic bovine bone and autologous bone: 3 months results. IMPLANT DENT 2007; 16:317-25. [PMID: 17846548 DOI: 10.1097/id.0b013e3180de4c5f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE This study was an immunohistochemical evaluation of microvessel density (MVD) in sinus augmentation procedures with autologous bone and anorganic bone (Bio-Oss). MATERIALS AND METHODS Twenty-four patients (14 men and 10 women - mean age of 48 years with a range from 34 to 53 years) participated in this study. All the patients presented a maxillary partial unilateral edentulism involving the premolar/molar areas, with a residual alveolar ridge height of about 4 to 5 mm. Twelve patients received sinus augmentation procedures with 100% autologous bone; 100% Bio-Oss was used in the other 12 patients. Endosseous implants were inserted after a mean period of 3 months. As control, the portions of preexisting subantral bone were used. The mean value of the MVD in control bone was 23.4 +/- 1.3. The mean value of the MVD in the sinuses augmented with autologous bone was 29.0 +/- 2.4. The mean value of the MVD in the sinuses augmented with Bio-Oss was 23.8 +/- 2.2. RESULTS The statistical analysis showed that the differences of the MVD between control bone and sinuses augmented with Bio-Oss were not statistically significant (P = 0.52), while the difference of the MVD between sinuses augmented with autologous bone and those augmented with Bio-Oss was statistically significant (P = 0.0008). CONCLUSIONS Autologous bone may act not only as a passive filling material in bone defects but may also release osteogenic growth factors; and particles of autologous bone seem to contain vital osteoprogenitor cells.
Collapse
Affiliation(s)
- Marco Degidi
- Dental School, University of Chieti-Pescara, Italy
| | | | | | | | | | | |
Collapse
|
11
|
The Evaluation of Bone Formation of the Whole-Tissue Periosteum Transplantation in Combination With β-Tricalcium Phosphate (TCP). Ann Plast Surg 2007; 59:707-12. [DOI: 10.1097/01.sap.0000261237.38027.07] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Kreuz PC, Steinwachs M, Erggelet C, Krause SJ, Ossendorf C, Maier D, Ghanem N, Uhl M, Haag M. Classification of graft hypertrophy after autologous chondrocyte implantation of full-thickness chondral defects in the knee. Osteoarthritis Cartilage 2007; 15:1339-47. [PMID: 17629514 DOI: 10.1016/j.joca.2007.04.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Accepted: 04/21/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Graft hypertrophy is a major complication seen in autologous chondrocyte implantation (ACI) with a periosteal flap. We present the first magnetic resonance imaging (MRI) classification for periosteal hypertrophy including a grading of clinical symptoms and the surgical consequences. METHODS One hundred and two patients with isolated chondral defects underwent an ACI covered with periosteum and were evaluated preoperatively, 6, 18 and 36 months after surgery. Exclusion criteria were meniscal pathologies, axial malpositioning and ligament instabilities. Baseline clinical scores were compared with follow-up data by paired Wilcoxon-tests for the modified Cincinnati knee, the ICRS (International Cartilage Repair Society) and a new MRI score including the parameters defect filling, subchondral edema, effusion, cartilage signal and graft hypertrophy. Hypertrophic changes were graded from 1 (minimal) to 4 (severe). RESULTS All scores showed significant improvement (P<0.001) over the entire study period. Patients with femoral lesions had significantly better results than patients with patella lesions after 18 and 36 months postoperative (P<0.03). Periosteal hypertrophy occurred in 28% of all patients. Fifty percent of all patella implants developed hypertrophic changes. No patient with grade 1, and all patients with grade 4 hypertrophy had to undergo revision surgery. The Pearson correlation between graft hypertrophy and ICRS score was 0.78 after 6 months, and 0.69 after 36 months (P<0.01). Inclusion of graft hypertrophy in the MRI score improves the correlation to clinical scores from 0.6 to 0.69. CONCLUSIONS Grading graft hypertrophy helps to identify patients needing an early shaving of the graft. Its integration into an MRI score improves correlation with clinical scores. Re-operation depends on the grade of hypertrophy and clinical symptoms.
Collapse
Affiliation(s)
- P C Kreuz
- Department of Orthopaedic and Trauma Surgery, University Medical Center Freiburg, Hugstetterstrasse 55, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kanou M, Ueno T, Kagawa T, Fujii T, Sakata Y, Ishida N, Fukunaga J, Sugahara T. Osteogenic Potential of Primed Periosteum Graft in the Rat Calvarial Model. Ann Plast Surg 2005; 54:71-8. [PMID: 15613887 DOI: 10.1097/01.sap.0000139562.42726.dd] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Repair of bone defects remains a major concern in plastic and maxillofacial surgery. Based on modern concepts of tissue engineering, periosteum has gained attention as a suitable osteogenic material. We tested the hypothesis that surgically released and immediately repositioned periosteum would exhibit high osteogenic capacity upon grafting in a rat calvarial defect. Seven days after periosteum was released from the tibia and immediately repositioned, the "primed periosteum graft" (PPG; n = 15) was placed into a critical-sized defect of rat calvaria and the process of bone formation was evaluated histologically, immunohistologically, and radiographically at 7, 14, and 21 days after grafting. Findings were compared with a nonprimed periosteal graft (NPG; n = 15). Endochondral ossification was observed in both the PPG and NPG. The PPG showed higher expression of proliferative cell nuclear antigen, bone morphogenetic protein, and vascular endothelial growth factor than the NPG. Three-dimensional radiographic examination revealed significantly increased bone formation in the PPG than in the NPG (P < 0.01). These findings suggested that surgical stimulation of the periosteum enhanced the osteogenic potential of periosteal cells. This method may be suitable for the clinical repair of bone defects.
Collapse
Affiliation(s)
- Miwa Kanou
- Departments of Oral and Maxillofacial Reconstructive Surgery, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata, Okayama 700-8525, Japan
| | | | | | | | | | | | | | | |
Collapse
|