1
|
Chaban R, Ileka I, Kinoshita K, McGrath G, Habibabady Z, Ma M, Diaz V, Maenaka A, Rosales I, Lederman S, Tkachev V, Madsen JC, Pierson RN. Enhanced Costimulation Blockade With αCD154, αCD2, and αCD28 to Promote Heart Allograft Tolerance in Nonhuman Primates. Transplantation 2025:00007890-990000000-00972. [PMID: 39792548 DOI: 10.1097/tp.0000000000005315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Long-term renal allograft acceptance has been achieved in macaques using a transient mixed hematopoetic chimerism protocol, but similar regimens have proven unsuccessful in heart allograft recipients unless a kidney transplant was performed simultaneously. Here, we test whether a modified protocol based on targeting CD154, CD2, and CD28 is sufficient to prolong heart allograft acceptance or promote the expansion of regulatory T cells. METHODS Eight macaques underwent heterotopic allo-heart transplantation from major histocompatibility complex-mismatched donors. Induction treatment for donor bone marrow transplantation (BMT) was administered after a 4-mo delay period under TNX-1500 monotherapy. The BMT induction regimen comprised 1 (group 1, G1; n = 3) or 2 (group 2, G2; n = 5) doses of total body irradiation, thymic irradiation, and antithymocyte globulin, followed by 2 (G1) or 5 (G2) weekly doses of αCD2 and 5 weekly treatments with αCD28 and TNX-1500. RESULTS During the delay period, 1 G1 graft was rejected and 2 (1 in each group) exhibited moderate rejection on protocol biopsy before BMT. Lymphocyte chimerism was seen in 3 of 5 G2 animals and in 1 of 2 G1 recipients. One G1 graft was rejected despite chimerism, whereas the other recipient succumbed to anti-cytomegalovirus treatment. Two G2 monkeys succumbed due to infection (cytomegalovirus, bacteremia) post-BMT and 3 due to posttransplantation lymphoproliferative disease. CONCLUSIONS Intensive costimulation pathway blockade with αCD2, αCD154, and αCD28 promotes lymphocyte chimerism at the cost of high incidence of posttransplantation lymphoproliferative disease and opportunistic infections, preventing assessment of the effectiveness of the regimen to promote alloimmune tolerance.
Collapse
Affiliation(s)
- Ryan Chaban
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Cardiovascular Surgery, University Hospital of Mainz, Mainz, Germany
| | - Ikechukwu Ileka
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kohei Kinoshita
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gannon McGrath
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Zahra Habibabady
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Madelyn Ma
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Victoria Diaz
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Akihiro Maenaka
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ivy Rosales
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Victor Tkachev
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joren C Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Richard N Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
2
|
Miura S, Habibabady ZA, Pollok F, Ma M, Rosales IA, Kinoshita K, Pratts S, McGrath G, Chaban R, Fogarty S, Meibohm B, Daugherty B, Lederman S, Pierson RN. TNX-1500, a crystallizable fragment-modified anti-CD154 antibody, prolongs nonhuman primate cardiac allograft survival. Am J Transplant 2023; 23:1182-1193. [PMID: 37030662 PMCID: PMC10524282 DOI: 10.1016/j.ajt.2023.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/10/2023]
Abstract
Blockade of the CD40/CD154 T cell costimulation pathway is a promising approach to supplement or replace current clinical immunosuppression in solid organ transplantation. We evaluated the tolerability and activity of a novel humanized anti-CD154 monoclonal antibody, TNX-1500 (TNX), in a nonhuman primate heterotopic cardiac allogeneic (allo) transplant model. TNX-1500 contains a rupluzimab fragment antigen-binding region and an immunoglobin G4 crystallizable fragment region engineered to reduce binding to the crystallizable fragment gamma receptor IIa and associated risks of thrombosis. Recipients were treated for 6 months with standard-dose TNX (sTNX) monotherapy, low-dose TNX monotherapy (loTNX), or loTNX with mycophenolate mofetil (MMF) (loTNX + MMF). Results were compared with historical data using chimeric humanized 5c8 monotherapy dosed as for loTNX but discontinued at 3 months. Median survival time was similar for humanized 5c8 and both loTNX groups, but significantly longer with sTNX (>265 days) than with loTNX (99 days) or loTNX + MMF (88 days) (P < 0.05 for both comparisons against sTNX). Standard-dose TNX prevented antidonor alloantibody elaboration, inhibited chronic rejection, and was associated with a significantly reduced effector T cells/regulatory T cells ratio relative to loTNX with MMF. No thrombotic complications were observed. This study demonstrated that TNX was well tolerated, prolongs allograft survival, and prevents alloantibody production and cardiac allograft vasculopathy in a stringent preclinical nonhuman primate heart allotransplant model.
Collapse
Affiliation(s)
- Shuhei Miura
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Cardiovascular Surgery, Sapporo Medical University, Sapporo, Japan; Department of Cardiovascular Surgery, Teine Keijinkai Hospital, Sapporo, Japan.
| | - Zahra A Habibabady
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Franziska Pollok
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Madelyn Ma
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ivy A Rosales
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kohei Kinoshita
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Shannon Pratts
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gannon McGrath
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryan Chaban
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Bernd Meibohm
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
3
|
Farshbafnadi M, Razi S, Rezaei N. Transplantation. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
4
|
Yeung MY, Grimmig T, Sayegh MH. Costimulation Blockade in Transplantation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:267-312. [PMID: 31758538 DOI: 10.1007/978-981-32-9717-3_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
T cells play a pivotal role in orchestrating immune responses directed against a foreign (allogeneic) graft. For T cells to become fully activated, the T-cell receptor (TCR) must interact with the major histocompatibility complex (MHC) plus peptide complex on antigen-presenting cells (APCs), followed by a second "positive" costimulatory signal. In the absence of this second signal, T cells become anergic or undergo deletion. By blocking positive costimulatory signaling, T-cell allo-responses can be aborted, thus preventing graft rejection and promoting long-term allograft survival and possibly tolerance (Alegre ML, Najafian N, Curr Mol Med 6:843-857, 2006; Li XC, Rothstein DM, Sayegh MH, Immunol Rev 229:271-293, 2009). In addition, costimulatory molecules can provide negative "coinhibitory" signals that inhibit T-cell activation and terminate immune responses; strategies to promote these pathways can also lead to graft tolerance (Boenisch O, Sayegh MH, Najafian N, Curr Opin Organ Transplant 13:373-378, 2008). However, T-cell costimulation involves an incredibly complex array of interactions that may act simultaneously or at different times in the immune response and whose relative importance varies depending on the different T-cell subsets and activation status. In transplantation, the presence of foreign alloantigen incites not only destructive T effector cells but also protective regulatory T cells, the balance of which ultimately determines the fate of the allograft (Lechler RI, Garden OA, Turka LA, Nat Rev Immunol 3:147-158, 2003). Since the processes of alloantigen-specific rejection and regulation both require activation of T cells, costimulatory interactions may have opposing or synergistic roles depending on the cell being targeted. Such complexities present both challenges and opportunities in targeting T-cell costimulatory pathways for therapeutic purposes. In this chapter, we summarize our current knowledge of the various costimulatory pathways in transplantation and review the current state and challenges of harnessing these pathways to promote graft tolerance (summarized in Table 10.1).
Collapse
Affiliation(s)
- Melissa Y Yeung
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Tanja Grimmig
- Department of Surgery, Molecular Oncology and Immunology, University of Wuerzburg, Wuerzburg, Germany
| | - Mohamed H Sayegh
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Medicine and Immunology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
5
|
Multi-gene technical assessment of qPCR and NanoString n-Counter analysis platforms in cynomolgus monkey cardiac allograft recipients. Cell Immunol 2019; 347:104019. [PMID: 31744596 DOI: 10.1016/j.cellimm.2019.104019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/17/2022]
Abstract
Quantitative gene expression profiling of cardiac allografts characterizes the phenotype of the alloimmune response, yields information regarding differential effects that may be associated with various anti-rejection drug regimens, and generates testable hypotheses regarding the pathogenesis of the chronic rejection lesions typically observed in non-human primate heart transplant models. The goal of this study was to assess interplatform performance and variability between the relatively novel NanoString nCounter Analysis System, ΔΔCT (relative) RT-qPCR, and standard curve (absolute) RT-qPCR utilizing cynomolgus monkey cardiac allografts. Methods for RNA isolation and preamplification were also systematically evaluated and effective methods are proposed. In this study, we demonstrate strong correlation between the two RT-qPCR methods, but variable and, at times, weak correlation between RT-qPCR and NanoString. NanoString fold change results demonstrate less sensitivity to small changes in gene expression than RT-qPCR. These findings appear to be driven by technical aspects of each platform that influence the conditions under which each technique is ideal. Collectively, our data contribute to the general effort to optimally utilize gene expression profiling techniques, not only for transplanted tissues, but for many other applications where accurate rank-order of gene expression versus precise quantification of absolute gene transcript number may be relatively valuable.
Collapse
|
6
|
|
7
|
Fitch Z, Schmitz R, Kwun J, Hering B, Madsen J, Knechtle SJ. Transplant research in nonhuman primates to evaluate clinically relevant immune strategies in organ transplantation. Transplant Rev (Orlando) 2019; 33:115-129. [PMID: 31027947 PMCID: PMC6599548 DOI: 10.1016/j.trre.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022]
Abstract
Research in transplant immunology using non-human primate (NHP) species to evaluate immunologic strategies to prevent rejection and prolong allograft survival has yielded results that have translated successfully into human organ transplant patient management. Other therapies have not proceeded to human translation due to failure in NHP testing, arguably sparing humans the futility and risk of such testing. The NHP transplant models are ethically necessary for drug development in this field and provide the closest analogue to human transplant patients available. The refinement of this resource with respect to colony MHC typing, reagent and assay development, and availability to the research community has greatly enhanced knowledge about transplant immunology and drug development.
Collapse
Affiliation(s)
- Zachary Fitch
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA; Center for Transplantation Sciences, Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, White 510c, 55 Fruit Street, Boston, MA, USA
| | - Robin Schmitz
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Jean Kwun
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Bernhard Hering
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - Joren Madsen
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA
| | - Stuart J Knechtle
- Department of Surgery, Duke Transplant Center, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Selective CD28 Inhibition Modulates Alloimmunity and Cardiac Allograft Vasculopathy in Anti-CD154-Treated Monkeys. Transplantation 2018; 102:e90-e100. [PMID: 29319621 DOI: 10.1097/tp.0000000000002044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Selective CD28 inhibition is actively pursued as an alternative to B7 blockade using cytotoxic T lymphocyte antigen 4 Ig based on the hypothesis that the checkpoint immune regulators cytotoxic T lymphocyte antigen 4 and programmed death ligand 1 will induce tolerogenic immune signals. We previously showed that blocking CD28 using a monovalent nonactivating reagent (single-chain anti-CD28 Fv fragment linked to alpha-1 antitrypsin [sc28AT]) synergizes with calcineurin inhibitors in nonhuman primate (NHP) kidney and heart transplantation. Here, we explored the efficacy of combining a 3-week "induction" sc28AT treatment with prolonged CD154 blockade. METHODS Cynomolgus monkey heterotopic cardiac allograft recipients received sc28AT (10 mg/kg, d0-20, n = 3), hu5C8 (10-30 mg/kg, d0-84, n = 4), or combination (n = 6). Graft survival was monitored by telemetry. Protocol biopsies and graft explants were analyzed for International Society of Heart and Lung Transplantation acute rejection grade and cardiac allograft vasculopathy score. Alloantibody, T-cell phenotype and regulatory T cells were analyzed by flow cytometry. Immunochemistry and gene expression (NanoString) characterized intra-graft cellular infiltration. RESULTS Relative to modest prolongation of median graft survival time with sc28AT alone (34 days), hu5C8 (133 days), and sc28AT + hu5C8 (141 days) prolonged survival to a similar extent. CD28 blockade at induction, added to hu5C8, significantly attenuated the severity of acute rejection and cardiac allograft vasculopathy during the first 3 months after transplantation relative to hu5C8 alone. These findings were associated with decreased proportions of circulating CD8 and CD3CD28 T cells, and modulation of inflammatory gene expression within allografts. CONCLUSIONS Induction with sc28AT promotes early cardiac allograft protection in hu5C8-treated NHPs. These results support further investigation of prolonged selective CD28 inhibition with CD40/CD154 blockade in NHP transplants.
Collapse
|
9
|
Pilot Study of Delayed ICOS/ICOS-L Blockade With αCD40 to Modulate Pathogenic Alloimmunity in a Primate Cardiac Allograft Model. Transplant Direct 2018; 4:e344. [PMID: 29464205 PMCID: PMC5811273 DOI: 10.1097/txd.0000000000000761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/21/2017] [Indexed: 11/26/2022] Open
Abstract
Supplemental digital content is available in the text. Background Inducible costimulator (ICOS) is rapidly upregulated with T-cell stimulation and may represent an escape pathway for T-cell costimulation in the setting of CD40/CD154 costimulation blockade. Induction treatment exhibited no efficacy in a primate renal allograft model, but rodent transplant models suggest that the addition of delayed ICOS/ICOS-L blockade may prolong allograft survival and prevent chronic rejection. Here, we ask whether ICOS-Ig treatment, timed to anticipate ICOS upregulation, prolongs NHP cardiac allograft survival or attenuates pathogenic alloimmunity. Methods Cynomolgus monkey heterotopic cardiac allograft recipients were treated with αCD40 (2C10R4, d0-90) either alone or with the addition of delayed ICOS-Ig (d63-110). Results Median allograft survival was similar between ICOS-Ig + αCD40 (120 days, 120-125 days) and αCD40 (124 days, 89-178 days) treated animals, and delayed ICOS-Ig treatment did not prevent allograft rejection in animals with complete CD40 receptor coverage. Although CD4+ TEM cells were decreased in peripheral blood (115 ± 24) and mLNs (49 ± 1.9%) during ICOS-Ig treatment compared with monotherapy (214 ± 27%, P = 0.01; 72 ± 9.9%, P = 0.01, respectively), acute and chronic rejection scores and kinetics of alloAb elaboration were similar between groups. Conclusions Delayed ICOS-Ig treatment with the reagent tested is probably ineffective in modulating pathogenic primate alloimmunity in this model.
Collapse
|
10
|
O'Neill NA, Zhang T, Braileanu G, Sun W, Cheng X, Hershfeld A, Laird CT, Kronfli A, Hock LA, Dahi S, Kubicki N, Sievert E, Hassanein W, Cimeno A, Pierson RN, Azimzadeh AM. Comparative Evaluation of αCD40 (2C10R4) and αCD154 (5C8H1 and IDEC-131) in a Nonhuman Primate Cardiac Allotransplant Model. Transplantation 2017; 101:2038-2047. [PMID: 28557955 PMCID: PMC5568940 DOI: 10.1097/tp.0000000000001836] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Specific blockade of T cell costimulation pathway is a promising immunomodulatory approach being developed to replace our current clinical immunosuppression therapies. The goal of this study is to compare results associated with 3 monoclonal antibodies directed against the CD40/CD154 T cell costimulation pathway. METHODS Cynomolgus monkey heterotopic cardiac allograft recipients were treated with either IDEC-131 (humanized αCD154, n = 9), 5C8H1 (mouse-human chimeric αCD154, n = 5), or 2C10R4 (mouse-rhesus chimeric αCD40, n = 6) monotherapy using a consistent, comparable dosing regimen for 3 months after transplant. RESULTS Relative to the previously reported IDEC-131-treated allografts, median survival time (35 ± 31 days) was significantly prolonged in both 5C8H1-treated (142 ± 26, P < 0.002) and 2C10R4-treated (124 ± 37, P < 0.020) allografts. IDEC-131-treated grafts had higher cardiac allograft vasculopathy severity scores during treatment relative to either 5C8H1 (P = 0.008) or 2C10R4 (P = 0.0002). Both 5C8H1 (5 of 5 animals, P = 0.02) and 2C10R4 (6/6, P = 0.007), but not IDEC-131 (2/9), completely attenuated IgM antidonor alloantibody (alloAb) production during treatment; 5C8H1 (5/5) more consistently attenuated IgG alloAb production compared to 2C10R4 (4/6) and IDEC-131 (0/9). All evaluable explanted grafts experienced antibody-mediated rejection. Only 2C10R4-treated animals exhibited a modest, transient drop in CD20 lymphocytes from baseline at day 14 after transplant (-457 ± 152 cells/μL) compared with 5C8H1-treated animals (16 ± 25, P = 0.037), and the resurgent B cells were primarily of a naive phenotype. CONCLUSIONS In this model, CD154/CD40 axis blockade using IDEC-131 is an inferior immunomodulatory treatment than 5C8H1 or 2C10R4, which have similar efficacy to prolong graft survival and to delay cardiac allograft vasculopathy development and antidonor alloAb production during treatment.
Collapse
Affiliation(s)
- Natalie A. O'Neill
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Tianshu Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Gheorghe Braileanu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Wenji Sun
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Xiangfei Cheng
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Alena Hershfeld
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | | | - Anthony Kronfli
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Lindsay A. Hock
- MassBiologics, University of Massachusetts Medical School, Boston, MA
| | - Sia Dahi
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Natalia Kubicki
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Evelyn Sievert
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Wessam Hassanein
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Arielle Cimeno
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Richard N. Pierson
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Agnes M. Azimzadeh
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
11
|
Ezzelarab M, Raich-Regue D, Lu L, Zahorchak A, Perez-Gutierrez A, Humar A, Wijkstrom M, Minervini M, Wiseman R, Cooper D, Morelli A, Thomson A. Renal Allograft Survival in Nonhuman Primates Infused With Donor Antigen-Pulsed Autologous Regulatory Dendritic Cells. Am J Transplant 2017; 17:1476-1489. [PMID: 28009481 PMCID: PMC5444942 DOI: 10.1111/ajt.14182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 11/30/2016] [Accepted: 12/15/2016] [Indexed: 01/25/2023]
Abstract
Systemic administration of autologous regulatory dendritic cells (DCreg; unpulsed or pulsed with donor antigen [Ag]), prolongs allograft survival and promotes transplant tolerance in rodents. Here, we demonstrate that nonhuman primate (NHP) monocyte-derived DCreg preloaded with cell membrane vesicles from allogeneic peripheral blood mononuclear cells induce T cell hyporesponsiveness to donor alloantigen (alloAg) in vitro. These donor alloAg-pulsed autologous DCreg (1.4-3.6 × 106 /kg) were administered intravenously, 1 day before MHC-mismatched renal transplantation to rhesus monkeys treated with costimulation blockade (cytotoxic T lymphocyte Ag 4 immunoglobulin [CTLA4] Ig) and tapered rapamycin. Prolongation of graft median survival time from 39.5 days (no DCreg infusion; n = 6 historical controls) and 29 days with control unpulsed DCreg (n = 2), to 56 days with donor Ag-pulsed DCreg (n = 5) was associated with evidence of modulated host CD4+ and CD8+ T cell responses to donor Ag and attenuation of systemic IL-17 production. Circulating anti-donor antibody (Ab) was not detected until CTLA4 Ig withdrawal. One monkey treated with donor Ag-pulsed DCreg rejected its graft in association with progressively elevated anti-donor Ab, 525 days posttransplant (160 days after withdrawal of immunosuppression). These findings indicate a modest but not statistically significant beneficial effect of donor Ag-pulsed autologous DCreg infusion on NHP graft survival when administered with a minimal immunosuppressive drug regimen.
Collapse
Affiliation(s)
- M.B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - D. Raich-Regue
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - L. Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A.F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A. Perez-Gutierrez
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A. Humar
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - M. Wijkstrom
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - M. Minervini
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - R.W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| | - D.K.C. Cooper
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A.E. Morelli
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - A.W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA,Corresponding author: Angus W. Thomson, PhD, DSc, University of Pittsburgh School of Medicine, 200 Lothrop Street, W1540 BST, Pittsburgh, PA 15261, Phone: (412) 624-6392,
| |
Collapse
|
12
|
Preemptive CD20+ B cell Depletion Attenuates Cardiac Allograft Vasculopathy in CD154-Treated Monkeys. Transplantation 2016; 101:63-73. [PMID: 27362307 DOI: 10.1097/tp.0000000000001258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Anti-CD154 monotherapy is associated with antidonor allo-antibody (Ab) elaboration, cardiac allograft vasculopathy (CAV), and allograft failure in preclinical primate cell and organ transplant models. In the context of calcineurin inhibitors (CNI), these pathogenic phenomena are delayed by preemptive "induction" B cell depletion. METHODS αCD154 (IDEC-131)-treated cynomolgus monkey heart allograft recipients were given peritransplant rituximab (αCD20) alone or with rabbit antihuman thymocyte globulin. RESULTS Relative to previously reported reference groups, αCD20 significantly prolonged survival, delayed Ab detection, and attenuated CAV within 3 months in αCD154-treated recipients (αCD154 + αCD20 graft median survival time > 90 days, n = 7, vs 28 days for αCD154 alone (IDEC-131), n = 21; P = 0.05). Addition of rabbit antihuman thymocyte globulin to αCD154 (n = 6) or αCD154 + αCD20 (n = 10) improved graft protection from graft rejection and failure during treatment but was associated with significant morbidity in 8 of 16 recipients (6 infections, 2 drug-related complications). In αCD20-treated animals, detection of antidonor Ab and relatively severe CAV were anticipated by appearance of CD20 cells (>1% of lymphocytes) in peripheral blood and were associated with low αCD154 trough levels (below 100 μg/mL). CONCLUSIONS These observations support the hypothesis that efficient preemptive "induction" CD20 B cell depletion consistently modulates pathogenic alloimmunity and attenuates CAV in this translational model, extending our prior findings with calcineurin inhibitors to the context of CD154 blockade.
Collapse
|
13
|
Ezzelarab MB, Zhang H, Guo H, Lu L, Zahorchak AF, Wiseman RW, Nalesnik MA, Bhama JK, Cooper DKC, Thomson AW. Regulatory T Cell Infusion Can Enhance Memory T Cell and Alloantibody Responses in Lymphodepleted Nonhuman Primate Heart Allograft Recipients. Am J Transplant 2016; 16:1999-2015. [PMID: 26700196 PMCID: PMC4919255 DOI: 10.1111/ajt.13685] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/25/2015] [Accepted: 12/13/2015] [Indexed: 01/25/2023]
Abstract
The ability of regulatory T cells (Treg) to prolong allograft survival and promote transplant tolerance in lymphodepleted rodents is well established. Few studies, however, have addressed the therapeutic potential of adoptively transferred, CD4(+) CD25(+) CD127(-) Foxp3(+) (Treg) in clinically relevant large animal models. We infused ex vivo-expanded, functionally stable, nonselected Treg (up to a maximum cumulative dose of 1.87 billion cells) into antithymocyte globulin-lymphodepleted, MHC-mismatched cynomolgus monkey heart graft recipients before homeostatic recovery of effector T cells. The monkeys also received tacrolimus, anti-interleukin-6 receptor monoclonal antibodies and tapered rapamycin maintenance therapy. Treg administration in single or multiple doses during the early postsurgical period (up to 1 month posttransplantation), when host T cells were profoundly depleted, resulted in inferior graft function compared with controls. This was accompanied by increased incidences of effector memory T cells, enhanced interferon-γ production by host CD8(+) T cells, elevated levels of proinflammatory cytokines, and antidonor alloantibodies. The findings caution against infusion of Treg during the early posttransplantation period after lymphodepletion. Despite marked but transient increases in Treg relative to endogenous effector T cells and use of reputed "Treg-friendly" agents, the host environment/immune effector mechanisms instigated under these conditions can perturb rather than favor the potential therapeutic efficacy of adoptively transferred Treg.
Collapse
Affiliation(s)
- M. B. Ezzelarab
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - H. Zhang
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - H. Guo
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - L. Lu
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - A. F. Zahorchak
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine
| | - R. W. Wiseman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI
| | - M. A. Nalesnik
- Department of Pathology, University of Pittsburgh School of Medicine
| | - J. K. Bhama
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine
| | - D. K. C. Cooper
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Immunology, University of Pittsburgh School of Medicine
| | - A. W. Thomson
- Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh School of Medicine,Department of Immunology, University of Pittsburgh School of Medicine,Corresponding author: Angus W. Thomson PhD DSc,
| |
Collapse
|
14
|
Abstract
Generation of an effective immune response against foreign antigens requires two distinct molecular signals: a primary signal provided by the binding of antigen-specific T-cell receptor to peptide-MHC on antigen-presenting cells and a secondary signal delivered via the engagement of costimulatory molecules. Among various costimulatory signaling pathways, the interactions between CD40 and its ligand CD154 have been extensively investigated given their essential roles in the modulation of adaptive immunity. Here, we review current understanding of the role CD40/CD154 costimulation pathway has in alloimmunity, and summarize recent mechanistic and preclinical advances in the evaluation of candidate therapeutic approaches to target this receptor-ligand pair in transplantation.
Collapse
Affiliation(s)
- Tianshu Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Richard N Pierson
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Baltimore VA Medical Center, Baltimore, MD, USA
| | - Agnes M Azimzadeh
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Lo DJ, Anderson DJ, Song M, Leopardi F, Farris AB, Strobert E, Chapin S, Devens B, Karrer E, Kirk AD. A pilot trial targeting the ICOS-ICOS-L pathway in nonhuman primate kidney transplantation. Am J Transplant 2015; 15:984-92. [PMID: 25703015 PMCID: PMC4628789 DOI: 10.1111/ajt.13100] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/16/2014] [Accepted: 10/31/2014] [Indexed: 01/25/2023]
Abstract
Costimulation blockade with the B7-CD28 pathway-specific agent belatacept is now used in clinical kidney transplantation, but its efficacy remains imperfect. Numerous alternate costimulatory pathways have been proposed as targets to synergize with belatacept, one of which being the inducible costimulator (ICOS)-ICOS ligand (ICOS-L) pathway. Combined ICOS-ICOS-L and CD28-B7 blockade has been shown to prevent rejection in mice, but has not been studied in primates. We therefore tested a novel ICOS-Ig human Fc-fusion protein in a nonhuman primate (NHP) kidney transplant model alone and in combination with belatacept. ICOS-Ig did not prolong rejection-free survival as a monotherapy or in combination with belatacept. In ICOS-Ig alone treated animals, most graft-infiltrating CD4(+) and CD8(+) T cells expressed ICOS, and ICOS(+) T cells were present in peripheral blood to a lesser degree. Adding belatacept reduced the proportion of graft-infiltrating ICOS(+) T cells and virtually eliminated their presence in peripheral blood. Graft-infiltrating T cells in belatacept-resistant rejection were primarily CD8(+) CD28(-) , but importantly, very few CD8(+) CD28(-) T cells expressed ICOS. We conclude that ICOS-Ig, alone or combined with belatacept, does not prolong renal allograft survival in NHPs. This may relate to selective loss of ICOS with CD28 loss.
Collapse
Affiliation(s)
- Denise J. Lo
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Douglas J. Anderson
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Mingqing Song
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | | | - A. Brad Farris
- Department of Pathology, Emory University School of Medicine, Atlanta, GA
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Large animal models have long served as the proving grounds for advances in transplantation, bridging the gap between inbred mouse experimentation and human clinical trials. Although a variety of species have been and continue to be used, the emergence of highly targeted biologic- and antibody-based therapies has required models to have a high degree of homology with humans. Thus, the nonhuman primate has become the model of choice in many settings. This article will provide an overview of nonhuman primate models of transplantation. Issues of primate genetics and care will be introduced, and a brief overview of technical aspects for various transplant models will be discussed. Finally, several prominent immunosuppressive and tolerance strategies used in primates will be reviewed.
Collapse
Affiliation(s)
- Douglas J Anderson
- Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia 30322
| | | |
Collapse
|
17
|
Abstract
T cells must be activated before they can elicit damage to allografts, through interaction of their T cell receptor (TCR) with peptide-MHC complex and through accessory molecules. Signaling through accessory molecules or costimulatory molecules is a critical way for the immune system to fine tune T cell activation. An emerging therapeutic strategy is to target selective molecules involved in the process of T cell activation using biologic agents, which do not impact TCR signaling, thus only manipulating the T cells, which recognize alloantigen. Costimulatory receptors and their ligands are attractive targets for this strategy and could be used both to prevent acute graft rejection as well as for maintenance immunosuppression. Therapeutic agents targeting costimulatory molecules, notably belatacept, have made the progression from the bench, through nonhuman primate studies and into the clinic. This overview describes some of the most common costimulatory molecules, their role in T cell activation, and the development of reagents, which target these pathways and their efficacy in transplantation.
Collapse
Affiliation(s)
| | | | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU UK
| |
Collapse
|
18
|
Gene transfer of human CD40Ig does not prevent rejection in a non-human primate kidney allotransplantation model. Transpl Immunol 2012; 27:139-45. [PMID: 23098770 DOI: 10.1016/j.trim.2012.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/12/2012] [Accepted: 10/16/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND Blockade of costimulation signaling required for immune response, such as CD40/CD40L and CD28/B7, is a reasonable strategy to prevent rejection and in defined combinations may allow donor specific tolerance. Indeed, in rodents, costimulation blockade with CD28/B7 antagonists or with CD40Ig was able to induce regulatory T cells and transplant tolerance whereas in primates, anti-CD40 antibodies, anti-CD40L antibodies or CTLA4Ig, used as monotherapy, significantly delayed graft rejection. METHODS Using an adeno-associated virus (AAV) vector mediated gene transfer of a human CD40Ig fusion protein (hCD40Ig) in primates, we evaluated the capacity of this costimulation blockade molecule interfering with CD40/CD40L signaling in prolonging kidney transplants in cynomolgus monkeys. RESULTS This gene transfer strategy allowed for maintaining a plateau of hCD40Ig production within two months and avoided a high-scale production phase of this molecule. Although the hCD40Ig was able to bind efficiently to human and macaque CD40L and high (>200 μg/ml) transgene expression was obtained, no effect on graft survival was observed. In addition, there was no inhibition of humoral response to vaccination. In vitro, hCD40Ig strongly increased mixed lymphocyte reaction, and when compared to the anti-CD40L antibody h5C8, was not as potent to induce complement-dependent cytotoxicity. CONCLUSION These data suggest that CD40/CD40L blockade using a non-depleting CD40Ig fusion protein, a therapeutic strategy that showed efficacy in rodents, is not able to modulate the immune response in primates. These data highlight important biological differences between rodent and primate models to evaluate therapeutic strategies at the preclinical level.
Collapse
|
19
|
Page EK, Page AJ, Kwun J, Gibby AC, Leopardi F, Jenkins JB, Strobert EA, Song M, Hennigar RA, Iwakoshi N, Knechtle SJ. Enhanced de novo alloantibody and antibody-mediated injury in rhesus macaques. Am J Transplant 2012; 12:2395-405. [PMID: 22776408 PMCID: PMC4752112 DOI: 10.1111/j.1600-6143.2012.04074.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic allograft rejection is a major impediment to long-term transplant success. Humoral immune responses to alloantigens are a growing clinical problem in transplantation, with mounting evidence associating alloantibodies with the development of chronic rejection. Nearly a third of transplant recipients develop de novo antibodies, for which no established therapies are effective at preventing or eliminating, highlighting the need for a nonhuman primate model of antibody-mediated rejection. In this report, we demonstrate that depletion using anti-CD3 immunotoxin (IT) combined with maintenance immunosuppression that included tacrolimus with or without alefacept reliably prolonged renal allograft survival in rhesus monkeys. In these animals, a preferential skewing toward CD4 repopulation and proliferation was observed, particularly with the addition of alefacept. Furthermore, alefacept-treated animals demonstrated increased alloantibody production (100%) and morphologic features of antibody-mediated injury. In vitro, alefacept was found to enhance CD4 effector memory T cell proliferation. In conclusion, alefacept administration after depletion and with tacrolimus promotes a CD4+memory T cell and alloantibody response, with morphologic changes reflecting antibody-mediated allograft injury. Early and consistent de novo alloantibody production with associated histological changes makes this nonhuman primate model an attractive candidate for evaluating targeted therapeutics.
Collapse
Affiliation(s)
- EK Page
- Emory Transplant Center, Emory University, Atlanta, GA
| | - AJ Page
- Emory Transplant Center, Emory University, Atlanta, GA
| | - J Kwun
- Emory Transplant Center, Emory University, Atlanta, GA
| | - AC Gibby
- Emory Transplant Center, Emory University, Atlanta, GA
| | - F Leopardi
- Emory Transplant Center, Emory University, Atlanta, GA
| | - JB Jenkins
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - EA Strobert
- Yerkes National Primate Research Center, Emory University, Atlanta, GA
| | - M Song
- Emory Transplant Center, Emory University, Atlanta, GA
| | - RA Hennigar
- Department of Pathology, Emory University Hospital, Atlanta, GA
| | - N Iwakoshi
- Emory Transplant Center, Emory University, Atlanta, GA
| | - SJ Knechtle
- Emory Transplant Center, Emory University, Atlanta, GA
| |
Collapse
|
20
|
Page EK, Dar WA, Knechtle SJ. Tolerogenic therapies in transplantation. Front Immunol 2012; 3:198. [PMID: 22826708 PMCID: PMC3399382 DOI: 10.3389/fimmu.2012.00198] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Accepted: 06/22/2012] [Indexed: 01/08/2023] Open
Abstract
Since the concept of immunologic tolerance was discovered in the 1940s, the pursuit of tolerance induction in human transplantation has led to a rapid development of pharmacologic and biologic agents. Short-term graft survival remains an all-time high, but successful withdrawal of immunosuppression to achieve operational tolerance rarely occurs outside of liver transplantation. Collaborative efforts through the NIH sponsored Immune Tolerance Network and the European Commission sponsored Reprogramming the Immune System for Establishment of Tolerance consortia have afforded researchers opportunity to evaluate the safety and efficacy of tolerogenic strategies, investigate mechanisms of tolerance, and identify molecular and genetic markers that distinguish the tolerance phenotype. In this article, we review traditional and novel approaches to inducing tolerance for organ transplantation, with an emphasis on their translation into clinical trials.
Collapse
|
21
|
Bhatt S, Fung JJ, Lu L, Qian S. Tolerance-inducing strategies in islet transplantation. Int J Endocrinol 2012; 2012:396524. [PMID: 22675353 PMCID: PMC3366204 DOI: 10.1155/2012/396524] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/08/2012] [Indexed: 12/12/2022] Open
Abstract
Allogeneic islet transplantation is a promising approach for restoring normoglycemia in type 1 diabetic patients. Current use of immunosuppressive therapies for management of islet transplant recipients can be counterintuitive to islet function and can lead to complications in the long term. The induction of donor-specific tolerance eliminates the dependency on immunosuppression and allows recipients to retain responses to foreign antigens. The mechanisms by which tolerance is achieved involve the deletion of donor-reactive T cells, induction of T-cell anergy, immune deviation, and generation of regulatory T cells. This review will outline the various methods used for inducing donor-specific tolerance in islet transplantation and will highlight the previously unforeseen potential of tissue stromal cells in promoting islet engraftment.
Collapse
Affiliation(s)
- Sumantha Bhatt
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - John J. Fung
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lina Lu
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shiguang Qian
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of General Surgery, Transplant Center, Digestive Disease Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- *Shiguang Qian:
| |
Collapse
|
22
|
Kwun J, Bulut P, Kim E, Dar W, Oh B, Ruhil R, Iwakoshi N, Knechtle SJ. The role of B cells in solid organ transplantation. Semin Immunol 2011; 24:96-108. [PMID: 22137187 DOI: 10.1016/j.smim.2011.08.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 08/30/2011] [Indexed: 12/30/2022]
Abstract
The role of antibodies in chronic injury to organ transplants has been suggested for many years, but recently emphasized by new data. We have observed that when immunosuppressive potency decreases either by intentional weaning of maintenance agents or due to homeostatic repopulation after immune cell depletion, the threshold of B cell activation may be lowered. In human transplant recipients the result may be donor-specific antibody, C4d+ injury, and chronic rejection. This scenario has precise parallels in a rhesus monkey renal allograft model in which T cells are depleted with CD3 immunotoxin, or in a CD52-T cell transgenic mouse model using alemtuzumab to deplete T cells. Such animal models may be useful for the testing of therapeutic strategies to prevent DSA. We agree with others who suggest that weaning of immunosuppression may place transplant recipients at risk of chronic antibody-mediated rejection, and that strategies to prevent this scenario are needed if we are to improve long-term graft and patient outcomes in transplantation. We believe that animal models will play a crucial role in defining the pathophysiology of antibody-mediated rejection and in developing effective therapies to prevent graft injury. Two such animal models are described herein.
Collapse
Affiliation(s)
- Jean Kwun
- Emory Transplant Center, Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang T, Fresnay S, Welty E, Sangrampurkar N, Rybak E, Zhou H, Cheng XF, Feng Q, Avon C, Laaris A, Whitters M, Nagelin AM, O’Hara RM, Azimzadeh A. Selective CD28 blockade attenuates acute and chronic rejection of murine cardiac allografts in a CTLA-4-dependent manner. Am J Transplant 2011; 11:1599-609. [PMID: 21749640 PMCID: PMC3158027 DOI: 10.1111/j.1600-6143.2011.03624.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selective blockade of CD28 is a promising therapy to inhibit pathogenic alloimmunity. However, evaluation of this approach in transplantation has been very limited. Using a novel nonactivating single-chain Fv-based reagent (α28scFv), we have investigated the role of CD28 and cytotoxic T lymphocyte antigen 4 (CTLA-4) in a murine cardiac transplant model. Blockade of CD28 for 2 weeks after engraftment promoted allograft survival, and significantly attenuated chronic rejection when combined with transient CD154-blockade or calcineurin inhibition. Graft acceptance was associated with decreased alloantibody production, increased proportion of early graft infiltration by regulatory T cells and increased expression of regulatory dendritic cell genes. Blockade of CTLA-4 during α28scFv-based treatments led to prompt rejection in all animals and inhibited expression of forkhead box P3 (Foxp3), programmed death (PD)-1 and 2,3-indoleamine dioxygenase (IDO) in the graft. These results show that CD28 signaling during the first weeks after transplant is a pivotal mediator of pathogenic alloimmunity, and that selective CD28 blockade prolongs graft acceptance by at least two immunomodulatory mechanisms. Selective CD28 inhibition while sparing CTLA-4 is thus a promising approach to inhibit pathogenic alloimmunity.
Collapse
Affiliation(s)
- T. Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD,Department of Cardiac Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China,Corresponding authors: Tianshu Zhang, Agnes M. Azimzadeh. University of Maryland, Department of Surgery, 10 S. Pine Street, MSTF Building, Room 434C, Baltimore, MD, 21201. Phone: 1-410-706-0594; Fax: 1-410-706-0311; or
| | - S. Fresnay
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - E. Welty
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - N. Sangrampurkar
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - E. Rybak
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - H. Zhou
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - X.-F. Cheng
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Q. Feng
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - C. Avon
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - A. Laaris
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - M. Whitters
- Inflammation and Immunology, Pfizer Research, Cambridge, MA
| | - AM. Nagelin
- Inflammation Discovery Research, Wyeth Research, Cambridge, MA
| | - RM. O’Hara
- Inflammation Discovery Research, Wyeth Research, Cambridge, MA
| | - A.M. Azimzadeh
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD,Corresponding authors: Tianshu Zhang, Agnes M. Azimzadeh. University of Maryland, Department of Surgery, 10 S. Pine Street, MSTF Building, Room 434C, Baltimore, MD, 21201. Phone: 1-410-706-0594; Fax: 1-410-706-0311; or
| |
Collapse
|
24
|
Wood KJ, Bushell A, Jones ND. Immunologic unresponsiveness to alloantigen in vivo: a role for regulatory T cells. Immunol Rev 2011; 241:119-32. [PMID: 21488894 DOI: 10.1111/j.1600-065x.2011.01013.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exposure to alloantigen in vivo or in vitro induces alloantigen reactive regulatory T cells that can control transplant rejection. The mechanisms that underpin the activity of alloantigen reactive regulatory T cells in vivo are common with those of regulatory T cells that prevent autoimmunity. The identification and characterization of regulatory T cells that control rejection and contribute to the induction of immunologic unresponsiveness to alloantigens in vivo has opened up exciting opportunities for new therapies in transplantation. Findings from laboratory studies are informing the design of clinical protocols using regulatory T cells as a cellular therapy.
Collapse
Affiliation(s)
- Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | | | |
Collapse
|
25
|
Poirier N, Azimzadeh AM, Zhang T, Dilek N, Mary C, Nguyen B, Tillou X, Wu G, Reneaudin K, Hervouet J, Martinet B, Coulon F, Allain-Launay E, Karam G, Soulillou JP, Pierson RN, Blancho G, Vanhove B. Inducing CTLA-4-dependent immune regulation by selective CD28 blockade promotes regulatory T cells in organ transplantation. Sci Transl Med 2010; 2:17ra10. [PMID: 20371478 DOI: 10.1126/scitranslmed.3000116] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transplantation is the treatment of choice for patients with end-stage organ failure. Its success is limited by side effects of immunosuppressive drugs, such as inhibitors of the calcineurin pathway that prevent rejection by reducing synthesis of interleukin-2 by T cells. Moreover, none of the existing drugs efficiently prevent the eventual rejection of the organ. Blocking the CD28-mediated T cell costimulation pathway is a nontoxic alternative immunosuppression strategy that is now achieved by blockade of CD80/86, the receptor for CD28 on antigen-presenting cells. However, interaction of CD80/86 with cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) is required for immune regulation. Therefore, CD28 blockade, instead of CD80/86 blockade, might preserve regulatory signals mediated by CTLA-4 and preserve immune regulation. By using monovalent antibodies, we identified true CD28 antagonists that induced CTLA-4-dependent decreased T cell function compatible with regulatory T (Treg) cell suppression. In transplantation experiments in primates, blocking CD28 augmented intragraft and peripheral blood Treg cells, induced molecular signatures of immune regulation, and prevented graft rejection and vasculopathy in synergy with calcineurin inhibition. These findings suggest that targeting costimulation blockade at CD28 preserves CTLA-4-dependent immune regulation and promotes allograft survival.
Collapse
Affiliation(s)
- Nicolas Poirier
- INSERM U643, ITERT-Uro-Nephro, Centaure Network, CHU Nantes, 30 Bl J. Monnet, 44093 Nantes, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kelishadi SS, Azimzadeh AM, Zhang T, Stoddard T, Welty E, Avon C, Higuchi M, Laaris A, Cheng XF, McMahon C, Pierson RN. Preemptive CD20+ B cell depletion attenuates cardiac allograft vasculopathy in cyclosporine-treated monkeys. J Clin Invest 2010; 120:1275-84. [PMID: 20335656 DOI: 10.1172/jci41861] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 01/20/2010] [Indexed: 01/10/2023] Open
Abstract
Chronic rejection currently limits the long-term efficacy of clinical transplantation. Although B cells have recently been shown to play a pivotal role in the induction of alloimmunity and are being targeted in other transplant contexts, the efficacy of preemptive B cell depletion to modulate alloimmunity or attenuate cardiac allograft vasculopathy (CAV) (classic chronic rejection lesions found in transplanted hearts) in a translational model has not previously been described. We report here that the CD20-specific antibody (alphaCD20) rituximab depleted CD20+ B cells in peripheral blood, secondary lymphoid organs, and the graft in cynomolgus monkey recipients of heterotopic cardiac allografts. Furthermore, CD20+ B cell depletion therapy combined with the calcineurin inhibitor cyclosporine A (CsA) prolonged median primary graft survival relative to treatment with alphaCD20 or CsA alone. In animals treated with both alphaCD20 and CsA that achieved efficient B cell depletion, alloantibody production was substantially inhibited and the CAV severity score was markedly reduced. We conclude therefore that efficient preemptive depletion of CD20+ B cells is effective in a preclinical model to modulate pathogenic alloimmunity and to attenuate chronic rejection when used in conjunction with a conventional clinical immunosuppressant. This study suggests that use of this treatment combination may improve the efficacy of transplantation in the clinic.
Collapse
Affiliation(s)
- Shahrooz S Kelishadi
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Law CL, Grewal IS. Therapeutic interventions targeting CD40L (CD154) and CD40: the opportunities and challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 647:8-36. [PMID: 19760064 DOI: 10.1007/978-0-387-89520-8_2] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
CD40 was originally identified as a receptor on B-cells that delivers contact-dependent T helper signals to B-cells through interaction with CD40 ligand (CD40L, CD154). The pivotal role played by CD40-CD40L interaction is illustrated by the defects in B-lineage cell development and the altered structures of secondary lymphoid tissues in patients and engineered mice deficient in CD40 or CD40L. CD40 signaling also provides critical functions in stimulating antigen presentation, priming of helper and cytotoxic T-cells and a variety of inflammatory reactions. As such, dysregulations in the CD40-CD40L costimulation pathway are prominently featured in human diseases ranging from inflammatory conditions to systemic autoimmunity and tissue-specific autoimmune diseases. Moreover, studies in CD40-expressing cancers have provided convincing evidence that the CD40-CD40L pathway regulates survival of neoplastic cells as well as presentation of tumor-associated antigens to the immune system. Extensive research has been devoted to explore CD40 and CD40L as drug targets. A number of anti-CD40L and anti-CD40 antibodies with diverse biological effects are in clinical development for treatment of cancer and autoimmune diseases. This chapter reviews the role of CD40-CD40L costimulation in disease pathogenesis, the characteristics of therapeutic agents targeting this pathway and status of their clinical development.
Collapse
Affiliation(s)
- Che-Leung Law
- Department of Preclinical Therapeutics, Seattle Genetics Inc., 21823 30th Drive SE, Bothell, Washington, 98021, USA.
| | | |
Collapse
|
28
|
Schenk AD, Gorbacheva V, Rabant M, Fairchild RL, Valujskikh A. Effector functions of donor-reactive CD8 memory T cells are dependent on ICOS induced during division in cardiac grafts. Am J Transplant 2009; 9:64-73. [PMID: 18976292 PMCID: PMC3289995 DOI: 10.1111/j.1600-6143.2008.02460.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alloreactive T-cell memory is present in every transplant recipient and endangers graft survival. Even in the absence of known sensitizing exposures, heterologous immunity and homeostatic T-cell proliferation generate 'endogenous' memory T cells with donor-reactivity. We have recently shown that endogenous donor-reactive CD8 memory T cells infiltrate murine cardiac allografts within hours of reperfusion and amplify early posttransplant inflammation by producing IFN-gamma. Here, we have tested the role of ICOS co-stimulation in eliciting effector function from these memory T cells. ICOS is not expressed on the cell surface of circulating CD8 memory T cells but is rapidly upregulated during cell division within the allograft parenchyma. Donor-reactive CD8 memory T-cell infiltration, proliferation and ICOS expression are regulated by donor class I MHC molecule expression. ICOS blockade significantly reduced IFN-gamma production and other proinflammatory functions of the activated CD8 memory T cells. Our data demonstrate that this induction of ICOS expression within peripheral tissues is an important feature of CD8 memory T-cell activation and identify ICOS as a specific target for neutralizing proinflammatory functions of endogenous CD8 memory T cells.
Collapse
Affiliation(s)
- A. D. Schenk
- Department of Pathology, Case Western Reserve University, Cleveland, OH,Glickman Urological Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH,Corresponding author: Austin Schenk,
| | - V. Gorbacheva
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH
| | - M. Rabant
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH,Service de Transplantation Renale, H^opital Necker, Paris Cedex, France
| | - R. L. Fairchild
- Department of Pathology, Case Western Reserve University, Cleveland, OH,Glickman Urological Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH
| | - A. Valujskikh
- Glickman Urological Institute and Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH
| |
Collapse
|
29
|
Dhanireddy KK, Bruno DA, Weaver TA, Xu H, Zhang X, Leopardi FV, Hale DA, Kirk AD. Portal venous donor-specific transfusion in conjunction with sirolimus prolongs renal allograft survival in nonhuman primates. Am J Transplant 2009; 9:124-31. [PMID: 18976300 PMCID: PMC2756429 DOI: 10.1111/j.1600-6143.2008.02448.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Pretransplant exposure to donor antigen is known to modulate recipient alloimmunity, and frequently results in sensitization. However, donor-specific transfusion (DST) can have a protolerant effect that is dependent on route, dose and coadministered immunosuppression. Rodent studies have shown in some strain combinations that portal venous (PV) DST alone can induce tolerance, and uncontrolled clinical use of PVDST has been reported. In order to determine if pretransplant PVDST has a clinically relevant salutary effect, we studied it and the influence of concomitant immunosuppression in rhesus monkeys undergoing renal allotransplantation. Animals received PVDST with unfractionated bone marrow and/or tacrolimus or sirolimus 1 week prior to transplantation. Graft survival was assessed without any posttransplant immunosuppression. PVDST alone or in combination with tacrolimus was ineffective. However, PVDST in combination with sirolimus significantly prolonged renal allograft survival to a mean of 24 days. Preoperative sirolimus alone had no effect, and peripheral DST with sirolimus prolonged graft survival in 2/4 animals, but resulted in accelerated rejection in 2/4 animals. These data demonstrate that PVDST in combination with sirolimus delays rejection in a modest but measurable way in a rigorous model. It may thus be a preferable method for donor antigen administration.
Collapse
Affiliation(s)
- K. K. Dhanireddy
- Transplantation Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD,Department of Surgery, Georgetown University Hospital, Washington, DC
| | - D. A. Bruno
- Transplantation Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD,Department of Surgery, Georgetown University Hospital, Washington, DC
| | - T. A. Weaver
- Transplantation Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD,Emory Transplant Center, Emory University, Atlanta, GA
| | - H. Xu
- Transplantation Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - X. Zhang
- Transplantation Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - F. V. Leopardi
- Transplantation Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD,Emory Transplant Center, Emory University, Atlanta, GA
| | - D. A. Hale
- Transplantation Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - A. D. Kirk
- Transplantation Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD,Emory Transplant Center, Emory University, Atlanta, GA,Corresponding author: Allan D. Kirk,
| |
Collapse
|
30
|
Promises and Obstacles for the Blockade of CD40–CD40L Interactions in Allotransplantation. Transplantation 2008; 86:10-5. [DOI: 10.1097/tp.0b013e31817c4b97] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Stadlbauer THW, Wagner AH, Hölschermann H, Fiedel S, Fingerhuth H, Tillmanns H, Bohle RM, Hecker M. AP-1 and STAT-1 decoy oligodeoxynucleotides attenuate transplant vasculopathy in rat cardiac allografts. Cardiovasc Res 2008; 79:698-705. [PMID: 18511434 DOI: 10.1093/cvr/cvn135] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS Cardiac allograft vasculopathy (CAV) continues to be an unsolved clinical problem requiring the development of new therapeutic strategies. We have previously demonstrated that ex vivo donor allograft treatment with decoy oligodeoxynucleotides (ODN) targeting the transcription factors, activator protein-1 (AP-1) or signal transducer and activator of transcription-1 (STAT-1), delays acute rejection and prolongs cardiac allograft survival. Here, we investigated whether this treatment regime also prevents the occurrence of CAV in a fully allogeneic rat heart transplantation model. METHODS AND RESULTS Wistar-Furth rat cardiac allografts were perfused ex vivo with AP-1 decoy ODN, STAT-1 decoy ODN, or buffer solution and transplanted into the abdomen of Lewis rats immunosuppressed with cyclosporine. Treatment with both decoy ODNs but not vehicle significantly attenuated the incidence and severity of CAV. Laser-assisted microdissection/real-time polymerase chain reaction as well as immunohistochemistry analyses revealed a significant increase in CD40 abundance in the coronary endothelial cells and medial smooth muscle cells on day 1 post transplantation which was virtually abolished upon AP-1 or STAT-1 decoy ODN treatment. While the AP-1 decoy ODN primarily attenuated basal CD40 expression, the STAT-1 decoy ODN suppressed tumour necrosis factor-alpha-/interferon-gamma-stimulated expression of CD40 in rat native endothelial cells. CONCLUSION Treating donor hearts with decoy ODNs neutralizing AP-1 or STAT-1 at the time of transplantation prevents upregulation of CD40 expression in the graft coronary arteries and effectively inhibits CAV.
Collapse
|
32
|
Abstract
The purpose of this study was to develop a nonhuman primate model for heterotopic composite tissue facial transplantation in which to study the natural history of facial transplantation and evaluate immunosuppressive regimens.A composite oromandibular facial segment transplant based on the common carotid artery was evaluated. Flaps from 7 cynomolgus monkeys were transplanted to the groins of 7 recipients at the superficial femoral artery and vein. The immunosuppressive regimen consisted of thymoglobulin, rapamycin, and tacrolimus. Allograft survival ranged from 6 to 129 days. Histology performed in the long-term survivor at the time of necropsy revealed extensive inflammation and necrosis of the allograft skin; however, muscle and bone elements were viable, with minimal inflammation. This heterotopic facial transplantation model avoids the potential morbidity of mandibular resection and orthotopic facial transplantation. Our work also concurs with the work of other groups who found that the skin component is the most antigenic.
Collapse
|
33
|
Schröder C, Pierson RN, Nguyen BNH, Kawka DW, Peterson LB, Wu G, Zhang T, Springer MS, Siciliano SJ, Iliff S, Ayala JM, Lu M, Mudgett JS, Lyons K, Mills SG, Miller GG, Singer II, Azimzadeh AM, DeMartino JA. CCR5 Blockade Modulates Inflammation and Alloimmunity in Primates. THE JOURNAL OF IMMUNOLOGY 2007; 179:2289-99. [PMID: 17675490 DOI: 10.4049/jimmunol.179.4.2289] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pharmacologic antagonism of CCR5, a chemokine receptor expressed on macrophages and activated T cells, is an effective antiviral therapy in patients with macrophage-tropic HIV infection, but its efficacy in modulating inflammation and immunity is only just beginning to be investigated. In this regard, the recruitment of CCR5-bearing cells into clinical allografts is a hallmark of acute rejection and may anticipate chronic rejection, whereas conventionally immunosuppressed renal transplant patients homozygous for a nonfunctional Delta32 CCR5 receptor rarely exhibit late graft loss. Therefore, we explored the effects of a potent, highly selective CCR5 antagonist, Merck's compound 167 (CMPD 167), in an established cynomolgus monkey cardiac allograft model. Although perioperative stress responses (fever, diminished activity) and the recruitment of CCR5-bearing leukocytes into the graft were markedly attenuated, anti-CCR5 monotherapy only marginally prolonged allograft survival. In contrast, relative to cyclosporine A monotherapy, CMPD 167 with cyclosporine A delayed alloantibody production, suppressed cardiac allograft vasculopathy, and tended to further prolong graft survival. CCR5 therefore represents an attractive therapeutic target for attenuating postsurgical stress responses and favorably modulating pathogenic alloimmunity in primates, including man.
Collapse
Affiliation(s)
- Carsten Schröder
- Division of Cardiac Surgery, Department of Surgery, University of Maryland and Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
T cell costimulatory pathways in allograft rejection and tolerance: what's new? Curr Opin Organ Transplant 2007; 12:17-22. [PMID: 27792084 DOI: 10.1097/mot.0b013e328012b651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW The induction or maintenance of allograft tolerance remains an ongoing challenge. One approach to the development of tolerogenic strategies involves targeting T-cell costimulatory signals. The two most widely studied costimulatory pathways are the CD28/B7 and CD40/CD154 pathways, and blocking of both, either alone or in combination, has been shown to prolong allograft survival in rodents and primates. Recent work revealed that CD28-independent 'novel costimulatory' pathways exist, which can mediate allograft rejection. This review highlights new studies on the role of these pathways in allograft rejection and tolerance. RECENT FINDINGS NK cells, CD8 T cells, and memory-effector responses appear to be less dependent on CD28 and/or CD154 costimulation, and utilize these novel costimulatory pathways for activation. The novel signals differ in their ability to enhance or inhibit T-cell activation, in their temporal and spatial expression patterns, and in their relative importance within the hierarchy of costimulatory signals. Emerging data suggest that costimulatory molecules are expressed on parenchymal cells. SUMMARY A strategy to induce tolerance might involve targeting novel costimulatory signals particularly at the time point of maximal expression, and delivering negative signals, while inhibiting the positive signals that drive T-cell alloresponses.
Collapse
|
35
|
Abstract
The father of cardiac transplantation, Norman Shumway, famously predicted that tolerance was the future of the field, and always would be. Although his prediction remains true to date, significant progress has been made toward this goal, the "Holy Grail" for transplant clinicians. Current efforts are fueled by disappointing long-term outcomes associated with chronic immunosuppression, and the promise that partial or complete tolerance will impact long-term results favorably. This article provides a clinical definition of tolerance primarily based on lessons learned from animal heart allograft models. It reviews several promising strategies for inducing tolerance and detecting its presence through the use of biomarkers in peripheral blood or the graft, and outlines a possible path toward making this vision a clinical reality.
Collapse
Affiliation(s)
- Richard N Pierson
- Baltimore VA Medical Center, University of Maryland Medical School, Baltimore, MD 21201, USA.
| |
Collapse
|