1
|
Jing S, Yi X. Exome sequencing reveals PPEF2 variant associated with high myopia. Gene 2024; 897:148091. [PMID: 38110044 DOI: 10.1016/j.gene.2023.148091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/20/2023]
Abstract
High myopia (HM) is a serious blinding eye disease, and genetic factors play an important role in the development of HM. In this study, whole exome sequencing (WES) was used to identify a novel variant c.A875G of the PPEF2 for a large Uyghur family with nonsyndromic HM. The variant was verified to cosegregate with HM in the family using Sanger sequencing. Another novel variant c.1959C > G in PPEF2 was identified in one of 100 sporadic cases of HM by multiplex PCR targeted amplicon sequencing (MTA-seq). The Ppef2 was verified that mainly expressed in the retinal pigment epithelium (RPE), choroid and retina tissues. Immunofluorescence (IF) and immunohistochemistry (IHC) assays showed that the PPEF2 was strongly expressed in the inner segment layer formed by photoreceptor protrusions, as well as in the outer nuclear layer. Compared with the wild-type, the c.A875G resulted in reduced protein levels but had no effect on protein subcellular localization in cells. In addition, the c.A875G variant resulted in a decreased migratory and proliferative capacity but promoted apoptosis in cells. In summary, PPEF2 was identified as a novel HM-causing gene, and this variant in PPEF2 might cause HM by regulating the migration, proliferation and apoptosis of myopia-related cells.
Collapse
Affiliation(s)
- Sili Jing
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xian, 710004, China; Ophthalmology, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China
| | - Xianglong Yi
- Ophthalmology, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China.
| |
Collapse
|
2
|
Milanese JS, Marcotte R, Costain WJ, Kablar B, Drouin S. Roles of Skeletal Muscle in Development: A Bioinformatics and Systems Biology Overview. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:21-55. [PMID: 37955770 DOI: 10.1007/978-3-031-38215-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The ability to assess various cellular events consequent to perturbations, such as genetic mutations, disease states and therapies, has been recently revolutionized by technological advances in multiple "omics" fields. The resulting deluge of information has enabled and necessitated the development of tools required to both process and interpret the data. While of tremendous value to basic researchers, the amount and complexity of the data has made it extremely difficult to manually draw inference and identify factors key to the study objectives. The challenges of data reduction and interpretation are being met by the development of increasingly complex tools that integrate disparate knowledge bases and synthesize coherent models based on current biological understanding. This chapter presents an example of how genomics data can be integrated with biological network analyses to gain further insight into the developmental consequences of genetic perturbations. State of the art methods for conducting similar studies are discussed along with modern methods used to analyze and interpret the data.
Collapse
Affiliation(s)
| | - Richard Marcotte
- Human Health Therapeutics, National Research Council of Canada , Montreal, QC, Canada
| | - Willard J Costain
- Human Health Therapeutics, National Research Council of Canada, Ottawa, ON, Canada
| | - Boris Kablar
- Department of Medical Neuroscience, Anatomy and Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Simon Drouin
- Human Health Therapeutics, National Research Council of Canada , Montreal, QC, Canada.
| |
Collapse
|
3
|
Oh SK, Park HJ, Yu GG, Jeong SH, Lee SW, Kim H. Secondary hypoxic ischemia alters neurobehavioral outcomes, neuroinflammation, and oxidative stress in mice exposed to controlled cortical impact. Clin Exp Emerg Med 2021; 8:216-228. [PMID: 34649410 PMCID: PMC8517469 DOI: 10.15441/ceem.20.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/04/2021] [Indexed: 12/05/2022] Open
Abstract
Objective Hypoxic ischemia (HI) is a secondary insult that can cause fatal neurologic outcomes after traumatic brain injury (TBI), ranging from mild cognitive deficits to persistent vegetative states. We here aimed to unravel the underlying pathological mechanisms of HI injury in a TBI mouse model. Methods Neurobehavior, neuroinflammation, and oxidative stress were assessed in a mouse model of controlled cortical impact (CCI) injury followed by HI. Mice underwent CCI alone, CCI followed by HI, HI alone, or sham operation. HI was induced by one-vessel carotid ligation with 1 hour of 8% oxygen in nitrogen. Learning and memory were assessed using the novel object recognition test, contextual and cued fear conditioning, and Barnes maze test. Brain cytokine production and oxidative stress-related components were measured. Results Compared to TBI-only animals, TBI followed by HI mice exhibited significantly poorer survival and health scores, spatial learning and memory in the Barnes maze test, discrimination memory in the novel object recognition test, and fear memory following contextual and cued fear conditioning. Malondialdehyde levels were significantly lower, whereas glutathione peroxidase activity was significantly higher in TBI followed by HI mice compared to TBI-only and sham counterparts, respectively. Interleukin-6 levels were significantly higher in TBI followed by HI mice compared to both TBI-only and sham animals. Conclusion Post-traumatic HI aggravated deficits in spatial, fear, and discrimination memory in an experimental TBI mouse model. Our results suggest that increased neuroinflammation and oxidative stress contribute to HI-induced neurobehavioral impairments after TBI.
Collapse
Affiliation(s)
- Se-Kwang Oh
- Department of Emergency Medicine, Chungnam National University College of Medicine, Daejeon, Korea
| | - Hyun-Jeong Park
- Department of Emergency Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Gyeong-Gyu Yu
- Department of Emergency Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Seong-Hae Jeong
- Department of Neurology, Chungnam National University College of Medicine, Daejeon, Korea
| | - Suk-Woo Lee
- Department of Emergency Medicine, Chungbuk National University College of Medicine, Cheongju, Korea
| | - Hoon Kim
- Department of Emergency Medicine, Chungbuk National University College of Medicine, Cheongju, Korea.,Department of Emergency Medicine, Chungbuk National University Hospital, Cheongju, Korea
| |
Collapse
|
4
|
Zwick M, Ulas T, Cho YL, Ried C, Grosse L, Simon C, Bernhard C, Busch DH, Schultze JL, Buchholz VR, Stutte S, Brocker T. Expression of the Phosphatase Ppef2 Controls Survival and Function of CD8 + Dendritic Cells. Front Immunol 2019; 10:222. [PMID: 30809231 PMCID: PMC6379467 DOI: 10.3389/fimmu.2019.00222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 01/25/2019] [Indexed: 11/25/2022] Open
Abstract
Apoptotic cell death of Dendritic cells (DCs) is critical for immune homeostasis. Although intrinsic mechanisms controlling DC death have not been fully characterized up to now, experimentally enforced inhibition of DC-death causes various autoimmune diseases in model systems. We have generated mice deficient for Protein Phosphatase with EF-Hands 2 (Ppef2), which is selectively expressed in CD8+ DCs, but not in other related DC subtypes such as tissue CD103+ DCs. Ppef2 is down-regulated rapidly upon maturation of DCs by toll-like receptor stimuli, but not upon triggering of CD40. Ppef2-deficient CD8+ DCs accumulate the pro-apoptotic Bcl-2-like protein 11 (Bim) and show increased apoptosis and reduced competitve repopulation capacities. Furthermore, Ppef2−/− CD8+ DCs have strongly diminished antigen presentation capacities in vivo, as CD8+ T cells primed by Ppef2−/− CD8+ DCs undergo reduced expansion. In conclusion, our data suggests that Ppef2 is crucial to support survival of immature CD8+ DCs, while Ppef2 down-regulation during DC-maturation limits T cell responses.
Collapse
Affiliation(s)
- Markus Zwick
- Faculty of Medicine, Biomedical Center (BMC), Institute for Immunology, LMU Munich, Planegg-Martinsried, Germany
| | - Thomas Ulas
- Life and Medical Sciences Institute, Bonn, Germany
| | - Yi-Li Cho
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Christine Ried
- Faculty of Medicine, Biomedical Center (BMC), Institute for Immunology, LMU Munich, Planegg-Martinsried, Germany
| | - Leonie Grosse
- Faculty of Medicine, Biomedical Center (BMC), Institute for Immunology, LMU Munich, Planegg-Martinsried, Germany
| | - Charlotte Simon
- Faculty of Medicine, Biomedical Center (BMC), Institute for Immunology, LMU Munich, Planegg-Martinsried, Germany
| | - Caroline Bernhard
- Faculty of Medicine, Biomedical Center (BMC), Institute for Immunology, LMU Munich, Planegg-Martinsried, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Joachim L Schultze
- Life and Medical Sciences Institute, Bonn, Germany.,PRECISE-Platform for Single Cell Genomics and Epigenomics at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn, Bonn, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Susanne Stutte
- Faculty of Medicine, Biomedical Center (BMC), Institute for Immunology, LMU Munich, Planegg-Martinsried, Germany
| | - Thomas Brocker
- Faculty of Medicine, Biomedical Center (BMC), Institute for Immunology, LMU Munich, Planegg-Martinsried, Germany
| |
Collapse
|
5
|
Xing C, Lo EH. Help-me signaling: Non-cell autonomous mechanisms of neuroprotection and neurorecovery. Prog Neurobiol 2016; 152:181-199. [PMID: 27079786 DOI: 10.1016/j.pneurobio.2016.04.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 04/06/2016] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Self-preservation is required for life. At the cellular level, this fundamental principle is expressed in the form of molecular mechanisms for preconditioning and tolerance. When the cell is threatened, internal cascades of survival signaling become triggered to protect against cell death and defend against future insults. Recently, however, emerging findings suggest that this principle of self-preservation may involve not only intracellular signals; the release of extracellular signals may provide a way to recruit adjacent cells into an amplified protective program. In the central nervous system where multiple cell types co-exist, this mechanism would allow threatened neurons to "ask for help" from glial and vascular compartments. In this review, we describe this new concept of help-me signaling, wherein damaged or diseased neurons release signals that may shift glial and vascular cells into potentially beneficial phenotypes, and help remodel the neurovascular unit. Understanding and dissecting these non-cell autonomous mechanisms of self-preservation in the CNS may lead to novel opportunities for neuroprotection and neurorecovery.
Collapse
Affiliation(s)
- Changhong Xing
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Eng H Lo
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
6
|
Schmidt-Kastner R. Genomic approach to selective vulnerability of the hippocampus in brain ischemia–hypoxia. Neuroscience 2015; 309:259-79. [DOI: 10.1016/j.neuroscience.2015.08.034] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023]
|
7
|
Cox-Limpens KEM, Gavilanes AWD, Zimmermann LJI, Vles JSH. Endogenous brain protection: what the cerebral transcriptome teaches us. Brain Res 2014; 1564:85-100. [PMID: 24713346 DOI: 10.1016/j.brainres.2014.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/23/2014] [Accepted: 04/01/2014] [Indexed: 02/04/2023]
Abstract
Despite efforts to reduce mortality caused by stroke and perinatal asphyxia, these are still the 2nd largest cause of death worldwide in the age groups they affect. Furthermore, survivors of cerebral hypoxia-ischemia often suffer neurological morbidities. A better understanding of pathophysiological mechanisms in focal and global brain ischemia will contribute to the development of tailored therapeutic strategies. Similarly, insight into molecular pathways involved in preconditioning-induced brain protection will provide possibilities for future treatment. Microarray technology is a great tool for investigating large scale gene expression, and has been used in many experimental studies of cerebral ischemia and preconditioning to unravel molecular (patho-) physiology. However, the amount of data across microarray studies can be daunting and hard to interpret which is why we aim to provide a clear overview of available data in experimental rodent models. Findings for both injurious ischemia and preconditioning are reviewed under separate subtopics such as cellular stress, inflammation, cytoskeleton and cell signaling. Finally, we investigated the transcriptome signature of brain protection across preconditioning studies in search of transcripts that were expressed similarly across studies. Strikingly, when comparing genes discovered by single-gene analysis we observed only 15 genes present in two studies or more. We subjected these 15 transcripts to DAVID Annotation Clustering analysis to derive their shared biological meaning. Interestingly, the MAPK signaling pathway and more specifically the ERK1/2 pathway geared toward cell survival/proliferation was significantly enriched. To conclude, we advocate incorporating pathway analysis into all microarray data analysis in order to improve the detection of similarities between independently derived datasets.
Collapse
Affiliation(s)
- K E M Cox-Limpens
- School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD Maastricht, The Netherlands; Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - A W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - L J I Zimmermann
- Department of Pediatrics, Maastricht University Medical Center (MUMC), postbus 5800, 6202 AZ Maastricht, The Netherlands.
| | - J S H Vles
- Department of Pediatric Neurology, Maastricht University Medical Center (MUMC), P.Debyelaan 25, 6229 HX Maastricht, The Netherlands.
| |
Collapse
|
8
|
Van Elzen R, Moens L, Dewilde S. Expression profiling of the cerebral ischemic and hypoxic response. Expert Rev Proteomics 2014; 5:263-82. [DOI: 10.1586/14789450.5.2.263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Role of epigenetic regulatory mechanisms in neonatal hypoxic-ischemic brain injury. Early Hum Dev 2013; 89:165-73. [PMID: 23046993 DOI: 10.1016/j.earlhumdev.2012.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 09/18/2012] [Indexed: 11/20/2022]
Abstract
BACKGROUND DNA methylation and histone modifications are the most identified modifications that selectively activate or inactivate genes that control cell growth, proliferation, and apoptosis. AIM We hypothesized that alterations in gene expression due to hypoxic-ischemic brain damage was regulated by epigenetic mechanisms including DNA methylation and histone methylation. STUDY DESIGN To test this hypothesis, we established a rat model of HIE. Three groups were defined as hypoxic-ischemic, sham-operated, and control group. OUTCOME MEASUREMENTS The validity of the HIE model used in this study was confirmed by histological and immunohistochemical tests. Gene expressions related with apoptosis and angiogenesis were studied at 0.5, 3, 6 and 24h after HI or sham operation. DNA and histone methylation status was studied in the genes showing significant change in expression. RESULTS AND CONCLUSIONS Most of the genes related with apoptosis and angiogenesis (Epo, Epor, Hif 1α, Hif3α, VEGFa, VEGFc, Casp1, Casp9, and Casp8ap2) induced early after HI (30min). All of these genes were unmethylated at the beginning of the insult and in the control group. DNA methylation percentage and histone methylation (H3K36) levels were not correlated with gen expression levels. To our knowledge this is the first study evaluating the role of epigenetic mechanisms in HIE model, therefore the absence of similar studies don't allow us to compare the present results. Further studies investigating different epigenetic mechanisms are needed.
Collapse
|
10
|
Genomic analysis of [d-Ala2, d-Leu5] enkephalin preconditioning in cortical neuron and glial cell injury after oxygen deprivation. Brain Res 2012; 1447:91-105. [DOI: 10.1016/j.brainres.2012.01.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 01/03/2012] [Accepted: 01/20/2012] [Indexed: 01/01/2023]
|
11
|
El-Hayek YH, Wu C, Zhang L. Early suppression of intracranial EEG signals predicts ischemic outcome in adult mice following hypoxia-ischemia. Exp Neurol 2011; 231:295-303. [PMID: 21821027 DOI: 10.1016/j.expneurol.2011.07.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 07/03/2011] [Accepted: 07/17/2011] [Indexed: 11/18/2022]
Abstract
The objective of this study is to determine whether early alterations in intracranial EEG activity predict overall outcome in non-anesthetized adult mice following hypoxia-ischemia (HI). Adult C57BL/6 mice received surgical implantation of bilateral intracranial EEG electrodes in the hippocampus and cerebral cortex. Animals were subjected to a hypoxic-ischemic (HI) episode consisting of permanent occlusion of the right common carotid artery and subsequent systemic hypoxia (8% O(2) for 30 min). EEG activities were sorted based on the observance of motor seizures, poor physical outcome, brain injury, and mortality. EEG signals were quantified as amplitude, variance, and root mean square, and early alterations in these parameters were compared. Animals with poor-HI outcome exhibited longer and more profound suppression of EEG signals in the hippocampus ipsilateral to the carotid artery occlusion during HI. Of the parameters chosen to quantify EEG activity, root mean square demonstrated the greatest sensitivity in predicting subsequent outcome. Thus, ipsilateral hippocampal EEG signals are a reliable early marker for assessing HI outcome in adult mice, and further characterization of ischemic EEG signals may aid in the development of novel quantitative variables for use in animal models of experimental cerebral ischemia.
Collapse
|
12
|
Costain WJ, Haqqani AS, Rasquinha I, Giguere MS, Slinn J, Zurakowski B, Stanimirovic DB. Proteomic analysis of synaptosomal protein expression reveals that cerebral ischemia alters lysosomal Psap processing. Proteomics 2011; 10:3272-91. [PMID: 20718007 DOI: 10.1002/pmic.200900447] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cerebral ischemia (CI) induces dramatic changes in synaptic structure and function that precedes delayed post-ischemic neuronal death. Here, a proteomic analysis was used to identify the effects of focal CI on synaptosomal protein levels. Contralateral and ipsilateral synaptosomes, prepared from adult mice subjected to 60 min middle cerebral artery occlusion, were isolated following 3, 6 and 20 h of reperfusion. Synaptosomal protein samples (n=3) were labeled using the cleavable ICAT system prior to analysis with nanoLC-MS/MS. Each sample was analyzed by LC-MS to identify differential expressions using InDEPT software and differentially expressed peptides were identified by targeted LC-MS/MS. A total of 62 differentially expressed proteins were identified and Gene Ontology classification (cellular component) indicated that the majority of the proteins were located in the mitochondria and other components consistent with synaptic localization. The observed alterations in synaptic protein levels poorly correlated with gene expression, indicating the involvement of post-transcriptional regulatory mechanisms in determining post-ischemic synaptic protein content. Additionally, immunohistochemistry analysis of prosaposin (Psap) and saposin C (SapC) indicates that CI disrupts Psap processing and glycosphingolipid metabolism. These results demonstrate that the synapse is adversely affected by CI and may play a role in mediating post-ischemic neuronal viability.
Collapse
Affiliation(s)
- Willard J Costain
- Glycosyltransferases and Neuroglycomics, Institute for Biological Sciences, National Research Council, Ottawa, ON, Canada.
| | | | | | | | | | | | | |
Collapse
|
13
|
Kutuzov MA, Bennett N, Andreeva AV. Protein phosphatase with EF-hand domains 2 (PPEF2) is a potent negative regulator of apoptosis signal regulating kinase-1 (ASK1). Int J Biochem Cell Biol 2010; 42:1816-22. [PMID: 20674765 DOI: 10.1016/j.biocel.2010.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 07/09/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022]
Abstract
The function of protein phosphatases with EF-hand domains (PPEF) in mammals is not known. Large-scale expression profiling experiments suggest that PPEF expression may correlate with stress protective responses, cell survival, growth, proliferation, or neoplastic transformation. Apoptosis signal regulating kinase-1 (ASK1) is a MAP kinase kinase kinase implicated in cancer, cardiovascular and neurodegenerative diseases. ASK1 is activated by oxidative stress and induces pro-apoptotic or inflammatory signalling, largely via sustained activation of MAP kinases p38 and/or JNK. We identify human PPEF2 as a novel interacting partner and a negative regulator of ASK1. In COS-7 or HEK 293A cells treated with H(2)O(2), expression of PPEF2 abrogated sustained activation of p38 and one of the JNK p46 isoforms, and prevented ASK1-dependent caspase-3 cleavage and activation. PPEF2 efficiently suppressed H(2)O(2)-induced activation of ASK1. Overexpessed as well as endogenous ASK1 co-immunoprecipitated with PPEF2. PPEF2 was considerably more potent both as a suppressor of ASK1 activation and as its interacting partner as compared to protein phosphatase 5 (PP5), a well-known negative regulator of ASK1. PPEF2 was found to form complexes with endogenous Hsp70 and to a lesser extent Hsp90, which are also known interacting partners of PP5. These data identify, for the first time, a possible downstream signalling partner of a mammalian PPEF phosphatase, and suggest that, despite structural divergence, PPEF and PP5 phosphatases may share common interacting partners and functions.
Collapse
Affiliation(s)
- Mikhail A Kutuzov
- Department of Pharmacology (MC 868), University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
14
|
Assessment of Protein Expression Levels After Transient Global Cerebral Ischemia Using an Antibody Microarray Analysis. Neurochem Res 2010; 35:1239-47. [DOI: 10.1007/s11064-010-0180-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2010] [Indexed: 01/08/2023]
|
15
|
Van Elzen R, Ghesquière B, Timmerman E, Vandamme S, Moens L, Gevaert K, Dewilde S. Integrated Proteomic Analysis Reveals a Substantial Enrichment of Protein Trafficking Processes in Hippocampus Tissue after Hypoxic Stress. J Proteome Res 2009; 9:204-15. [DOI: 10.1021/pr900517m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Roos Van Elzen
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Bart Ghesquière
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Evy Timmerman
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Stefaan Vandamme
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Luc Moens
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Kris Gevaert
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| | - Sylvia Dewilde
- Department of Biomedical Sciences, University of Antwerp, B-2610 Antwerp, Belgium, Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium, Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium, and Department of Biology, University of Antwerp, B-2610 Antwerp, Belgium
| |
Collapse
|
16
|
Stenzel-Poore MP, Stevens SL, King JS, Simon RP. Preconditioning reprograms the response to ischemic injury and primes the emergence of unique endogenous neuroprotective phenotypes: a speculative synthesis. Stroke 2007; 38:680-5. [PMID: 17261715 DOI: 10.1161/01.str.0000251444.56487.4c] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ischemic tolerance in the brain, in which sub-threshold insults increase resistance to subsequent injurious ischemia, is a powerful adaptive defense that involves an endogenous program of neuroprotection. Emerging evidence from genomic studies suggests diverse stimuli that trigger preconditioning achieve neuroprotection through a common process which depends on a fundamental reprogramming of the response to injury. Such reprogramming of the genomic response to injury leads to the induction of novel neuroprotective pathways not ordinarily found in the setting of ischemia. Genomic studies also indicate that the nature of the preconditioning stimulus (eg, brief ischemia or endotoxin [lipopolysaccharide]) dictates the phenotype of neuroprotection, a phenotype that parallels protective adaptations also found in certain physiological conditions where the preconditioning stimulus exists at levels that can induce injury. The idea that preconditioning leads to a fundamental reprogramming event that confers neuroprotection is a novel and important concept in the field of ischemic tolerance. Moreover, the view that distinct preconditioning stimuli confer neuroprotection via effectors that differ according to the nature of the preconditioning stimulus offers promise that multiple, nonoverlapping pathways may be discovered as novel neuroprotective therapies.
Collapse
Affiliation(s)
- Mary P Stenzel-Poore
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
17
|
Hirata T, Cui YJ, Funakoshi T, Mizukami Y, Ishikawa YI, Shibasaki F, Matsumoto M, Sakabe T. The temporal profile of genomic responses and protein synthesis in ischemic tolerance of the rat brain induced by repeated hyperbaric oxygen. Brain Res 2006; 1130:214-22. [PMID: 17173873 DOI: 10.1016/j.brainres.2006.10.077] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/21/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022]
Abstract
Repeated hyperbaric oxygen (HBO) exposure prior to ischemia has been reported to provide neuroprotection against ischemic brain injury. The present study examined the time course of neuroprotection of HBO (3.5 atmosphere absolute, 100% oxygen, 1 h for 5 consecutive days) and the changes of gene/protein expression in rats. First, at 6 h, 12 h, 24 h, and 72 h after HBO sessions, rats were subjected to forebrain ischemia (8 min). Histopathological examination of hippocampal CA1 neurons was done 7 days after ischemia. Second, temporal genomic responses and protein expression were examined at the same time points after HBO sessions without subjecting animals to ischemia. HBO significantly reduced loss of hippocampal CA1 neurons that normally follows transient forebrain ischemia when the last HBO session was 6 h, 12 h, or 24 h before ischemia (survived neurons 55%, 75%, and 53%, respectively), whereas if there was a 72-h delay before the ischemic insult, HBO was not protective (survived neurons only 6%). Statistical analysis on microarray data showed significant upregulation in 60 probe sets including 7 annotated genes (p75NTR, C/EBPdelta, CD74, Edg2, Trip10, Nrp1, and Igf2), whose time course expressions corresponded to HBO-induced neuroprotection. The protein levels of p75NTR, C/EBPdelta, and CD74 were significantly increased (maximum fold changes 2.9, 2.0, and 7.9, respectively). The results suggest that HBO-induced neuroprotection against ischemic injury has time window, protective at 6 h, 12 h and 24 h but not protective at 72 h. Although the precise interaction is to be determined, the genes/proteins relevant to neurotrophin and inflammatory-immune system may be involved in HBO-induced neuroprotection.
Collapse
Affiliation(s)
- Takao Hirata
- Department of Anesthesiology-Resuscitology, Yamaguchi University School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi, 755-8505 Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Crocker SF, Costain WJ, Robertson HA. DNA microarray analysis of striatal gene expression in symptomatic transgenic Huntington's mice (R6/2) reveals neuroinflammation and insulin associations. Brain Res 2006; 1088:176-86. [PMID: 16626669 DOI: 10.1016/j.brainres.2006.02.102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 02/03/2006] [Accepted: 02/26/2006] [Indexed: 11/21/2022]
Abstract
Huntington's disease (HD) is an inherited, progressive neurodegenerative disorder caused by CAG repeat expansion in the gene that codes for the protein huntingtin. The underlying neuropathological events leading to the selectivity of striatal neuronal loss are unknown. However, the huntingtin mutation interferes at several levels of normal cell function. The complexity of this disease makes microarray analysis an appealing technique to begin the identification of common pathways that may contribute to the pathology. In this study, striatal tissue was extracted for gene expression profiling from wild-type and symptomatic transgenic Huntington mice (R6/2) expressing part of the human Huntington's disease gene. We interrogated a 15 K high-density mouse EST array not previously used for HD and identified 170 significantly differentially expressed ESTs in symptomatic R6/2 mice. Of the 80 genes with known function, 9 genes had previously been identified as altered in HD. 71 known genes were associated with HD for the first time. The data obtained from this study confirm and extend previous observations using DNA microarray techniques on genetic models for HD, revealing novel changes in expression in a number of genes not previously associated with HD. Further bioinformatic analysis, using software to construct biological association maps, focused attention on proteins such as insulin and TH1-mediated cytokines, suggesting that they may be important regulators of affected genes. These results may provide insight into the regulation and interaction of genes that contribute to adaptive and pathological processes involved in HD.
Collapse
Affiliation(s)
- Susan F Crocker
- Brain Repair Centre, Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 1X5
| | | | | |
Collapse
|
19
|
Krüger C, Cira D, Sommer C, Fischer A, Schäbitz WR, Schneider A. Long-term gene expression changes in the cortex following cortical ischemia revealed by transcriptional profiling. Exp Neurol 2006; 200:135-52. [PMID: 16530183 DOI: 10.1016/j.expneurol.2006.01.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2005] [Revised: 12/19/2005] [Accepted: 01/09/2006] [Indexed: 11/20/2022]
Abstract
Cerebral ischemia evokes changes in gene expression time-dependently after the ischemic event. Most studies on transcriptional changes following ischemia have centered on relatively early postischemic time points, and detected multiple genes relevant to neuronal cell death. However, functional outcome after ischemia depends critically on adaptations of the postischemic brain. Plasticity may derive from network-inherent changes, or from the formation of new nerve cells in the CNS. We have screened for gene expression changes up to 3 weeks following a limited photothrombotic cortical insult in the rat sensorimotor cortex by using the sensitive restriction-mediated differential display (RMDD) technique. A high number of genes were detected as induced at early or intermediate time points in the ipsi- and contralateral cortex (6 and 48 h). Unexpectedly, at the late time point examined (3 weeks), we still detected 40 genes that were changed in their expression. We further characterized the expression of two genes linked to neurogenesis (nestin and stathmin), and two genes likely involved in reconfiguring neuronal networks (semaphorin VIa and synaptotagmin IV). Conclusively, our data highlight the degree of long-term transcriptional changes in the cortex after ischemia, and provide insight into functional pathways of relevance for compensatory recovery mechanisms in neural networks.
Collapse
Affiliation(s)
- Carola Krüger
- Department of Molecular Neurology, Axaron Bioscience AG, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The ability to form tenable hypotheses regarding the neurobiological basis of normative functions as well as mechanisms underlying neurodegenerative and neuropsychiatric disorders is often limited by the highly complex brain circuitry and the cellular and molecular mosaics therein. The brain is an intricate structure with heterogeneous neuronal and nonneuronal cell populations dispersed throughout the central nervous system. Varied and diverse brain functions are mediated through gene expression, and ultimately protein expression, within these cell types and interconnected circuits. Large-scale high-throughput analysis of gene expression in brain regions and individual cell populations using modern functional genomics technologies has enabled the simultaneous quantitative assessment of dozens to hundreds to thousands of genes. Technical and experimental advances in the accession of tissues, RNA amplification technologies, and the refinement of downstream genetic methodologies including microarray analysis and real-time quantitative PCR have generated a wellspring of informative studies pertinent to understanding brain structure and function. In this review, we outline the advantages as well as some of the potential challenges of applying high throughput functional genomics technologies toward a better understanding of brain tissues and diseases using animal models as well as human postmortem tissues.
Collapse
|
21
|
Chen WJ, Chen HW, Yu SL, Huang CH, Wang TD, Chen JJW, Chien CT, Chen HY, Yang PC, Lee YT. Gene expression profiles in hypoxic preconditioning using cDNA microarray analysis: altered expression of an angiogenic factor, carcinoembryonic antigen-related cell adhesion molecule 1. Shock 2005; 24:124-31. [PMID: 16044082 DOI: 10.1097/01.shk.0000170352.72694.36] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Hypoxic preconditioning has been shown to exhibit cardioprotective effects on myocardium from ischemic or reperfusion injury. The specific regulated gene involved in the hypoxia-induced cardioprotective effects is profiled in this study. Young male Wistar rats and ICR mice were exposed to sea level (as normal control) or simulated high altitude for 15 h/day for 2, 4, or 8 weeks, or for 4 weeks at high altitude after 2 weeks at sea level. The left ventricles of the animals were isolated for mRNA isolation and cDNA microarray analysis. Our data demonstrated that hypoxic preconditioning significantly ameliorated cardiac ischemic injury by minimizing the infarct size. After cluster analysis of expression profiles after different courses of hypoxic preconditioning (0, 2, 4, and 8 weeks), 386 genes showed an ascending pattern, whereas 301 genes showed a descending pattern. The ascending genes include several angiogenic factors: FGF receptor 4, vascular endothelial growth factor (vEGF), and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM-1). The microvessel density was also significantly increased in hypoxic hearts. Using Western blotting and immunohistochemical analysis, the protein expression level and localization of CEACAM-1 were observed in hypoxic myocardium. The results also indicated that CEACAM-1 was upregulated as with other hypoxic angiogenic factors, heme oxygenase 1 (HO-1) and hypoxia inducible factor-1alpha (HIF-1alpha), in in vitro cultured cardiomyocytes (H9c2) after hypoxia treatment and in vivo hypoxic preconditioning. Furthermore, incubation with recombinant vEGF could also increase the expression level of CEACAM-1 in H9c2 cells. These results demonstrated that hypoxic preconditioning resulted in transcriptional changes, and some of these genes have been correlated with angiogenesis. The HIF-1/vEGF/CEACAM-1 pathway might be important for hypoxia-induced angiogenesis in the heart during hypoxic preconditioning.
Collapse
Affiliation(s)
- Wen-Jone Chen
- Department of Emergency Medicine, National Taiwan University Hospital and National Taiwan University Medical College, Taipei, 100, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ganfornina MD, Pérez-García MT, Gutiérrez G, Miguel-Velado E, López-López JR, Marín A, Sánchez D, González C. Comparative gene expression profile of mouse carotid body and adrenal medulla under physiological hypoxia. J Physiol 2005; 566:491-503. [PMID: 15890701 PMCID: PMC1464746 DOI: 10.1113/jphysiol.2005.088815] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The carotid body (CB) is an arterial chemoreceptor, bearing specialized type I cells that respond to hypoxia by closing specific K+ channels and releasing neurotransmitters to activate sensory axons. Despite having detailed information on the electrical and neurochemical changes triggered by hypoxia in CB, the knowledge of the molecular components involved in the signalling cascade of the hypoxic response is fragmentary. This study analyses the mouse CB transcriptional changes in response to low PO2 by hybridization to oligonucleotide microarrays. The transcripts were obtained from whole CBs after mice were exposed to either normoxia (21% O2), or physiological hypoxia (10% O2) for 24 h. The CB transcriptional profiles obtained under these environmental conditions were subtracted from the profile of control non-chemoreceptor adrenal medulla extracted from the same animals. Given the common developmental origin of these two organs, they share many properties but differ specifically in their response to O2. Our analysis revealed 751 probe sets regulated specifically in CB under hypoxia (388 up-regulated and 363 down-regulated). These results were corroborated by assessing the transcriptional changes of selected genes under physiological hypoxia with quantitative RT-PCR. Our microarray experiments revealed a number of CB-expressed genes (e.g. TH, ferritin and triosephosphate isomerase) that were known to change their expression under hypoxia. However, we also found novel genes that consistently changed their expression under physiological hypoxia. Among them, a group of ion channels show specific regulation in CB: the potassium channels Kir6.1 and Kcnn4 are up-regulated, while the modulatory subunit Kcnab1 is down-regulated by low PO2 levels.
Collapse
Affiliation(s)
- M D Ganfornina
- Departamento de Bioquímica y Fisiología y Genética Molecular-IBGM, Universidad de Valladolid-CSIC, 47005 Valladolid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ginsberg SD, Che S. Expression profile analysis within the human hippocampus: Comparison of CA1 and CA3 pyramidal neurons. J Comp Neurol 2005; 487:107-18. [PMID: 15861457 DOI: 10.1002/cne.20535] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The hippocampus contains several distinct cell types that are interconnected by a well-characterized series of synaptic circuits. To evaluate molecular and cellular signatures of individual cell types within the normal adult human hippocampal formation, expression profile analysis was performed on individual CA1 and CA3 pyramidal neurons using a novel single cell RNA amplification methodology coupled with custom-designed cDNA array analysis. Populations of CA1 and CA3 neurons were also compared with regional dissections of the hippocampus from the same tissue sections. Molecular fingerprint comparison of cresyl violet-stained CA1 and CA3 pyramidal neurons microaspirated from the hippocampus of normal control subjects indicated significant differences in relative expression levels for approximately 16% (20 of 125) genes evaluated on the custom-designed cDNA array platform. Significant differences were observed for several transcripts relevant to the structure and function of hippocampal neurons, including specific glutamate receptors, gamma-aminobutyric acid (GABA) A receptors, cytoskeletal elements, dopamine receptors, and immediate-early genes. Compared with the regional assessment of gene expression, both CA1 and CA3 neurons displayed a relative enrichment of classes of transcripts that included glutamate receptors, transporters, and interacting proteins, GABA receptors and transporters, synaptic-related markers, and catecholamine receptors and transporters. In contrast, the regional hippocampal dissection had an increased level of gene expression for cytoskeletal elements as well as glial-associated markers. Expression profile analysis illustrates the importance of evaluating individual cellular populations within a functional circuit and may help define elements that confer unique properties to individual populations of hippocampal neurons under normal and diseased conditions.
Collapse
Affiliation(s)
- Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Department of Psychiatry, New York University School of Medicine, Orangeburg, New York 10962, USA.
| | | |
Collapse
|
24
|
Hedtjärn M, Mallard C, Eklind S, Gustafson-Brywe K, Hagberg H. Global gene expression in the immature brain after hypoxia-ischemia. J Cereb Blood Flow Metab 2004; 24:1317-32. [PMID: 15625407 DOI: 10.1097/01.wcb.0000141558.40491.75] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ischemia induces a complex response of differentially expressed genes in the brain. In order to understand the specific mechanisms of injury in the developing brain, it is important to obtain information on global changes in the transcriptome after neonatal hypoxia-ischemia. In this study, oligonucleotide arrays were used to investigate genomic changes at 2, 8, 24, and 72 hours after neonatal hypoxia-ischemia, which was induced in 9-day-old mice by left carotid artery ligation followed by hypoxia (10% O2). In total, 343 genes were differentially expressed in cortex, hippocampus, thalamus, and striatum 2 to 72 hours after hypoxia-ischemia, when comparing ipsilateral with contralateral hemispheres and with controls, using the significance analysis for microarrays. A total of 283 genes were upregulated and 60 were downregulated, and 94% of the genes had not previously been shown after neonatal hypoxia-ischemia. Genes related to transcription factors and metabolism had mostly upregulated transcripts, whereas most downregulated genes belonged to the categories of ion and vesicular transport and signal transduction. Genes involved in transcription, stress, and apoptosis were induced early after the insult, and many new genes that may play important roles in the pathophysiology of neonatal hypoxia-ischemia were identified.
Collapse
Affiliation(s)
- Maj Hedtjärn
- Department of Physiology, Perinatal Center, Göteborg University, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
25
|
Qi X, Okuma Y, Hosoi T, Kaneko M, Nomura Y. Induction of murine HRD1 in experimental cerebral ischemia. ACTA ACUST UNITED AC 2004; 130:30-8. [PMID: 15519674 DOI: 10.1016/j.molbrainres.2004.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2004] [Indexed: 10/26/2022]
Abstract
Hrd1p in yeast plays an important role in endoplasmic reticulum-associated degradation (ERAD). In the present study, we used an in vivo model of hypoxia-ischemia in mice to study the expression of murine HRD1. Hypoxia-ischemia induced a significant increase in mRNA levels of genes including GRP78, CHOP and MyD116, the expression of which are specifically activated under conditions associated with ER dysfunction. The level of mHRD1 mRNA was significantly increased after ischemia. Interestingly, induction of mHRD1 was elevated at a later time point (12-48 h) in the ischemic cortex, whereas it increased at an earlier time point (3-12 h) in the injured striatum. We also examined the changes of mHRD1 mRNA expression in neuroblastoma Neuro2a and primary glial cells exposed to hypoxia/reoxygenation. The expression of mHRD1 mRNA was remarkably up-regulated in glial cells subjected to 24 h hypoxia, whereas no significant changes were observed in Neuro2a cells under hypoxia/reoxygenation. In addition, the levels of mHRD1 mRNA were markedly elevated in glial cells exposed to treatment with tunicamycin (Tm, an ER stress inducer). These findings suggest that hypoxia-ischemia triggers ER dysfunction and mHRD1 may play a role in ischemia-induced ER dysfunction.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Antiviral Agents/pharmacology
- Brain/pathology
- Brain Edema/etiology
- Brain Edema/pathology
- Brain Infarction/etiology
- Brain Infarction/pathology
- CCAAT-Enhancer-Binding Proteins/genetics
- CCAAT-Enhancer-Binding Proteins/metabolism
- Cell Count/methods
- Cells, Cultured
- Disease Models, Animal
- Endoplasmic Reticulum Chaperone BiP
- Functional Laterality
- Heat-Shock Proteins/genetics
- Heat-Shock Proteins/metabolism
- Hyperbaric Oxygenation/methods
- Hypoxia-Ischemia, Brain/complications
- Hypoxia-Ischemia, Brain/genetics
- Hypoxia-Ischemia, Brain/metabolism
- Hypoxia-Ischemia, Brain/pathology
- Hypoxia-Ischemia, Brain/therapy
- In Situ Nick-End Labeling/methods
- Male
- Mice
- Mice, Inbred C57BL
- Molecular Chaperones/genetics
- Molecular Chaperones/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neuroblastoma/metabolism
- Neuroglia/drug effects
- Neuroglia/metabolism
- RNA, Messenger/biosynthesis
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Tetrazolium Salts
- Time Factors
- Transcription Factor CHOP
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Tunicamycin/pharmacology
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Xin Qi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | | | | | | | | |
Collapse
|