1
|
Russo M, Pellegrino G, Faure H, Tirou L, Sharif A, Ruat M. Characterization of Sonic Hedgehog transcripts in the adult mouse brain: co-expression with neuronal and oligodendroglial markers. Brain Struct Funct 2024; 229:705-727. [PMID: 38329543 PMCID: PMC10978748 DOI: 10.1007/s00429-023-02756-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/29/2023] [Indexed: 02/09/2024]
Abstract
In the adult mammalian brain, astrocytes are proposed to be the major Sonic Hedgehog (Shh)-responsive cells. However, the sources of the Shh molecule mediating activation of the pathway are still poorly characterized. The present work investigates the distribution and phenotype of cells expressing Shh mRNA in the adult mouse brain. Using single-molecule fluorescent in situ hybridization (smfISH), we report much broader expression of Shh transcripts in almost all brain regions than originally reported. We identify Shh mRNA in HuC/D+ neuronal populations, including GABAergic (glutamic acid decarboxylase 67, Gad67), cholinergic (choline acetyltransferase, ChAT), dopaminergic (tyrosine hydroxylase, TH), nitrergic (neuronal nitric oxide synthase, nNOS), and in a small population of oligodendroglial cells expressing Sox10 and Olig2 mRNA transcription factors. Further analysis of Shh mRNA in cerebral cortical and hypothalamic neurons suggests that Shh is also expressed by glutamatergic neurons. Interestingly, we did not observe substantial Desert Hedgehog and Indian Hedgehog mRNA signals, nor Shh signals in S100β+ astrocytes and Iba1+ microglial cells. Collectively, the present work provides the most robust central map of Shh-expressing cells to date and underscores the importance of nitrergic neurons in regulating Shh availability to brain cells. Thus, our study provides a framework for future experiments aimed at better understanding of the functions of Shh signaling in the brain in normal and pathological states, and the characterization of novel regulatory mechanisms of the signaling pathway.
Collapse
Affiliation(s)
- Mariagiovanna Russo
- CNRS, Paris-Saclay University, UMR-9197, Neuroscience Paris-Saclay Institute, 91400, Saclay, France
| | - Giuliana Pellegrino
- CNRS, Paris-Saclay University, UMR-9197, Neuroscience Paris-Saclay Institute, 91400, Saclay, France
| | - Hélène Faure
- CNRS, Paris-Saclay University, UMR-9197, Neuroscience Paris-Saclay Institute, 91400, Saclay, France
| | - Linda Tirou
- CNRS, Paris-Saclay University, UMR-9197, Neuroscience Paris-Saclay Institute, 91400, Saclay, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience and Cognition, UMR-S 1172, FHU 1000 Days for Health, Lille, France
| | - Martial Ruat
- CNRS, Paris-Saclay University, UMR-9197, Neuroscience Paris-Saclay Institute, 91400, Saclay, France.
| |
Collapse
|
2
|
Douceau S, Deutsch Guerrero T, Ferent J. Establishing Hedgehog Gradients during Neural Development. Cells 2023; 12:225. [PMID: 36672161 PMCID: PMC9856818 DOI: 10.3390/cells12020225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
A morphogen is a signaling molecule that induces specific cellular responses depending on its local concentration. The concept of morphogenic gradients has been a central paradigm of developmental biology for decades. Sonic Hedgehog (Shh) is one of the most important morphogens that displays pleiotropic functions during embryonic development, ranging from neuronal patterning to axon guidance. It is commonly accepted that Shh is distributed in a gradient in several tissues from different origins during development; however, how these gradients are formed and maintained at the cellular and molecular levels is still the center of a great deal of research. In this review, we first explored all of the different sources of Shh during the development of the nervous system. Then, we detailed how these sources can distribute Shh in the surrounding tissues via a variety of mechanisms. Finally, we addressed how disrupting Shh distribution and gradients can induce severe neurodevelopmental disorders and cancers. Although the concept of gradient has been central in the field of neurodevelopment since the fifties, we also describe how contemporary leading-edge techniques, such as organoids, can revisit this classical model.
Collapse
Affiliation(s)
- Sara Douceau
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Tanya Deutsch Guerrero
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Julien Ferent
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| |
Collapse
|
3
|
Caligiuri SPB, Howe WM, Wills L, Smith ACW, Lei Y, Bali P, Heyer MP, Moen JK, Ables JL, Elayouby KS, Williams M, Fillinger C, Oketokoun Z, Lehmann VE, DiFeliceantonio AG, Johnson PM, Beaumont K, Sebra RP, Ibanez-Tallon I, Kenny PJ. Hedgehog-interacting protein acts in the habenula to regulate nicotine intake. Proc Natl Acad Sci U S A 2022; 119:e2209870119. [PMID: 36346845 PMCID: PMC9674224 DOI: 10.1073/pnas.2209870119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2023] Open
Abstract
Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the Hhip gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.
Collapse
Affiliation(s)
- Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - William M Howe
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alexander C W Smith
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ye Lei
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Purva Bali
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mary P Heyer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maya Williams
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Zainab Oketokoun
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Vanessa E Lehmann
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Paul M Johnson
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ines Ibanez-Tallon
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY 10065
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
4
|
El Waly B, Macchi M, Cayre M, Durbec P. Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 2014; 8:145. [PMID: 24971048 PMCID: PMC4054666 DOI: 10.3389/fnins.2014.00145] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 05/23/2014] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocytes (OLGs) are generated late in development and myelination is thus a tardive event in the brain developmental process. It is however maintained whole life long at lower rate, and myelin sheath is crucial for proper signal transmission and neuronal survival. Unfortunately, OLGs present a high susceptibility to oxidative stress, thus demyelination often takes place secondary to diverse brain lesions or pathologies. OLGs can also be the target of immune attacks, leading to primary demyelination lesions. Following oligodendrocytic death, spontaneous remyelination may occur to a certain extent. In this review, we will mainly focus on the adult brain and on the two main sources of progenitor cells that contribute to oligodendrogenesis: parenchymal oligodendrocyte precursor cells (OPCs) and subventricular zone (SVZ)-derived progenitors. We will shortly come back on the main steps of oligodendrogenesis in the postnatal and adult brain, and summarize the key factors involved in the determination of oligodendrocytic fate. We will then shed light on the main causes of demyelination in the adult brain and present the animal models that have been developed to get insight on the demyelination/remyelination process. Finally, we will synthetize the results of studies searching for factors able to modulate spontaneous myelin repair.
Collapse
Affiliation(s)
- Bilal El Waly
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Magali Macchi
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Myriam Cayre
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| | - Pascale Durbec
- CNRS, Institut de Biologie du Développement de Marseille UMR 7288, Aix Marseille Université Marseille, France
| |
Collapse
|
5
|
Gonzalez-Reyes LE, Verbitsky M, Blesa J, Jackson-Lewis V, Paredes D, Tillack K, Phani S, Kramer ER, Przedborski S, Kottmann AH. Sonic hedgehog maintains cellular and neurochemical homeostasis in the adult nigrostriatal circuit. Neuron 2012; 75:306-19. [PMID: 22841315 DOI: 10.1016/j.neuron.2012.05.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2012] [Indexed: 11/26/2022]
Abstract
Non cell-autonomous processes are thought to play critical roles in the cellular maintenance of the healthy and diseased brain but mechanistic details remain unclear. We report that the interruption of a non cell-autonomous mode of sonic hedgehog (Shh) signaling originating from dopaminergic neurons causes progressive, adult-onset degeneration of dopaminergic, cholinergic, and fast spiking GABAergic neurons of the mesostriatal circuit, imbalance of cholinergic and dopaminergic neurotransmission, and motor deficits reminiscent of Parkinson's disease. Variable Shh signaling results in graded inhibition of muscarinic autoreceptor- and glial cell line-derived neurotrophic factor (GDNF)-expression in the striatum. Reciprocally, graded signals that emanate from striatal cholinergic neurons and engage the canonical GDNF receptor Ret inhibit Shh expression in dopaminergic neurons. Thus, we discovered a mechanism for neuronal subtype specific and reciprocal communication that is essential for neurochemical and structural homeostasis in the nigrostriatal circuit. These results provide integrative insights into non cell-autonomous processes likely at play in neurodegenerative conditions such as Parkinson's disease.
Collapse
|
6
|
Ruat M, Roudaut H, Ferent J, Traiffort E. Hedgehog trafficking, cilia and brain functions. Differentiation 2012; 83:S97-104. [DOI: 10.1016/j.diff.2011.11.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
|
7
|
Abstract
The discovery of a Sonic Hedgehog (Shh) signaling pathway in the mature vertebrate CNS has paved the way to the characterization of the functional roles of Shh signals in normal and diseased brain. Shh is proposed to participate in the establishment and maintenance of adult neurogenic niches and to regulate the proliferation of neuronal or glial precursors in several brain areas. Consistent with its role during brain development, misregulation of Shh signaling is associated with tumorigenesis while its recruitement in damaged neural tissue might be part of the regenerating process. This review focuses on the most recent data of the Hedgehog pathway in the adult brain and its relevance as a novel therapeutic approach for brain diseases including brain tumors.
Collapse
Affiliation(s)
- Elisabeth Traiffort
- CNRS, Alfred Fessard Institute of Neurobiology, Laboratory of Neurobiology and Development, UPR-3294, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France.
| | | | | |
Collapse
|
8
|
Angeloni NL, Bond CW, Monsivais D, Tang Y, Podlasek CA. The role of hedgehog-interacting protein in maintaining cavernous nerve integrity and adult penile morphology. J Sex Med 2009; 6:2480-93. [PMID: 19515211 PMCID: PMC2814768 DOI: 10.1111/j.1743-6109.2009.01349.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Sonic hedgehog (SHH) is an essential regulator of smooth muscle apoptosis in the penis that has significant clinical potential as a therapy to suppress post-prostatectomy apoptosis, an underlying cause of erectile dysfunction (ED). Thus an understanding of how SHH signaling is regulated in the adult penis is essential to move the field of ED research forward and to develop new treatment strategies. We propose that hedgehog-interacting protein (HIP), which has been shown to bind SHH protein and to play a role in SHH regulation during embryogenesis of other organs, is a critical regulator of SHH signaling, penile morphology, and apoptosis induction. AIMS We have examined HIP signaling in the penis and cavernous nerve (CN) during postnatal differentiation of the penis, in CN-injured, and a diabetic model of ED. METHODS HIP localization/abundance and RNA abundance were examined by immunohistochemical (IHC) analysis and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) in Sprague-Dawley rats between the ages of 7 and 92 days old, in CN-injured Sprague-Dawley rats and in BioBreeding/Worcester diabetic rats. HIP signaling was perturbed in the pelvic ganglia and in the penis and TUNEL assay was performed in the penis. CN tie, lidocaine, and anti-kinesin experiments were performed to examine HIP signaling in the CN and penis. RESULTS In this study we are the first to demonstrate that HIP undergoes anterograde transport to the penis via the CN, that HIP perturbation in the pelvic ganglia or the penis induces apoptosis, and that HIP plays a role in maintaining CN integrity, penile morphology, and SHH abundance. CONCLUSIONS These studies are significant because they show HIP involvement in cross-talk (signaling) between the pelvic ganglia and penis, which is integral for maintenance of penile morphology and they suggest a mechanism of how nerves may regulate target organ morphology and function.
Collapse
Affiliation(s)
- Nicholas L Angeloni
- Department of Urology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
9
|
Jozwiak J, Grajkowska W, Wlodarski P. Pathogenesis of medulloblastoma and current treatment outlook. Med Res Rev 2008; 27:869-90. [PMID: 17089411 DOI: 10.1002/med.20088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Medulloblastoma is the most common malignant tumor of the cerebellum in children, with a tendency to metastasize via CSF pathway. Survival rate varies depending on several factors, but is rather favorable, with radiotherapy as the treatment of choice. Irradiation of the craniospinal axis results, however, in severe neuropsychological and psychosocial impairments pertaining to memory, attention, motor functioning, language, and visuospatial abilities. Precise mechanisms underlying the formation of medulloblastoma are still unclear, but implication of at least three signaling molecules is postulated: insulin-like growth factor-I, WNT, and Sonic hedgehog. Thanks to increasing knowledge on the cellular mechanisms contributing to tumor formation, it is possible to propose new therapies that could replace radiotherapy or allow decreasing irradiation doses. The current review presents recent developments in medulloblastoma pathophysiology research and proposed inhibitors that could constitute good candidates for further pharmacological research.
Collapse
Affiliation(s)
- Jaroslaw Jozwiak
- Department of Histology and Embryology, Center for Biostructure Research, Medical University of Warsaw, Warsaw, Poland.
| | | | | |
Collapse
|
10
|
A spatial bias for the origins of interneuron subgroups within the medial ganglionic eminence. Dev Biol 2007; 314:127-36. [PMID: 18155689 DOI: 10.1016/j.ydbio.2007.11.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 11/14/2007] [Accepted: 11/14/2007] [Indexed: 11/21/2022]
Abstract
Although it is well established that the ventral telencephalon is the primary source of GABAergic cortical interneurons in rodents, little is known about the specification of specific interneuron subtypes. It is also unclear whether the potential to achieve a given fate is established at their place of origin or by signals received during their migration to or during their maturation within the cerebral cortex. Using both in vivo and in vitro transplantation techniques, we find that two major interneuron subgroups have largely distinct origins within the MGE. Somatostatin (SST)-expressing interneurons are primarily generated within the dorsal MGE, while parvalbumin (PV)-expressing interneurons primarily originate from the ventral MGE. In addition, we show that significant heterogeneity exists between gene expression patterns in the dorsal and ventral MGE. These results suggest that, like the spinal cord, neuronal fate determination in the ventral telencephalon is largely the result of spatially segregated, molecularly distinct microdomains arranged on the dorsal-ventral axis.
Collapse
|
11
|
Wonders CP, Anderson SA. The origin and specification of cortical interneurons. Nat Rev Neurosci 2006; 7:687-96. [PMID: 16883309 DOI: 10.1038/nrn1954] [Citation(s) in RCA: 716] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
GABA-containing interneurons are crucial to both the development and function of the cerebral cortex. Unlike cortical projection neurons, which have a relatively conserved set of characteristics, interneurons include multiple phenotypes that vary on morphological, physiological and neurochemical axes. This diversity, and the relatively late, context-dependent maturation of defining features, has challenged efforts to uncover the transcriptional control of cortical interneuron development. Here, we discuss recent data that are beginning to illuminate the origins and specification of distinct subgroups of cortical interneurons.
Collapse
Affiliation(s)
- Carl P Wonders
- Graduate Program in Neuroscience, Weill Medical College of Cornell University, New York 10021, USA
| | | |
Collapse
|
12
|
Loulier K, Ruat M, Traiffort E. Increase of proliferating oligodendroglial progenitors in the adult mouse brain upon Sonic hedgehog delivery in the lateral ventricle. J Neurochem 2006; 98:530-42. [PMID: 16805844 DOI: 10.1111/j.1471-4159.2006.03896.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sonic hedgehog signaling is required for the maintenance of stem cell niches in the postnatal subventricular zone and the proliferation of neural progenitors in the mature hippocampus. We show here that delivery of Sonic hedgehog protein into the lateral ventricle of adult mice increases cell proliferation in the corpus callosum and cerebral cortex. In this latter area, the number of neural progenitors expressing the proteoglycan NG2 is enhanced 2 days after the injection. In both areas, mRNA up-regulation of the transcriptional target gene Patched was observed in cells expressing the oligodendroglial transcription factor Olig1. Twenty-six days following the adenovirus-mediated delivery of Sonic hedgehog into the lateral ventricle, newly generated cells in the cerebral cortex and in the corpus callosum are influenced towards the initial steps of oligodendrogenesis, as indicated by a 50% increase in the number of cells expressing the oligodendroglial marker DM20. Our experiments demonstrate that the number of oligodendrocyte precursor cells in the cerebral cortex and corpus callosum can be increased upon delivery of Sonic hedgehog proteins and highlight the potential capacity of the adult brain to mobilize a pool of premyelinating cells.
Collapse
Affiliation(s)
- Karine Loulier
- CNRS, Signal Transduction and Developmental Neuropharmacology, UPR9040 Laboratoire de Neurobiologie Cellulaire et Moléculaire, Institut de Neurobiologie Alfred Fessard, IFR 2118, Gif sur Yvette, France
| | | | | |
Collapse
|