1
|
Lin Q, Jin S, Yin G, Li J, Asgher U, Qiu S, Wang J. Cortical Morphological Networks Differ Between Gyri and Sulci. Neurosci Bull 2025; 41:46-60. [PMID: 39044060 PMCID: PMC11748734 DOI: 10.1007/s12264-024-01262-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/28/2024] [Indexed: 07/25/2024] Open
Abstract
This study explored how the human cortical folding pattern composed of convex gyri and concave sulci affected single-subject morphological brain networks, which are becoming an important method for studying the human brain connectome. We found that gyri-gyri networks exhibited higher morphological similarity, lower small-world parameters, and lower long-term test-retest reliability than sulci-sulci networks for cortical thickness- and gyrification index-based networks, while opposite patterns were observed for fractal dimension-based networks. Further behavioral association analysis revealed that gyri-gyri networks and connections between gyral and sulcal regions significantly explained inter-individual variance in Cognition and Motor domains for fractal dimension- and sulcal depth-based networks. Finally, the clinical application showed that only sulci-sulci networks exhibited morphological similarity reductions in major depressive disorder for cortical thickness-, fractal dimension-, and gyrification index-based networks. Taken together, these findings provide novel insights into the constraint of the cortical folding pattern to the network organization of the human brain.
Collapse
Affiliation(s)
- Qingchun Lin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Suhui Jin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Guole Yin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Junle Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Umer Asgher
- Department of Air Transport, Faculty of Transportation Sciences, Czech Technical University in Prague (CTU), Prague, 128 00, Czech Republic
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Science and Technology (NUST), Islamabad, 44000, Pakistan
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangzhou, 510631, China.
- Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631, China.
- Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
2
|
Sighinolfi G, Mitolo M, Pizzagalli F, Stanzani-Maserati M, Remondini D, Rochat MJ, Cantoni E, Venturi G, Vornetti G, Bartiromo F, Capellari S, Liguori R, Tonon C, Testa C, Lodi R. Sulcal Morphometry Predicts Mild Cognitive Impairment Conversion to Alzheimer's Disease. J Alzheimers Dis 2024; 99:177-190. [PMID: 38640154 PMCID: PMC11191431 DOI: 10.3233/jad-231192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Background Being able to differentiate mild cognitive impairment (MCI) patients who would eventually convert (MCIc) to Alzheimer's disease (AD) from those who would not (MCInc) is a key challenge for prognosis. Objective This study aimed to investigate the ability of sulcal morphometry to predict MCI progression to AD, dedicating special attention to an accurate identification of sulci. Methods Twenty-five AD patients, thirty-seven MCI and twenty-five healthy controls (HC) underwent a brain-MR protocol (1.5T scanner) including a high-resolution T1-weighted sequence. MCI patients underwent a neuropsychological assessment at baseline and were clinically re-evaluated after a mean of 2.3 years. At follow-up, 12 MCI were classified as MCInc and 25 as MCIc. Sulcal morphometry was investigated using the BrainVISA framework. Consistency of sulci across subjects was ensured by visual inspection and manual correction of the automatic labelling in each subject. Sulcal surface, depth, length, and width were retrieved from 106 sulci. Features were compared across groups and their classification accuracy in predicting MCI conversion was tested. Potential relationships between sulcal features and cognitive scores were explored using Spearman's correlation. Results The width of sulci in the temporo-occipital region strongly differentiated between each pair of groups. Comparing MCIc and MCInc, the width of several sulci in the bilateral temporo-occipital and left frontal areas was significantly altered. Higher width of frontal sulci was associated with worse performances in short-term verbal memory and phonemic fluency. Conclusions Sulcal morphometry emerged as a strong tool for differentiating HC, MCI, and AD, demonstrating its potential prognostic value for the MCI population.
Collapse
Affiliation(s)
| | - Micaela Mitolo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | | | - Elena Cantoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Greta Venturi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Gianfranco Vornetti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fiorina Bartiromo
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudia Testa
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Digiovanni A, Ajdinaj P, Russo M, Sensi SL, Onofrj M, Thomas A. Bipolar spectrum disorders in neurologic disorders. Front Psychiatry 2022; 13:1046471. [PMID: 36620667 PMCID: PMC9811836 DOI: 10.3389/fpsyt.2022.1046471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Psychiatric symptoms frequently predate or complicate neurological disorders, such as neurodegenerative diseases. Symptoms of bipolar spectrum disorders (BSD), like mood, behavioral, and psychotic alterations, are known to occur - individually or as a syndromic cluster - in Parkinson's disease and in the behavioral variant of frontotemporal dementia (FTD). Nonetheless, due to shared pathophysiological mechanisms, or genetic predisposition, several other neurological disorders show significant, yet neglected, clinical and biological overlaps with BSD like neuroinflammation, ion channel dysfunctions, neurotransmission imbalance, or neurodegeneration. BSD pathophysiology is still largely unclear, but large-scale network dysfunctions are known to participate in the onset of mood disorders and psychotic symptoms. Thus, functional alterations can unleash BSD symptoms years before the evidence of an organic disease of the central nervous system. The aim of our narrative review was to illustrate the numerous intersections between BSD and neurological disorders from a clinical-biological point of view and the underlying predisposing factors, to guide future diagnostic and therapeutical research in the field.
Collapse
Affiliation(s)
- Anna Digiovanni
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Paola Ajdinaj
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mirella Russo
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Stefano L Sensi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Center for Advanced Studies and Technology (CAST), "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Astrid Thomas
- Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio" University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Cachia A, Borst G, Jardri R, Raznahan A, Murray GK, Mangin JF, Plaze M. Towards Deciphering the Fetal Foundation of Normal Cognition and Cognitive Symptoms From Sulcation of the Cortex. Front Neuroanat 2021; 15:712862. [PMID: 34650408 PMCID: PMC8505772 DOI: 10.3389/fnana.2021.712862] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/31/2021] [Indexed: 01/16/2023] Open
Abstract
Growing evidence supports that prenatal processes play an important role for cognitive ability in normal and clinical conditions. In this context, several neuroimaging studies searched for features in postnatal life that could serve as a proxy for earlier developmental events. A very interesting candidate is the sulcal, or sulco-gyral, patterns, macroscopic features of the cortex anatomy related to the fold topology-e.g., continuous vs. interrupted/broken fold, present vs. absent fold-or their spatial organization. Indeed, as opposed to quantitative features of the cortical sheet (e.g., thickness, surface area or curvature) taking decades to reach the levels measured in adult, the qualitative sulcal patterns are mainly determined before birth and stable across the lifespan. The sulcal patterns therefore offer a window on the fetal constraints on specific brain areas on cognitive abilities and clinical symptoms that manifest later in life. After a global review of the cerebral cortex sulcation, its mechanisms, its ontogenesis along with methodological issues on how to measure the sulcal patterns, we present a selection of studies illustrating that analysis of the sulcal patterns can provide information on prenatal dispositions to cognition (with a focus on cognitive control and academic abilities) and cognitive symptoms (with a focus on schizophrenia and bipolar disorders). Finally, perspectives of sulcal studies are discussed.
Collapse
Affiliation(s)
- Arnaud Cachia
- Université de Paris, LaPsyDÉ, CNRS, Paris, France
- Université de Paris, IPNP, INSERM, Paris, France
| | - Grégoire Borst
- Université de Paris, LaPsyDÉ, CNRS, Paris, France
- Institut Universitaire de France, Paris, France
| | - Renaud Jardri
- Univ Lille, INSERM U-1172, CHU Lille, Lille Neuroscience & Cognition Centre, Plasticity & SubjectivitY (PSY) team, Lille, France
| | - Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, United States
| | - Graham K. Murray
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | | | - Marion Plaze
- Université de Paris, IPNP, INSERM, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris, Paris, France
| |
Collapse
|
5
|
Bengesser SA, Reininghaus EZ, Dalkner N, Birner A, Hohenberger H, Queissner R, Fellendorf F, Platzer M, Pilz R, Hamm C, Rieger A, Kapfhammer HP, Mangge H, Reininghaus B, Meier-Allard N, Stracke A, Fuchs R, Holasek S. Endoplasmic reticulum stress in bipolar disorder? - BiP and CHOP gene expression- and XBP1 splicing analysis in peripheral blood. Psychoneuroendocrinology 2018; 95:113-119. [PMID: 29843019 DOI: 10.1016/j.psyneuen.2018.05.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND Endoplasmic Reticulum stress activates the Unfolded Protein Response, which is partially impaired in Bipolar Disorder (BD) according to previous in-vitro studies. Thus, BiP and CHOP gene expression and XBP1 splicing were analyzed in peripheral blood of study participants with BD and controls. METHODS RNA was isolated from fasting blood of study participants with BD (n = 81) and controls (n = 54) and reverse transcribed into cDNA. BiP and CHOP gene expression was analyzed with quantitative RT-PCR. Atypical splicing of XBP1 mRNA was measured by semi-quantitative RT-PCR, gel-electrophoresis and densitometry. ANCOVAs with the covariates age, BMI, sex, lithium and anticonvulsants intake were used with SPSS. Bonferroni correction was used to correct for multiple testing (adjusted p = 0.0083). RESULTS BiP gene expression was significantly higher in BD than in controls (F(1/128) = 10.076, p = 0.002, Partial η2 = 0.073). Total XBP1 (F(1/126) = 9.550, p = 0.002, Partial η2 = 0.070) and unspliced XBP1 (F(1/128)= 8.803, p= 0.004, Patial η2 = 0.065) were significantly decreased in BD. Spliced XBP1 (F(1/126) = 5.848, p = 0.017, Partial η2 = 0.044) and the ratio spliced XBP1/ unspliced XBP1 did not differ between BD and controls (F(1/126) = 0.599, p = 0.441, Partial η2 = 0.005). Gene expression did not differ between euthymia, depression and mania. DISCUSSION BiP gene expression was significantly higher in BD compared to controls. Total and unspliced XBP1 were significantly lower in BD than in the control group. Thus, both genes may be considered as putative trait markers. Nevertheless, XBP1 splicing itself did not differ between both groups.
Collapse
Affiliation(s)
- Susanne A Bengesser
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria.
| | - Nina Dalkner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Armin Birner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Helena Hohenberger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Robert Queissner
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Frederike Fellendorf
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Martina Platzer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Rene Pilz
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Carlo Hamm
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Alexandra Rieger
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Hans-Peter Kapfhammer
- Department of Psychiatry and Psychotherapeutic Medicine, Medical University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Graz, Austria
| | | | - Nathalie Meier-Allard
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| | - Anika Stracke
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| | - Robert Fuchs
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| | - Sandra Holasek
- Institute of Pathophysiology and Immunology, Medical University of Graz, Heinrichstrasse 31A, 8010 Graz, Austria
| |
Collapse
|
6
|
Dunham CM, Cook AJ, Paparodis AM, Huang GS. Practical one-dimensional measurements of age-related brain atrophy are validated by 3-dimensional values and clinical outcomes: a retrospective study. BMC Med Imaging 2016; 16:32. [PMID: 27113039 PMCID: PMC4845392 DOI: 10.1186/s12880-016-0136-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/21/2016] [Indexed: 11/24/2022] Open
Abstract
Background Age-related brain atrophy has been represented by simple 1-dimensional (1-D) measurements on computed tomography (CT) for several decades and, more recently, with 3-dimensional (3-D) analysis, using brain volume (BV) and cerebrospinal fluid volume (CSFV). We aimed to show that simple 1-D measurements would be associated with 3-D values of age-related atrophy and that they would be related to post-traumatic intracranial hemorrhage (ICH). Methods Patients ≥60 years with head trauma were classified with central atrophy (lateral ventricular body width >30 mm) and/or cortical atrophy (sulcus width ≥2.5 mm). Composite atrophy was the presence of central or cortical atrophy. BV and CSFV were computed using a Siemens Syngo workstation (VE60A). Results Of 177 patients, traits were age 78.3 ± 10, ICH 32.2 %, central atrophy 39.5 %, cortical atrophy 31.1 %, composite atrophy 49.2 %, BV 1,156 ± 198 mL, and CSFV 102.5 ± 63 mL. CSFV was greater with central atrophy (134.4 mL), than without (81.7 mL, p < 0.001). BV was lower with cortical atrophy (1,034 mL), than without (1,211 mL; p < 0.001). BV was lower with composite atrophy (1,103 mL), than without (1,208 mL; p < 0.001). CSFV was greater with composite atrophy (129.1 mL), than without (76.8 mL, p < 0.001). CSFV÷BV was greater with composite atrophy (12.3 %), than without (6.7 %, p < 0.001). Age was greater with composite atrophy (80.4 years), than without (76.3, p = 0.006). Age had an inverse correlation with BV (p < 0.001) and a direct correlation with CSFV (p = 0.0002) and CSFV÷BV (p < 0.001). ICH was greater with composite atrophy (49.4 %), than without (15.6 %; p < 0.001; odds ratio = 5.3). BV was lower with ICH (1,089 mL), than without (1,188 mL; p = 0.002). CSFV÷BV was greater with ICH (11.1 %), than without (8.7 %, p = 0.02). ICH was independently associated with central atrophy (p = 0.001) and cortical atrophy (p = 0.003). Conclusions Simple 1-D measurements of age-related brain atrophy are associated with 3-D values. Clinical validity of these methods is also supported by their association with post-injury ICH. Intracranial 3-D software is not available on many CT scanners and can be cumbersome, when available. Simple 1-D measurements, using the study methodology, are a practical method to objectify the presence of age-related brain atrophy.
Collapse
Affiliation(s)
- C Michael Dunham
- Trauma/Critical Care Services, St. Elizabeth Youngstown Hospital, 1044 Belmont Avenue, Youngstown, OH, 44501, USA.
| | - Albert J Cook
- Division of Radiology, St. Elizabeth Youngstown Hospital, 1044 Belmont Avenue, Youngstown, OH, 44501, USA
| | - Alaina M Paparodis
- Division of Radiology, St. Elizabeth Youngstown Hospital, 1044 Belmont Avenue, Youngstown, OH, 44501, USA
| | - Gregory S Huang
- Trauma/Critical Care Services, St. Elizabeth Youngstown Hospital, 1044 Belmont Avenue, Youngstown, OH, 44501, USA
| |
Collapse
|
7
|
Emsell L, Langan C, Van Hecke W, Barker GJ, Leemans A, Sunaert S, McCarthy P, Nolan R, Cannon DM, McDonald C. White matter differences in euthymic bipolar I disorder: a combined magnetic resonance imaging and diffusion tensor imaging voxel-based study. Bipolar Disord 2013; 15:365-76. [PMID: 23621705 DOI: 10.1111/bdi.12073] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/18/2013] [Indexed: 12/15/2022]
Abstract
OBJECTIVES A broad range of subtle and markedly heterogenous neuroanatomical abnormalities of grey matter and white matter have been reported in bipolar disorder. Euthymic bipolar disorder patients represent a clinically homogenous group in which to identify trait-based biomarkers of bipolar disorder. In this study, we sought to clarify the nature and extent of neuroanatomical differences in a large, clinically homogeneous group of euthymic bipolar disorder patients. METHODS Structural magnetic resonance imaging (sMRI) was obtained for 60 patients with prospectively confirmed euthymic bipolar I disorder and 60 individually age- and gender-matched healthy volunteers. High angular resolution diffusion tensor imaging (DTI) scans were obtained for a subset of this sample comprising 35 patients and 43 controls. Voxel-based analysis of both sMRI and DTI data sets was performed. RESULTS Bipolar disorder patients displayed global reductions in white matter volume and fractional anisotropy reductions in the corpus callosum, posterior cingulum, and prefrontal white matter compared with controls. There were corresponding increases in radial diffusivity in the callosal splenium in patients compared with controls. No significant group differences were detected in grey matter. In patients, lithium was associated with a bilateral increase in grey matter volume in the temporal lobes, but not with any DTI parameter. CONCLUSIONS Euthymic bipolar I disorder is characterized by both diffuse global white matter deficits and potential regional disorganization in interhemispheric and longitudinal tracts, while grey matter appears to be preserved.
Collapse
Affiliation(s)
- Louise Emsell
- Clinical Neuroimaging Laboratory, National University of Ireland Galway, Galway, Ireland; Translational MRI, Department of Imaging and Pathology, KU Leuven and Radiology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Kochunov P, Rogers W, Mangin JF, Lancaster J. A library of cortical morphology analysis tools to study development, aging and genetics of cerebral cortex. Neuroinformatics 2012; 10:81-96. [PMID: 21698393 DOI: 10.1007/s12021-011-9127-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Sharing of analysis techniques and tools is among the main driving forces of modern neuroscience. We describe a library of tools developed to quantify global and regional differences in cortical anatomy in high resolution structural MR images. This library is distributed as a plug-in application for popular structural analysis software, BrainVisa (BV). It contains tools to measure global and regional gyrification, gray matter thickness and sulcal and gyral white matter spans. We provide a description of each tool and examples for several case studies to demonstrate their use. These examples show how the BV library was used to study cortical folding process during antenatal development and recapitulation of this process during cerebral aging. Further, the BV library was used to perform translation research in humans and non-human primates on the genetics of cerebral gyrification. This library, including source code and self-contained binaries for popular computer platforms, is available from the NIH-Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) resource ( http://www.nitrc.org/projects/brainvisa_ext ).
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | | | | | |
Collapse
|
9
|
The relationship between cortical sulcal variability and cognitive performance in the elderly. Neuroimage 2011; 56:865-73. [DOI: 10.1016/j.neuroimage.2011.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/28/2011] [Accepted: 03/04/2011] [Indexed: 01/26/2023] Open
|
10
|
Abstract
Mood stabilizers that are approved for treating bipolar disorder (BD), when given chronically to rats, decrease expression of markers of the brain arachidonic metabolic cascade, and reduce excitotoxicity and neuroinflammation-induced upregulation of these markers. These observations, plus evidence for neuroinflammation and excitotoxicity in BD, suggest that arachidonic acid (AA) cascade markers are upregulated in the BD brain. To test this hypothesis, these markers were measured in postmortem frontal cortex from 10 BD patients and 10 age-matched controls. Mean protein and mRNA levels of AA-selective cytosolic phospholipase A(2) (cPLA(2)) IVA, secretory sPLA(2) IIA, cyclooxygenase (COX)-2 and membrane prostaglandin E synthase (mPGES) were significantly elevated in the BD cortex. Levels of COX-1 and cytosolic PGES (cPGES) were significantly reduced relative to controls, whereas Ca(2+)-independent iPLA(2)VIA, 5-, 12-, and 15-lipoxygenase, thromboxane synthase and cytochrome p450 epoxygenase protein and mRNA levels were not significantly different. These results confirm that the brain AA cascade is disturbed in BD, and that certain enzymes associated with AA release from membrane phospholipid and with its downstream metabolism are upregulated. As mood stabilizers downregulate many of these brain enzymes in animal models, their clinical efficacy may depend on suppressing a pathologically upregulated cascade in BD. An upregulated cascade should be considered as a target for drug development and for neuroimaging in BD.
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Study of the variability of the cortical mantle thickness is now a key issue in neuroimaging. Here we describe a more recent trend aiming at the study of the variability of the cortical folding morphology. RECENT FINDINGS Computerized three-dimensional versions of gyrification index and other morphometric features dedicated to the folding patterns are modified in psychiatric syndromes and neurologic disorders. These observations provide new insights into the mechanisms involved in abnormal development or abnormal aging. SUMMARY Quantification of the folding morphology will contribute to the global endeavor aiming at building biomarkers from neuroimaging data, with a specific focus on developmental diseases.
Collapse
|
12
|
Pae CU, Drago A, Mandelli L, De Ronchi D, Serretti A. TAAR 6 and HSP-70 variations associated with bipolar disorder. Neurosci Lett 2009; 465:257-61. [DOI: 10.1016/j.neulet.2009.09.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 09/09/2009] [Accepted: 09/12/2009] [Indexed: 12/26/2022]
|
13
|
Rapoport SI, Basselin M, Kim HW, Rao JS. Bipolar disorder and mechanisms of action of mood stabilizers. ACTA ACUST UNITED AC 2009; 61:185-209. [PMID: 19555719 DOI: 10.1016/j.brainresrev.2009.06.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/03/2009] [Accepted: 06/15/2009] [Indexed: 11/30/2022]
Abstract
Bipolar disorder (BD) is a major medical and social burden, whose cause, pathophysiology and treatment are not agreed on. It is characterized by recurrent periods of mania and depression (Bipolar I) or of hypomania and depression (Bipolar II). Its inheritance is polygenic, with evidence of a neurotransmission imbalance and disease progression. Patients often take multiple agents concurrently, with incomplete therapeutic success, particularly with regard to depression. Suicide is common. Of the hypotheses regarding the action of mood stabilizers in BD, the "arachidonic acid (AA) cascade" hypothesis is presented in detail in this review. It is based on evidence that chronic administration of lithium, carbamazepine, sodium valproate, or lamotrigine to rats downregulated AA turnover in brain phospholipids, formation of prostaglandin E(2), and/or expression of AA cascade enzymes, including cytosolic phospholipase A(2), cyclooxygenase-2 and/or acyl-CoA synthetase. The changes were selective for AA, since brain docosahexaenoic or palmitic acid metabolism, when measured, was unaffected, and topiramate, ineffective in BD, did not modify the rat brain AA cascade. Downregulation of the cascade by the mood stabilizers corresponded to inhibition of AA neurotransmission via dopaminergic D(2)-like and glutamatergic NMDA receptors. Unlike the mood stabilizers, antidepressants that increase switching of bipolar depression to mania upregulated the rat brain AA cascade. These observations suggest that the brain AA cascade is a common target of mood stabilizers, and that bipolar symptoms, particularly mania, are associated with an upregulated cascade and excess AA signaling via D(2)-like and NMDA receptors. This review presents ways to test these suggestions.
Collapse
Affiliation(s)
- Stanley I Rapoport
- Brain Physiology and Metabolism Section, National Institute on Aging, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| | | | | | | |
Collapse
|
14
|
Assessing the role of cingulate cortex in bipolar disorder: neuropathological, structural and functional imaging data. ACTA ACUST UNITED AC 2008; 59:9-21. [PMID: 18539335 DOI: 10.1016/j.brainresrev.2008.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 04/05/2008] [Accepted: 04/08/2008] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Most of the neuroanatomical models of bipolar disorder (BD) propose a key role for the anterior cingulate cortex (ACC). We provide here a review of currently available data regarding the CC neuroimaging and neuropathological alterations in BD. MATERIALS AND METHODS After an exploratory search of the MEDLINE, we first identified all English-written articles that provide separate data for BD patients and report original experimental data on cingulate gyrus. Subsequently, we selected those including neuroimaging or neuropathological data. Among the 161 articles updated through June 2007, 81 articles were retained using this procedure. RESULTS The review of in vivo volumetric imaging data, as well as ex vivo morphometric and histological studies indicates that BD patients show volume changes of the subgenual ACC (sgACC-BA 25 and part of 24) during the early stages of the disease. Whether this phenomenon is due to neuronal and glial depletion or damage of corticocortical connections is still a matter of debate. The resting state activity in the left BA 25 appears to be state dependent showing significant increase during mania and decrease during depressive phases. The presence of a deficient GABAergic activity in ACC is also documented. Pharmacological treatment partly restores BD-related functional imaging changes. CONCLUSION The present review reveals the striking discrepancies of the experimental results present both for functional and structural imaging studies but also for neuropathological analyses. Methodological and conceptual limitations are addressed with particular reference to the heterogeneity of BD clinical patterns. We also critically discuss the validity of CC changes as possible trait- or state-markers of the disease.
Collapse
|