1
|
Kedar O, Golberg A, Obolski U, Confino-Cohen R. Allergic to bureaucracy? Regulatory allergenicity assessments of novel food: Motivations, challenges, compromises, and possibilities. Compr Rev Food Sci Food Saf 2024; 23:e13300. [PMID: 38477215 DOI: 10.1111/1541-4337.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 03/14/2024]
Abstract
New sources of proteins are essential to meet the demands of the growing world population and evolving food trends. Assessing the allergenicity of proteins in novel food (NF) poses a significant food safety regulatory challenge. The Codex Alimentarius Commission presented an allergenicity assessment protocol for genetically modified (GM) foods, which can also be adapted for NF. Since no single laboratory test can adequately predict the allergenic potential of NF, the protocol follows a weight-of-evidence approach, evaluated by experts, as part of a risk management process. Regulatory bodies worldwide have adopted this safety protocol, which, among other things, promotes global harmonization. This review unravels the reliability and various motivations, terms, concepts, and approaches of allergenicity assessments, aiming to enhance understanding among manufacturers and the public. Health Canada, Food Safety Commission JAPAN, and Food Standards Australia New Zealand were surveyed, focusing on the European Food Safety Authority and the US Food Safety Administration for examples of scientific opinions regarding allergenicity assessments for novel and GM foods, from 2019 to 2023. According to our findings, current regulatory allergenicity assessments for NF approval primarily rely on literature reviews. Only a few of the NF assessments proactively presented additional tests. We recommend conducting bioinformatic analyses on NF when a panel of experts deems that there is insufficient prior scientific research.
Collapse
Affiliation(s)
- Odeya Kedar
- Faculty of Exact Sciences, Department of Environmental Studies, The Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Alexander Golberg
- Faculty of Exact Sciences, Department of Environmental Studies, The Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Obolski
- Faculty of Exact Sciences, Department of Environmental Studies, The Porter School of Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
- Faculty of Medicine, School of Public Health, Department of Epidemiology and Preventive Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Confino-Cohen
- Allergy and Clinical Immunology Unit, Meir Medical Center, Kfar Saba, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Bao C, Chen O, Sheng H, Zhang J, Luo Y, Hayes BW, Liang H, Liedtke W, Ji RR, Abraham SN. A mast cell-thermoregulatory neuron circuit axis regulates hypothermia in anaphylaxis. Sci Immunol 2023; 8:eadc9417. [PMID: 36930731 PMCID: PMC10331449 DOI: 10.1126/sciimmunol.adc9417] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023]
Abstract
IgE-mediated anaphylaxis is an acute life-threatening systemic reaction to allergens, including certain foods and venoms. Anaphylaxis is triggered when blood-borne allergens activate IgE-bound perivascular mast cells (MCs) throughout the body, causing an extensive systemic release of MC mediators. Through precipitating vasodilatation and vascular leakage, these mediators are believed to trigger a sharp drop in blood pressure in humans and in core body temperature in animals. We report that the IgE/MC-mediated drop in body temperature in mice associated with anaphylaxis also requires the body's thermoregulatory neural circuit. This circuit is activated when granule-borne chymase from MCs is deposited on proximal TRPV1+ sensory neurons and stimulates them via protease-activated receptor-1. This triggers the activation of the body's thermoregulatory neural network, which rapidly attenuates brown adipose tissue thermogenesis to cause hypothermia. Mice deficient in either chymase or TRPV1 exhibited limited IgE-mediated anaphylaxis, and, in wild-type mice, anaphylaxis could be recapitulated simply by systemically activating TRPV1+ sensory neurons. Thus, in addition to their well-known effects on the vasculature, MC products, especially chymase, promote IgE-mediated anaphylaxis by activating the thermoregulatory neural circuit.
Collapse
Affiliation(s)
- Chunjing Bao
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ouyang Chen
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Huaxin Sheng
- Multidisciplinary Neuroprotection Laboratories, Center of Perioperative Organ Protection, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey Zhang
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yikai Luo
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Byron W. Hayes
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Han Liang
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wolfgang Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York NY 10010
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Soman N. Abraham
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham NC 27710, USA
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Singapore 169857, Singapore
| |
Collapse
|
3
|
Xi GP, Zhang Q, Yin J. Establishment and characterization of murine models of asthma and subcutaneous immunotherapy for Humulus pollen allergy. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:443-455. [PMID: 33434413 PMCID: PMC8127558 DOI: 10.1002/iid3.405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/20/2022]
Abstract
Introduction Humulus pollen is an important cause of allergic asthma in East Asia. There have been some murine models for Humulus pollen allergy established by intraperitoneal (IP) sensitization and nasal drip stimulation, but they were not comprehensive enough. Here, we used atomized inhalation for challenge and compared the subcutaneous (SC) and IP sensitization routes to determine the optimal method to establish a model of asthma induced by Humulus pollen. Subsequently, we tried to develop a rapid subcutaneous immunotherapy (SCIT) model for Humulus allergy. Methods BALB/c Mice were sensitized through the SC or IP route, with respective reference to previously established sensitization methods and allergen dosing, and challenged with nebulized Humulus pollen extract to induce asthma. To compare the two sensitization methods, airway hyperresponsiveness (AHR), inflammatory cell infiltration, allergen‐specific serum immunoglobulin (Ig)E (sIgE) levels, cytokine levels, and lung histopathology were assessed. The effects of SCIT (once every other day for 16 days) on airway inflammation, AHR, sIgE, and allergen‐specific serum IgG2a (sIgG2a) levels were evaluated by using the model established in this study. Results Although mice sensitized by the SC or IP routes both showed AHR and airway inflammation, the SC route elicited significantly higher levels of sIgE, eosinophil inflammation, and T helper type 2 cytokines, compared with the IP route. SCIT in the treatment group significantly reduced the titers of sIgE, enhanced the titers of sIgG2a, and effectively alleviated pulmonary inflammation and AHR, compared with the vehicle group. Conclusions The SC route can be used to establish a murine model of Humulus pollen allergy that recapitulates the characteristics of clinical allergic asthma. Short‐term SCIT can significantly improve symptoms and pathophysiology in asthmatic mice.
Collapse
Affiliation(s)
- Guang P Xi
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China.,National Clinical Research Center for Dermatologic and immunologic Diseases, Beijing, China
| | - Qian Zhang
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China.,National Clinical Research Center for Dermatologic and immunologic Diseases, Beijing, China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.,Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China.,National Clinical Research Center for Dermatologic and immunologic Diseases, Beijing, China
| |
Collapse
|
4
|
Kim J, Oh J, Kang CS, Choi YS. Virus-like Particle (VLP) Mediated Antigen Delivery as a Sensitization Tool of Experimental Allergy Mouse Models. Immune Netw 2020; 20:e35. [PMID: 32895622 PMCID: PMC7458801 DOI: 10.4110/in.2020.20.e35] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/31/2022] Open
Abstract
Antigen delivery systems play critical roles in determining the quality and quantity of Ab responses in vivo. Induction of protective antibodies by B cells is essential in the development of vaccines against infectious pathogens, whereas production of IgE antibodies is prerequisite for investigation of allergic responses, or type 1 hypersensitivity reactions. Virus-like particles (VLPs) are efficient platforms for expression of proteins of interest in highly repetitive manners, which grants strong Ab responses to target antigens. Here, we report that delivery of hen egg lysozyme (HEL), a model allergen, through VLP could provoke strong HEL specific IgE Ab responses in mice. Moreover, acute allergic responses were robustly induced in the mice sensitized with VLPs that express HEL, when challenged with recombinant HEL protein. Our data show that antigen delivery in the context of VLPs could function as a platform for sensitization of mice and for subsequent examination of allergic reactions to molecules of interest.
Collapse
Affiliation(s)
- Juhyung Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jeein Oh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Chon-Sik Kang
- National Institute of Crop Science, Rural Development Administration (RDA), Wanju 55365, Korea
| | - Youn Soo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,Department of Medicine, Seoul National University College of Medicine, Seoul 03080, Korea.,Transplant Research Institute, Seoul National University Hospital, Seoul 03080, Korea
| |
Collapse
|
5
|
Yasuda Y, Nagano T, Kobayashi K, Nishimura Y. Group 2 Innate Lymphoid Cells and the House Dust Mite-Induced Asthma Mouse Model. Cells 2020; 9:E1178. [PMID: 32397396 PMCID: PMC7290734 DOI: 10.3390/cells9051178] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Asthma is an important issue not only in health but also in economics worldwide. Therefore, asthma animal models have been frequently used to understand the pathogenesis of asthma. Recently, in addition to acquired immunity, innate immunity has also been thought to be involved in asthma. Among innate immune cells, group 2 innate lymphoid cells (ILC2s) have been considered to be crucial for eosinophilic airway inflammation by releasing T helper 2 cytokines. Moreover, house dust mites (HDMs) belonging to group 1 act on airway epithelial cells not only as allergens but also as cysteine proteases. The production of interleukin-25 (IL-25), IL-33, and thymic stromal lymphopoietin (TSLP) from airway epithelial cells was induced by the protease activity of HDMs. These cytokines activate ILC2s, and activated ILC2s produce IL-5, IL-9, IL-13, and amphiregulin. Hence, the HDM-induced asthma mouse model greatly contributes to understanding asthma pathogenesis. In this review, we highlight the relationship between ILC2s and the HDM in the asthma mouse model to help researchers and clinicians not only choose a proper asthma mouse model but also to understand the molecular mechanisms underlying HDM-induced asthma.
Collapse
Affiliation(s)
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Kobe, Hyogo 650-0017, Japan; (Y.Y.); (K.K.); (Y.N.)
| | | | | |
Collapse
|
6
|
Combined IMIG and Immune Ig Attenuate Allergic Responses in Beagle Dogs. J Immunol Res 2020; 2020:2061609. [PMID: 32377529 PMCID: PMC7191374 DOI: 10.1155/2020/2061609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/29/2020] [Accepted: 03/13/2020] [Indexed: 11/18/2022] Open
Abstract
Background We previously reported attenuation of serum OVA-specific IgE levels and of lymphocyte-derived IL-4, both nominal markers of allergic immunity, following injection of a combination of homologous (mouse) polyclonal anti-idiotypic immunoglobulin (Ig) and immune Ig in BALB/c mice. We predicted this might generalize to other species and using heterologous mixtures of Igs. This was assessed in mice using OVA sensitization in the presence of human Igs as a source of both anti-idiotype Ig and immune Ig and in dogs with peanut butter-induced allergic responses. Methods Eight-week-old BALB/c mice received OVA immunization and 5 weekly injections of immune Ig or anti-idiotype Ig from either homologous (mouse) or heterologous (human) sources. Five-month-old Beagles received weekly topical exposure (on the abdomen) to peanut butter and treatment with pooled dog Ig and dog antirabies immune Ig, or a combination of human IMIG and human anti-Tet. All mice/dogs thereafter received a final allergen challenge, and serum IgG, IgE, and allergen-induced IL-2/IL-4 and IL-31 production in 72 hr cultures was measured. Results In mice attenuation of OVA-induced allergy (IgE-specific Ig and OVA-induced IL-4) was seen using both mouse and human Ig mixtures, without effect on OVA serum IgG or OVA-induced IL-2. Attenuation of concanavalin A- (ConA-) induced IL-4 : IL-2 production and of peanut butter-induced IL-4 and IL-31 was seen in dogs receiving combinations of both heterologous and homologous immune Igs and anti-idiotype Igs, with no decline in IL-2 production. Allergen-specific IgE/IgG was not detectable in dog serum, but there was a trend to lower total serum IgE levels (and decreased IgE : IgG ratios). Conclusion Homologous and heterologous combinations of polyclonal IMIG and immune Ig attenuate allergic responses in mice and dogs. This treatment protocol represents a novel approach which can be adapted for allergic desensitization in veterinary and human use.
Collapse
|
7
|
Sugita K, Akdis CA. Recent developments and advances in atopic dermatitis and food allergy. Allergol Int 2020; 69:204-214. [PMID: 31648922 DOI: 10.1016/j.alit.2019.08.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 02/07/2023] Open
Abstract
This review highlights recent advances in atopic dermatitis (AD) and food allergy (FA), particularly on molecular mechanisms and disease endotypes, recent developments in global strategies for the management of patients, pipeline for future treatments, primary and secondary prevention and psychosocial aspects. During the recent years, there has been major advances in personalized/precision medicine linked to better understanding of disease pathophysiology and precision treatment options of AD. A greater understanding of the molecular and cellular mechanisms of AD through substantial progress in epidemiology, genetics, skin immunology and psychological aspects resulted in advancements in the precision management of AD. However, the implementation of precision medicine in the management of AD still requires the validation of reliable biomarkers, which will provide more tailored management, starting from prevention strategies towards targeted therapies for more severe diseases. Cutaneous exposure to food via defective barriers is an important route of sensitization to food allergens. Studies on the role of the skin barrier genes demonstrated their association with the development of IgE-mediated FA, and suggest novel prevention and treatment strategies for type 2 diseases in general because of their link to barrier defects not only in AD and FA, but also in asthma, chronic rhinosinusitis, allergic rhinitis and inflammatory bowel disease. The development of more accurate diagnostic tools, biomarkers for early prediction, and innovative solutions require a better understanding of molecular mechanisms and the pathophysiology of FA. Based on these developments, this review provides an overview of novel developments and advances in AD and FA, which are reported particularly during the last two years.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Allergic diseases represent a growing global health concern, especially among pediatric populations. Current strategies for the treatment of allergies and asthma focus on limiting the severity of the symptoms; however, additional research investigating the mechanisms promoting inflammation in the context of allergic reactions may lead to the development of more effective therapeutic strategies. RECENT FINDINGS Novel studies have highlighted the contributions of innate lymphocytes to the induction of inflammatory responses to allergens. Remarkably, neuron-derived signals, hormones, and even vitamins have been suggested to modulate the activity of innate lymphocytes, opening new windows of opportunity for the treatment of allergic inflammation. SUMMARY These studies highlight the complex interactions of the nervous, endocrine, and immune system that promote pathology in the context of allergic inflammation. Further studies are required to understand these interactions in order to aid in the development of novel and much-needed therapies to treat allergic conditions.
Collapse
|
9
|
Inhibition of antigen-specific immune responses by co-application of an indoleamine 2,3-dioxygenase (IDO)-encoding vector requires antigen transgene expression focused on dendritic cells. Amino Acids 2020; 52:411-424. [PMID: 32008091 DOI: 10.1007/s00726-020-02817-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
We have previously shown that particle-mediated epidermal delivery (PMED) of plasmids encoding β-galactosidase (βGal) under control of the fascin-1 promoter (pFascin-βGal) yielded selective production of the protein in skin dendritic cells (DCs), and suppressed Th2 responses in a mouse model of type I allergy by inducing Th1/Tc1 cells. However, intranasal challenge of mice immunized with pFascin-βGal induced airway hyperreactivity (AHR) and neutrophilic inflammation in the lung. The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) has been implicated in immune suppression and tolerance induction. Here we investigated the consequences of co-application of an IDO-encoding vector on the modulatory effect of DNA vaccination by PMED using pFascin-βGal in models of eosinophilic allergic and non-eosinophilic intrinsic airway inflammation. IDO-encoding plasmids and pFascin-βGal or pCMV-βGal were co-applied to abdominal skin of BALB/c mice without, before or after sensitization with βGal protein. Immune responses in the lung were analysed after intranasal provocation and airway reactivity was determined by whole body plethysmography. Co-application of pCMV-IDO with pFascin-βGal, but not pCMV-βGal inhibited the Th1/Tc1 immune response after PMED. Moreover, AHR in those mice was attenuated following intranasal challenge. Therapeutic vaccination of βGal-sensitized mice with pFascin-βGal plus pCMV-IDO slightly suppressed airway inflammation and AHR after provocation with βGal protein, while prophylactic vaccination was not effective. Altogether, our data suggest that only the combination of DC-restricted antigen and ubiquitous IDO expression attenuated asthma responses in mice, most probably by forming a tryptophan-depleted and kynurenine-enriched micromilieu known to affect neutrophils and T cells.
Collapse
|
10
|
Orgel K, Smeekens JM, Ye P, Fotsch L, Guo R, Miller DR, Pardo-Manuel de Villena F, Burks AW, Ferris MT, Kulis MD. Genetic diversity between mouse strains allows identification of the CC027/GeniUnc strain as an orally reactive model of peanut allergy. J Allergy Clin Immunol 2018; 143:1027-1037.e7. [PMID: 30342892 PMCID: PMC7252586 DOI: 10.1016/j.jaci.2018.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 09/17/2018] [Accepted: 10/01/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Improved animal models are needed to understand the genetic and environmental factors that contribute to food allergy. OBJECTIVE We sought to assess food allergy phenotypes in a genetically diverse collection of mice. METHODS We selected 16 Collaborative Cross (CC) mouse strains, as well as the classic inbred C57BL/6J, C3H/HeJ, and BALB/cJ strains, for screening. Female mice were sensitized to peanut intragastrically with or without cholera toxin and then challenged with peanut by means of oral gavage or intraperitoneal injection and assessed for anaphylaxis. Peanut-specific immunoglobulins, T-cell cytokines, regulatory T cells, mast cells, and basophils were quantified. RESULTS Eleven of the 16 CC strains had allergic reactions to intraperitoneal peanut challenge, whereas only CC027/GeniUnc mice reproducibly experienced severe symptoms after oral food challenge (OFC). CC027/GeniUnc, C3H/HeJ, and C57BL/6J mice all mounted a TH2 response against peanut, leading to production of IL-4 and IgE, but only the CC027/GeniUnc mice reacted to OFC. Orally induced anaphylaxis in CC027/GeniUnc mice was correlated with serum levels of Ara h 2 in circulation but not with allergen-specific IgE or mucosal mast cell protease 1 levels, indicating systemic allergen absorption is important for anaphylaxis through the gastrointestinal tract. Furthermore, CC027/GeniUnc, but not C3H/HeJ or BALB/cJ, mice can be sensitized in the absence of cholera toxin and react on OFC to peanut. CONCLUSIONS We have identified and characterized CC027/GeniUnc mice as a strain that is genetically susceptible to peanut allergy and prone to severe reactions after OFC. More broadly, these findings demonstrate the untapped potential of the CC population in developing novel models for allergy research.
Collapse
Affiliation(s)
- Kelly Orgel
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC; University of North Carolina Food Allergy Initiative, Chapel Hill, NC
| | - Johanna M Smeekens
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC; University of North Carolina Food Allergy Initiative, Chapel Hill, NC
| | - Ping Ye
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC; University of North Carolina Food Allergy Initiative, Chapel Hill, NC
| | - Lauren Fotsch
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC; University of North Carolina Food Allergy Initiative, Chapel Hill, NC
| | - Rishu Guo
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC; University of North Carolina Food Allergy Initiative, Chapel Hill, NC
| | - Darla R Miller
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC; Lineberger Comprehensive Cancer Center, Chapel Hill, NC
| | - A Wesley Burks
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC; University of North Carolina Food Allergy Initiative, Chapel Hill, NC
| | - Martin T Ferris
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC.
| | - Michael D Kulis
- Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, NC; University of North Carolina Food Allergy Initiative, Chapel Hill, NC.
| |
Collapse
|
11
|
de la Torre MV, Baeza ML, Nájera L, Zubeldia JM. Comparative study of adjuvants for allergen-specific immunotherapy in a murine model. Immunotherapy 2018; 10:1219-1228. [PMID: 30244623 DOI: 10.2217/imt-2018-0072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To compare the immunological and clinical changes induced by allergen-specific immunotherapy (AIT) using different adjuvants. MATERIALS & METHODS Olea europaea pollen-sensitized mice were treated with olea plus aluminum hydroxide, calcium phosphate, monophosphoryl lipid A (MPL) or immunostimulatory sequences (ISS). RESULTS Aluminum hydroxide seems to drive initially to a Th2-type response. Bacteria-derived adjuvants (MPL and ISS) skew the immune response toward Th1 and Treg pathways. Specific-IgE production was lower after AIT with MPL and ISS. Moreover, IgG2a production significantly increased in ISS-treated mice. Bacteria-derived adjuvants also improved the Th1 cytokine response due to IFN-γ higher secretion. In addition, they improved bronchial hyper-reactivity and lung inflammation. CONCLUSION Bacteria-derived adjuvants may enhance the efficacy of AIT.
Collapse
Affiliation(s)
| | - Maria Luisa Baeza
- Allergy Service, Gregorio Marañón University General Hospital, Madrid, Spain.,Biomedical Research Network on Rare Diseases (CIBERER)-U761, Madrid, Spain.,Gregorio Marañón Health Research Institute, Madrid, Spain
| | - Laura Nájera
- Patology Service, Puerta de Hierro-Majadahonda University Hospital, Madrid, Spain
| | - José Manuel Zubeldia
- Allergy Service, Gregorio Marañón University General Hospital, Madrid, Spain.,Biomedical Research Network on Rare Diseases (CIBERER)-U761, Madrid, Spain.,Gregorio Marañón Health Research Institute, Madrid, Spain
| |
Collapse
|
12
|
Hufnagl K, Jensen-Jarolim E. Vitamin A and D in allergy: from experimental animal models and cellular studies to human disease. ALLERGO JOURNAL 2018. [DOI: 10.1007/s15007-018-1579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Leuthard DS, Duda A, Freiberger SN, Weiss S, Dommann I, Fenini G, Contassot E, Kramer MF, Skinner MA, Kündig TM, Heath MD, Johansen P. Microcrystalline Tyrosine and Aluminum as Adjuvants in Allergen-Specific Immunotherapy Protect from IgE-Mediated Reactivity in Mouse Models and Act Independently of Inflammasome and TLR Signaling. THE JOURNAL OF IMMUNOLOGY 2018; 200:3151-3159. [PMID: 29592962 PMCID: PMC5911931 DOI: 10.4049/jimmunol.1800035] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/02/2018] [Indexed: 01/01/2023]
Abstract
Allergen immunotherapy (AIT) is the only modality that can modify immune responses to allergen exposure, but therapeutic coverage is low. One strategy to improve AIT safety and efficacy is the use of new or improved adjuvants. This study investigates immune responses produced by microcrystalline tyrosine (MCT)–based vaccines as compared with conventional aluminum hydroxide (alum). Wild-type, immune-signaling–deficient, and TCR-transgenic mice were treated with different Ags (e.g., OVA and cat dander Fel d 1), plus MCT or alum as depot adjuvants. Specific Ab responses in serum were measured by ELISA, whereas cytokine secretion was measured both in culture supernatants by ELISA or by flow cytometry of spleen cells. Upon initiation of AIT in allergic mice, body temperature and further clinical signs were used as indicators for anaphylaxis. Overall, MCT and alum induced comparable B and T cell responses, which were independent of TLR signaling. Alum induced stronger IgE and IL-4 secretion than MCT. MCT and alum induced caspase-dependent IL-1β secretion in human monocytes in vitro, but inflammasome activation had no functional effect on inflammatory and Ab responses measured in vivo. In sensitized mice, AIT with MCT-adjuvanted allergens caused fewer anaphylactic reactions compared with alum-adjuvanted allergens. As depot adjuvants, MCT and alum are comparably effective in strength and mechanism of Ag-specific IgG induction and induction of T cell responses. The biocompatible and biodegradable MCT seems therefore a suitable alternative adjuvant to alum-based vaccines and AIT.
Collapse
Affiliation(s)
- Deborah S Leuthard
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Agathe Duda
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Sina Weiss
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Isabella Dommann
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Gabriele Fenini
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Emmanuel Contassot
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Matthias F Kramer
- Bencard Allergie GmbH, 80992 Munich, Germany; and.,Allergy Therapeutics Ltd., Worthing BN14 8SA, United Kingdom
| | | | - Thomas M Kündig
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Matthew D Heath
- Allergy Therapeutics Ltd., Worthing BN14 8SA, United Kingdom
| | - Pål Johansen
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland; .,Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
14
|
Vitamin A and D in allergy: from experimental animal models and cellular studies to human disease. ACTA ACUST UNITED AC 2018; 27:72-78. [PMID: 29707474 PMCID: PMC5910477 DOI: 10.1007/s40629-018-0054-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/22/2018] [Indexed: 12/28/2022]
Abstract
Introduction Vitamins A and D are able to modulate innate and adaptive immune responses and may therefore influence the development and the course of allergic diseases. Materials and methods This article reviews the current evidence for the experimental effects of vitamins A and D in vivo in animal models and on immune cells in vitro, and discusses their translational implication. A systematic literature search over the last 10 years was performed using MEDLINE and PubMed databases. Results Deficiencies of vitamin A or vitamin D in mouse models of allergic asthma seem to exacerbate allergic symptoms along with enhanced lung inflammation and Th2 cytokine production. In contrast, supplementation regimes especially with vitamin D were able to attenuate symptoms in therapeutic mouse models. The active metabolites retinoic acid (RA) and 1,25-dihydroxyvitamin D3 (VD3) induced tolerogenic dendritic cells (DCs) and up-regulated T‑regulatory cells in the allergic sensitization phase, which likely contributes to tolerance induction. Additionally, RA and VD3 maintained the stability of eosinophils and mast cells in the effector phase, thereby reducing allergic mediator release. Thus, both active vitamin metabolites RA and VD3 are able to influence allergic immune responses at several immunological sites. Conclusion Animal studies predict that vitamin A and D may also be attractive players in the control of allergy in humans. Whether these experimental observations can be translated to the human situation remains open, as results from clinical trials are controversial.
Collapse
|
15
|
Jensen-Jarolim E, Bax HJ, Bianchini R, Crescioli S, Daniels-Wells TR, Dombrowicz D, Fiebiger E, Gould HJ, Irshad S, Janda J, Josephs DH, Levi-Schaffer F, O'Mahony L, Pellizzari G, Penichet ML, Redegeld F, Roth-Walter F, Singer J, Untersmayr E, Vangelista L, Karagiannis SN. AllergoOncology: Opposite outcomes of immune tolerance in allergy and cancer. Allergy 2018; 73:328-340. [PMID: 28921585 PMCID: PMC6038916 DOI: 10.1111/all.13311] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2017] [Indexed: 12/11/2022]
Abstract
While desired for the cure of allergy, regulatory immune cell subsets and nonclassical Th2-biased inflammatory mediators in the tumour microenvironment can contribute to immune suppression and escape of tumours from immunological detection and clearance. A key aim in the cancer field is therefore to design interventions that can break immunological tolerance and halt cancer progression, whereas on the contrary allergen immunotherapy exactly aims to induce tolerance. In this position paper, we review insights on immune tolerance derived from allergy and from cancer inflammation, focusing on what is known about the roles of key immune cells and mediators. We propose that research in the field of AllergoOncology that aims to delineate these immunological mechanisms with juxtaposed clinical consequences in allergy and cancer may point to novel avenues for therapeutic interventions that stand to benefit both disciplines.
Collapse
Affiliation(s)
- E Jensen-Jarolim
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
- Centre of Pathophysiology, Infectiology & Immunology, Institute of Pathophysiology & Allergy Research, Medical University Vienna, Vienna, Austria
| | - H J Bax
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - R Bianchini
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
| | - S Crescioli
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - T R Daniels-Wells
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - D Dombrowicz
- INSERM, CHU Lille, European Genomic Institute of Diabetes, Institut Pasteur de Lille, U1011 - Recepteurs Nucleaires, Maladies Cardiovasculaires et Diabete, Universite de Lille, Lille, France
| | - E Fiebiger
- Division of Gastroenterology, Hepatology and Nutrition Research, Department Medicine Research, Childrens' University Hospital Boston, Boston, MA, USA
| | - H J Gould
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - S Irshad
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| | - J Janda
- Faculty of Science, Charles University, Prague, Czech Republic
| | - D H Josephs
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - F Levi-Schaffer
- Faculty of Medicine, Pharmacology and Experimental Therapeutics Unit, The Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - L O'Mahony
- Molecular Immunology, Swiss Institute of Allergy and Asthma Research, Davos, Switzerland
| | - G Pellizzari
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - M L Penichet
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Centre, University of California, Los Angeles, CA, USA
| | - F Redegeld
- Faculty of Science, Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - F Roth-Walter
- The Interuniversity Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University Vienna, University Vienna, Vienna, Austria
- Centre of Pathophysiology, Infectiology & Immunology, Institute of Pathophysiology & Allergy Research, Medical University Vienna, Vienna, Austria
| | - J Singer
- Centre of Pathophysiology, Infectiology & Immunology, Institute of Pathophysiology & Allergy Research, Medical University Vienna, Vienna, Austria
| | - E Untersmayr
- Centre of Pathophysiology, Infectiology & Immunology, Institute of Pathophysiology & Allergy Research, Medical University Vienna, Vienna, Austria
| | - L Vangelista
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - S N Karagiannis
- St. John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| |
Collapse
|