1
|
Golwala ZM, Spiridou Goncalves H, Moirangthem RD, Evans G, Lizot S, de Koning C, Garrigue A, Corredera MM, Ocampo-Godinez JM, Howley E, Kricke S, Awuah A, Obiri-Yeboa I, Rai R, Sebire N, Bernard F, Bordon Cueto De Braem V, Boztug K, Cole T, Gennery AR, Hackett S, Hambleton S, Holm M, Kusters MA, Klocperk A, Marzollo A, Marcus N, Nademi Z, Pachlopnik Schmid J, Pichler H, Sellmer A, Soler-Palacin P, Soomann M, Torpiano P, van Montfrans J, Nierkens S, Adams S, Buckland M, Gilmour K, Worth A, Thrasher AJ, Davies EG, André I, Kreins AY. Ex vivo T-lymphopoiesis assays assisting corrective treatment choice for genetically undefined T-lymphocytopenia. Clin Immunol 2025; 274:110453. [PMID: 39965724 DOI: 10.1016/j.clim.2025.110453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Persistent selective T-lymphocytopenia is found both in SCID and congenital athymia. Without molecular diagnosis, it is challenging to determine whether HCT or thymus transplantation ought to be performed. Ex vivo T-lymphopoiesis assays have been proposed to assist clinical decision-making for genetically undefined patients. We investigated 20 T-lymphocytopenic patients, including 13 patients awaiting first-line treatment and 7 patients with failed immune reconstitution after previous HCT or thymus transplantation. Whilst developmental blocks in ex vivo T-lymphopoiesis indicated hematopoietic cell-intrinsic defects, successful T-lymphocyte differentiation required careful interpretation, in conjunction with clinical status, immunophenotyping, and genetic investigations. Of the 20 patients, 13 proceeded to treatment, with successful immune reconstitution observed in 4 of the 6 patients post-HCT and 4 of the 7 patients after thymus transplantation, the latter including two patients who had previously undergone HCT. Whilst further validation and standardization are required, we conclude that assessing ex vivo T-lymphopoiesis during the diagnostic pathway for genetically undefined T-lymphocytopenia improves patient outcomes by facilitating corrective treatment choice.
Collapse
Affiliation(s)
- Zainab M Golwala
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Helena Spiridou Goncalves
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom
| | - Ranjita Devi Moirangthem
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité; Paris, France; Smart Immune; Paris, France
| | - Grace Evans
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom
| | - Sabrina Lizot
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité; Paris, France
| | - Coco de Koning
- Center for Translational Immunology (CTI), University Medical Center Utrecht; Utrecht, Netherlands
| | - Alexandrine Garrigue
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité; Paris, France
| | - Marta Martin Corredera
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité; Paris, France; Smart Immune; Paris, France
| | - Juan Moises Ocampo-Godinez
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom
| | - Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Susanne Kricke
- SIHMDS-Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Arnold Awuah
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Irene Obiri-Yeboa
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Rajeev Rai
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom
| | - Neil Sebire
- Department of Histopathology, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Fanette Bernard
- Paediatric Onco-Haematology Unit, Geneva University Hospital; Geneva, Switzerland
| | - Victoria Bordon Cueto De Braem
- Department of Pediatric Hemato-Oncology and Hematopoietic Stem cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute, Vienna, Austria; Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; St. Anna Children's Hospital, Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Theresa Cole
- Allergy and Immunology Department, The Royal Children's Hospital Melbourne, Melbourne, Australia
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Scott Hackett
- Paediatric Immunology Department, University Hospitals of Birmingham, Birmingham, United Kingdom
| | - Sophie Hambleton
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Mette Holm
- Department of Paediatrics and Adolescent Medicine, Infections and Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Maaike A Kusters
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Adam Klocperk
- Department of Immunology, Second Faculty of Medicine, Charles University and University Hospital in Motol, Prague, Czechia
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Nufar Marcus
- Allergy and Immunology Unit, Schneider Children's Medical Center of Israel, Kipper Institute of Immunology, Petach Tikva, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zohreh Nademi
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Jana Pachlopnik Schmid
- Division of Immunology and the Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland; Pediatric Immunology, University of Zurich, Zurich, Switzerland
| | - Herbert Pichler
- St. Anna Children's Cancer Research Institute, Vienna, Austria; St. Anna Children's Hospital, Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna, Austria
| | - Anna Sellmer
- Department of Paediatrics and Adolescent Medicine, Infections and Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Department of Pediatrics, Hospital Infantil Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Department of Pediatrics, Obstetrics and Gynecology, Preventive Medicine and Public Health, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Infection in Immunocompromised Pediatric Patients, Vall d'Hebron Research Institute, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maarja Soomann
- Division of Immunology and the Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Paul Torpiano
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht; Utrecht, Netherlands
| | - Stefan Nierkens
- Center for Translational Immunology (CTI), University Medical Center Utrecht; Utrecht, Netherlands; Princess Maxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Stuart Adams
- SIHMDS-Haematology, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Matthew Buckland
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Kimberly Gilmour
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Austen Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Adrian J Thrasher
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom
| | - E Graham Davies
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom
| | - Isabelle André
- Human Lymphohematopoiesis Laboratory, Imagine Institute, INSERM UMR 1163, Université Paris Cité; Paris, France
| | - Alexandra Y Kreins
- Infection, Immunity and Inflammation Research & Teaching Department, Great Ormond Street Institute of Child Health, University College London; London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust; London, United Kingdom.
| |
Collapse
|
2
|
Kreins AY, Dhalla F, Flinn AM, Howley E, Ekwall O, Villa A, Staal FJT, Anderson G, Gennery AR, Holländer GA, Davies EG. European Society for Immunodeficiencies guidelines for the management of patients with congenital athymia. J Allergy Clin Immunol 2024; 154:1391-1408. [PMID: 39303894 DOI: 10.1016/j.jaci.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/06/2024] [Accepted: 07/15/2024] [Indexed: 09/22/2024]
Abstract
Congenital athymia is a life-limiting disorder due to rare inborn errors of immunity causing impaired thymus organogenesis or abnormal thymic stromal cell development and function. Athymic infants have a T-lymphocyte-negative, B-lymphocyte-positive, natural killer cell-positive immunophenotype with profound T-lymphocyte deficiency and are susceptible to severe infections and autoimmunity. Patients variably display syndromic features. Expanding access to newborn screening for severe combined immunodeficiency and T lymphocytopenia and broad genetic testing, including next-generation sequencing technologies, increasingly facilitate their timely identification. The recommended first-line treatment is allogeneic thymus transplantation, which is a specialized procedure available in Europe and the United States. Outcomes for athymic patients are best with early diagnosis and thymus transplantation before the development of infectious and inflammatory complications. These guidelines on behalf of the European Society for Immunodeficiencies provide a comprehensive review for clinicians who manage patients with inborn thymic stromal cell defects; they offer clinical practice recommendations focused on the diagnosis, investigation, risk stratification, and management of congenital athymia with the aim of improving patient outcomes.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Infection Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom.
| | - Fatima Dhalla
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom; Department of Clinical Immunology, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Aisling M Flinn
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom; Department of Paediatric Immunology, Children's Health Ireland at Crumlin, Crumlin, Ireland
| | - Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Rheumatology and Inflammation Research, Institute of Medicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Hospital, Milan, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale Delle Ricerche (IRGB-CNR), Milan, Italy
| | - Frank J T Staal
- Department of Pediatrics, Pediatric Stem Cell Transplantation Program, Willem-Alexander Children's Hospital, Leiden, The Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom; Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Georg A Holländer
- Department of Paediatrics and Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom; Paediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, Basel, Switzerland; Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - E Graham Davies
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom; Infection Immunity and Inflammation Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
3
|
Yaglova NV, Obernikhin SS, Timokhina EP, Tsomartova DA, Yaglov VV, Nazimova SV, Tsomartova ES, Ivanova MY, Chereshneva EV, Lomanovskaya TA. Effects of Deuterium Depletion on Age-Declining Thymopoiesis In Vivo. Biomedicines 2024; 12:956. [PMID: 38790918 PMCID: PMC11117614 DOI: 10.3390/biomedicines12050956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
The thymus provides maturation and migration of T cells to peripheral organs of immunity, where they recognize diverse antigens and maintain immunological memory and self-tolerance. The thymus is known to be involved with age and in response to stress factors. Therefore, the search for approaches to the restoration of thymopoiesis is of great interest. The present investigation was aimed at evaluating how prolonged deuterium depletion affects morphogenetic processes and the physiological transition of the thymus to age-related involution. The study was performed on 60 male Wistar rats subjected to consumption of deuterium-depleted water with a 10 ppm deuterium content for 28 days. The control rats consumed distilled water with a normal deuterium content of 150 ppm. The examination found no significant differences in body weight gain or the amount of water consumed. The exposed rats exhibited similar to control dynamics of the thymus weight but significant changes in thymic cell maturation according to cytofluorimetric analysis of thymic subpopulations. Changes in T cell production were not monotonic and differentially engaged morphogenetic processes of cell proliferation, differentiation, and migration. The reactive response to deuterium depletion was a sharp increase in the number of progenitor CD4-CD8- cells and their differentiation into T cells. The compensatory reaction was inhibition of thymopoiesis with more pronounced suppression of differentiation of T-cytotoxic lymphocytes, followed by intensification of emigration of mature T cells to the bloodstream. This period lasts from 3 to 14 days, then differentiation of thymic lymphocytes is restored, later cell proliferation is activated, and finally the thymopoiesis rate exceeds the control values. The increase in the number of thymic progenitor cells after 3-4 weeks suggests consideration of deuterium elimination as a novel approach to prevent thymus involution.
Collapse
Affiliation(s)
- Nataliya V. Yaglova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Sergey S. Obernikhin
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Ekaterina P. Timokhina
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Dibakhan A. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| | - Valentin V. Yaglov
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Svetlana V. Nazimova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
| | - Elina S. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia; (S.S.O.); (E.P.T.); (D.A.T.); (V.V.Y.); (S.V.N.); (E.S.T.)
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| | - Marina Y. Ivanova
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| | - Elizaveta V. Chereshneva
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| | - Tatiana A. Lomanovskaya
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution of Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia; (M.Y.I.); (E.V.C.); (T.A.L.)
| |
Collapse
|
4
|
Kreins AY, Roux E, Pang J, Cheng I, Charles O, Roy S, Mohammed R, Owens S, Lowe DM, Brugha R, Williams R, Howley E, Best T, Davies EG, Worth A, Solas C, Standing JF, Goldstein RA, Rocha-Pereira J, Breuer J. Favipiravir induces HuNoV viral mutagenesis and infectivity loss with clinical improvement in immunocompromised patients. Clin Immunol 2024; 259:109901. [PMID: 38218209 PMCID: PMC11933534 DOI: 10.1016/j.clim.2024.109901] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Chronic human norovirus (HuNoV) infections in immunocompromised patients result in severe disease, yet approved antivirals are lacking. RNA-dependent RNA polymerase (RdRp) inhibitors inducing viral mutagenesis display broad-spectrum in vitro antiviral activity, but clinical efficacy in HuNoV infections is anecdotal and the potential emergence of drug-resistant variants is concerning. Upon favipiravir (and nitazoxanide) treatment of four immunocompromised patients with life-threatening HuNoV infections, viral whole-genome sequencing showed accumulation of favipiravir-induced mutations which coincided with clinical improvement although treatment failed to clear HuNoV. Infection of zebrafish larvae demonstrated drug-associated loss of viral infectivity and favipiravir treatment showed efficacy despite occurrence of RdRp variants potentially causing favipiravir resistance. This indicates that within-host resistance evolution did not reverse loss of viral fitness caused by genome-wide accumulation of sequence changes. This off-label approach supports the use of mutagenic antivirals for treating prolonged RNA viral infections and further informs the debate surrounding their impact on virus evolution.
Collapse
Affiliation(s)
- Alexandra Y Kreins
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Emma Roux
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium
| | - Juanita Pang
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Iek Cheng
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Pharmacy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Oscar Charles
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Sunando Roy
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Reem Mohammed
- Department of Pediatrics, Division of Allergy and Immunology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Stephen Owens
- Department of Paediatric Allergy, Immunology and Infectious Diseases, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - David M Lowe
- Immunology Department, Royal Free Hospital NHS Foundation Trust, London, United Kingdom; Institute of Immunity and Transplantation, University College London, London, UK
| | - Rossa Brugha
- Department of Cardiothoracic Transplantation, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Rachel Williams
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Timothy Best
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - E Graham Davies
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Austen Worth
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Caroline Solas
- Unité des Virus Émergents IRD 190, INSERM 1207, Aix-Marseille Université, Marseille, France; APHM, Laboratoire de Pharmacocinétique et Toxicologie, Hôpital La Timone, Marseille, France
| | - Joseph F Standing
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Department of Pharmacy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Richard A Goldstein
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Joana Rocha-Pereira
- KU Leuven - Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Leuven, Belgium.
| | - Judith Breuer
- Infection, Immunity and Inflammation Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom; Institute of Immunity and Transplantation, University College London, London, UK.
| |
Collapse
|
5
|
Ghosh S, Albert MH, Hauck F, Hönig M, Schütz C, Schulz A, Speckmann C. [Newborn screening for severe combined immunodeficiencies (SCID) in Germany]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023; 66:1222-1231. [PMID: 37726421 PMCID: PMC10622353 DOI: 10.1007/s00103-023-03773-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Patients with a severe combined immunodeficiency (SCID) harbor genetic mutations disrupting T cell immunity and hence suffer severe, life-threatening infections or manifestations of immune dysregulation within the first months of their life. The only cure is to correct their immune system, usually by means of hematopoietic stem cell transplantation (HSCT). Pilot studies and national programs in the United States and in European countries have shown that patients can be identified at an early asymptomatic stage through newborn screening. This allows treatment before the occurrence of severe complications, which improves the outcome of curative strategies like HSCT.After assessment by the Federal Joint Committee (G-BA), the SCID screening was implemented into newborn screening in Germany in 2019. The first results of the screening (dry blood spot cards from around 2 million newborns between August 2019 and February 2022) were recently published. As expected, in addition to classic SCID diseases (incidence 1:54,000), infants with syndromic disorders and T cell lymphopenia were also identified. All patients with classic SCID were scheduled for curative treatment. Of the 25 patients with classic SCID, 21 were already transplanted at the time of data analysis. Only one of 21 transplanted patients died due to pre-existing infections. A comparison of the recent screening data with historical data suggests that SCID newborn screening has been successfully implemented in Germany. Patients with SCID are routinely identified very early and scheduled for curative therapy.
Collapse
Affiliation(s)
- Sujal Ghosh
- Klinik für Kinder-Onkologie, -Hämatologie und Klinische Immunologie, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Düsseldorf, Düsseldorf, Deutschland.
- Klinik für Kinder-Onkologie, -Hämatologie und Klinische Immunologie, Zentrum für Kinder- und Jugendmedizin, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| | - Michael H Albert
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, Ludwig-Maximilians-Universität München, München, Deutschland
| | - Fabian Hauck
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, Ludwig-Maximilians-Universität München, München, Deutschland
| | - Manfred Hönig
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Catharina Schütz
- Pädiatrische Immunologie, Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Deutschland
| | - Ansgar Schulz
- Klinik für Kinder- und Jugendmedizin, Universitätsklinikum Ulm, Ulm, Deutschland
| | - Carsten Speckmann
- Pädiatrische Hämatologie und Onkologie, Zentrum für Kinder- und Jugendmedizin und Centrum für Chronische Immundefizienz, Institut für Immundefizienz, Medizinische Fakultät, Universitätsklinikum Freiburg, Freiburg, Deutschland
| |
Collapse
|
6
|
Howley E, Davies EG, Kreins AY. Congenital Athymia: Unmet Needs and Practical Guidance. Ther Clin Risk Manag 2023; 19:239-254. [PMID: 36935770 PMCID: PMC10022451 DOI: 10.2147/tcrm.s379673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/04/2023] [Indexed: 03/14/2023] Open
Abstract
Inborn errors of thymic stromal cell development and function which are associated with congenital athymia result in life-threatening immunodeficiency with susceptibility to infections and autoimmunity. Athymic patients can be treated by thymus transplantation using cultured donor thymus tissue. Outcomes in patients treated at Duke University Medical Center and Great Ormond Street Hospital (GOSH) over the past three decades have shown that sufficient T-cell immunity can be recovered to clear and prevent infections, but post-treatment autoimmune manifestations are relatively common. Whilst thymus transplantation offers the chance of long-term survival, significant challenges remain to optimise the outcomes for the patients. In this review, we will discuss unmet needs and offer practical guidance based on the experience of the European Thymus Transplantation programme at GOSH. Newborn screening (NBS) for severe combined immunodeficiency (SCID) and routine use of next-generation sequencing (NGS) platforms have improved early recognition of congenital athymia and increasing numbers of patients are being referred for thymus transplantation. Nevertheless, there remain delays in diagnosis, in particular when the cause is genetically undefined, and treatment accessibility needs to be improved. The majority of athymic patients have syndromic features with acute and chronic complex health issues, requiring life-long multidisciplinary and multicentre collaboration to optimise their medical and social care. Comprehensive follow up after thymus transplantation including monitoring of immunological results, management of co-morbidities and patient and family quality-of-life experience, is vital to understanding long-term outcomes for this rare cohort of patients. Alongside translational research into improving strategies for thymus replacement therapy, patient-focused clinical research will facilitate the design of strategies to improve the overall care for athymic patients.
Collapse
Affiliation(s)
- Evey Howley
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - E Graham Davies
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Alexandra Y Kreins
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Infection, Immunity and Inflammation Research & Teaching Department, University College London, London, UK
- Correspondence: Alexandra Y Kreins, Email
| |
Collapse
|
7
|
Duah M, Li L, Shen J, Lan Q, Pan B, Xu K. Thymus Degeneration and Regeneration. Front Immunol 2021; 12:706244. [PMID: 34539637 PMCID: PMC8442952 DOI: 10.3389/fimmu.2021.706244] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
The immune system’s ability to resist the invasion of foreign pathogens and the tolerance to self-antigens are primarily centered on the efficient functions of the various subsets of T lymphocytes. As the primary organ of thymopoiesis, the thymus performs a crucial role in generating a self-tolerant but diverse repertoire of T cell receptors and peripheral T cell pool, with the capacity to recognize a wide variety of antigens and for the surveillance of malignancies. However, cells in the thymus are fragile and sensitive to changes in the external environment and acute insults such as infections, chemo- and radiation-therapy, resulting in thymic injury and degeneration. Though the thymus has the capacity to self-regenerate, it is often insufficient to reconstitute an intact thymic function. Thymic dysfunction leads to an increased risk of opportunistic infections, tumor relapse, autoimmunity, and adverse clinical outcome. Thus, exploiting the mechanism of thymic regeneration would provide new therapeutic options for these settings. This review summarizes the thymus’s development, factors causing thymic injury, and the strategies for improving thymus regeneration.
Collapse
Affiliation(s)
- Maxwell Duah
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Lingling Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Jingyi Shen
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Qiu Lan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Bin Pan
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Graft-versus-host disease: a disorder of tissue regeneration and repair. Blood 2021; 138:1657-1665. [PMID: 34370823 DOI: 10.1182/blood.2021011867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
Regenerative failure at barrier surfaces and maladaptive repair leading to fibrosis are hallmarks of graft-versus-host disease (GVHD). Although immunosuppressive treatment can control inflammation, impaired tissue homeostasis leads to prolonged organ damage and impaired quality of life. In this Spotlight article, we review recent research that addresses the critical failures in tissue regeneration and repair that underpin treatment-resistant GVHD. We highlight current interventions designed to overcome these defects and provide our assessment of the future therapeutic landscape.
Collapse
|
9
|
Kreins AY, Bonfanti P, Davies EG. Current and Future Therapeutic Approaches for Thymic Stromal Cell Defects. Front Immunol 2021; 12:655354. [PMID: 33815417 PMCID: PMC8012524 DOI: 10.3389/fimmu.2021.655354] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Inborn errors of thymic stromal cell development and function lead to impaired T-cell development resulting in a susceptibility to opportunistic infections and autoimmunity. In their most severe form, congenital athymia, these disorders are life-threatening if left untreated. Athymia is rare and is typically associated with complete DiGeorge syndrome, which has multiple genetic and environmental etiologies. It is also found in rare cases of T-cell lymphopenia due to Nude SCID and Otofaciocervical Syndrome type 2, or in the context of genetically undefined defects. This group of disorders cannot be corrected by hematopoietic stem cell transplantation, but upon timely recognition as thymic defects, can successfully be treated by thymus transplantation using cultured postnatal thymic tissue with the generation of naïve T-cells showing a diverse repertoire. Mortality after this treatment usually occurs before immune reconstitution and is mainly associated with infections most often acquired pre-transplantation. In this review, we will discuss the current approaches to the diagnosis and management of thymic stromal cell defects, in particular those resulting in athymia. We will discuss the impact of the expanding implementation of newborn screening for T-cell lymphopenia, in combination with next generation sequencing, as well as the role of novel diagnostic tools distinguishing between hematopoietic and thymic stromal cell defects in facilitating the early consideration for thymus transplantation of an increasing number of patients and disorders. Immune reconstitution after the current treatment is usually incomplete with relatively common inflammatory and autoimmune complications, emphasizing the importance for improving strategies for thymus replacement therapy by optimizing the current use of postnatal thymus tissue and developing new approaches using engineered thymus tissue.
Collapse
Affiliation(s)
- Alexandra Y. Kreins
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Paola Bonfanti
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Epithelial Stem Cell Biology & Regenerative Medicine Laboratory, The Francis Crick Institute, London, United Kingdom
- Institute of Immunity & Transplantation, University College London, London, United Kingdom
| | - E. Graham Davies
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Immunology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| |
Collapse
|