1
|
Sadeghi M, Mohammadi M, Tavakol Afshari J, Iranparast S, Ansari B, Dehnavi S. Therapeutic potential of mesenchymal stem cell-derived exosomes for allergic airway inflammation. Cell Immunol 2024; 397-398:104813. [PMID: 38364454 DOI: 10.1016/j.cellimm.2024.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Due to their immunomodulatory capacities, mesenchymal stem cells (MSCs) have been extensively used as therapeutic approaches in cell-based therapy for various inflammatory diseases. Several lines of studies have shown that the most beneficial effects of MSCs are associated with MSC-derived exosomes. Exosomes are nanoscale extracellular vesicles that contain important biomolecules such as RNA, microRNAs (miRNAs), DNA, growth factors, enzymes, chemokines, and cytokines that regulate immune cell functions and parenchymal cell survival. Recently, exosomes, especially MSC-derived exosomes, have been shown to have protective effects in allergic airway inflammation. This review focused on the immune-regulatory potential of MSC-derived exosomes as nanoscale delivery systems in the treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Iranparast
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Ansari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Tan L, Shen X, He Z, Lu Y. The Role of Photodynamic Therapy in Triggering Cell Death and Facilitating Antitumor Immunology. Front Oncol 2022; 12:863107. [PMID: 35692783 PMCID: PMC9184441 DOI: 10.3389/fonc.2022.863107] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/22/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is a major threat to human health because of its high mortality, easy recurrence, strong invasion, and metastasis. Photodynamic therapy (PDT) is a promising minimally invasive treatment for tumor. Compared with traditional treatment methods, PDT is less invasive and does not easily damage normal tissues. Most of the effects of this treatment are due to the direct effects of singlet oxygen together with reactive oxygen species. PDT can provide the source of active oxygen for the Fenton reaction, which enhances ferroptosis and also improves the efficacy of PDT in antitumor therapy. Additionally, in contrast to chemotherapy and radiotherapy, PDT has the effect of stimulating the immune response, which can effectively induce immunogenic cell death (ICD) and stimulate immunity. PDT is an ideal minimally invasive treatment method for tumors. In this paper, according to the characteristics of anti-tumor immunity of PDT, some tumor treatment strategies of PDT combined with anti-tumor immunotherapy are reviewed.
Collapse
|
3
|
Tabynov K, Babayeva M, Nurpeisov T, Fomin G, Nurpeisov T, Saltabayeva U, Renu S, Renukaradhya GJ, Petrovsky N, Tabynov K. Evaluation of a Novel Adjuvanted Vaccine for Ultrashort Regimen Therapy of Artemisia Pollen-Induced Allergic Bronchial Asthma in a Mouse Model. Front Immunol 2022; 13:828690. [PMID: 35371056 PMCID: PMC8965083 DOI: 10.3389/fimmu.2022.828690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/15/2022] [Indexed: 12/25/2022] Open
Abstract
Wormwood (Artemisia) pollen is among the top 10 aeroallergens globally that cause allergic rhinitis and bronchial asthma. Allergen-specific immunotherapy (ASIT) is the gold standard for treating patients with allergic rhinitis, conjunctivitis, and asthma. A significant disadvantage of today's ASIT methods is the long duration of therapy and multiplicity of allergen administrations. The goal of this study was to undertake a pilot study in mice of a novel ultrashort vaccine immunotherapy regimen incorporating various adjuvants to assess its ability to treat allergic bronchial asthma caused by wormwood pollen. We evaluated in a mouse model of wormwood pollen allergy candidates comprising recombinant Art v 1 wormwood pollen protein formulated with either newer (Advax, Advax-CpG, ISA-51) or more traditional [aluminum hydroxide, squalene water emulsion (SWE)] adjuvants administered by the intramuscular or subcutaneous route vs. intranasal administration of a mucosal vaccine formulation using chitosan-mannose nanoparticle entrapped with Art v 1 protein. The vaccine formulations were administered to previously wormwood pollen-sensitized animals, four times at weekly intervals. Desensitization was determined by measuring decreases in immunoglobulin E (IgE), cellular immunity, ear swelling test, and pathological changes in the lungs of animals after aeroallergen challenge. Art v 1 protein formulation with Advax, Advax-CpG, SWE, or ISA-51 adjuvants induced a significant decrease in both total and Art v 1-specific IgE with a concurrent increase in Art v 1-specific IgG compared to the positive control group. There was a shift in T-cell cytokine secretion toward a Th1 (Advax-CpG, ISA-51, and Advax) or a balanced Th1/Th2 (SWE) pattern. Protection against lung inflammatory reaction after challenge was seen with ISA-51, Advax, and SWE Art v 1 formulations. Overall, the ISA-51-adjuvanted vaccine group induced the largest reduction of allergic ear swelling and protection against type 2 and non-type 2 lung inflammation in challenged animals. This pilot study shows the potential to develop an ultrashort ASIT regimen for wormwood pollen-induced bronchial asthma using appropriately adjuvanted recombinant Art v 1 protein. The data support further preclinical studies with the ultimate goal of advancing this therapy to human clinical trials.
Collapse
Affiliation(s)
- Kairat Tabynov
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan.,Preclinical Research Laboratory With Vivarium, M. Aikimbayev National Research Center for Especially Dangerous Infections, Almaty, Kazakhstan.,T&TvaX LLC, Almaty, Kazakhstan
| | - Meruert Babayeva
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan.,Department of General Immunology, Asfendiyarov Kazakh National Medical University (KazNMU), Almaty, Kazakhstan
| | - Tair Nurpeisov
- Department of General Immunology, Asfendiyarov Kazakh National Medical University (KazNMU), Almaty, Kazakhstan.,Republican Allergy Center, Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| | - Gleb Fomin
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan
| | - Temirzhan Nurpeisov
- Department of General Immunology, Asfendiyarov Kazakh National Medical University (KazNMU), Almaty, Kazakhstan
| | | | - Sankar Renu
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University (OSU), Wooster, OH, United States
| | - Gourapura J Renukaradhya
- Center for Food Animal Health, Ohio Agricultural Research and Development Center, The Ohio State University (OSU), Wooster, OH, United States
| | | | - Kaissar Tabynov
- International Center for Vaccinology, Kazakh National Agrarian Research University (KazNARU), Almaty, Kazakhstan.,T&TvaX LLC, Almaty, Kazakhstan.,Republican Allergy Center, Research Institute of Cardiology and Internal Medicine, Almaty, Kazakhstan
| |
Collapse
|
4
|
Pfaar O, Creticos PS, Kleine-Tebbe J, Canonica GW, Palomares O, Schülke S. One Hundred Ten Years of Allergen Immunotherapy: A Broad Look Into the Future. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:1791-1803. [PMID: 33966868 DOI: 10.1016/j.jaip.2020.12.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Allergen immunotherapy (AIT) is the only disease-modifying treatment option for patients with type 1-mediated allergic diseases such as allergic rhinitis/rhinoconjunctivitis with/without allergic asthma. Although many innovations have been developed since the first clinical report of Noon et al in 1911, the improvement of clinical efficacy and tolerability of this treatment is still an important unmet need. Hence, much progress has been made in the characterization of the cell types, cytokines, and intracellular signaling events involved in the development, maintenance, and regulation of allergic reactions, and also in the understanding of the mechanisms of tolerance induction in AIT. This comprehensive review aims to summarize the current innovative approaches in AIT, but also gives an outlook on promising candidates of the future. On the basis of an extensive literature review, integrating a clinical point of view, this article focuses on recent and future innovations regarding biologicals, allergen-derived peptides, recombinant allergens, "Toll"-like receptor agonists and other adjuvants, and novel application routes being developed for future AIT.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany.
| | - Peter S Creticos
- Division of Allergy & Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md; Creticos Research Group, Crownsville, Md
| | - Jörg Kleine-Tebbe
- Allergy & Asthma Center Westend, Outpatient & Clinical Research Center, Hanf, Ackermann & Kleine-Tebbe, Berlin, Germany
| | - Giorgio Walter Canonica
- Personalized Medicine Asthma & Allergy Clinic, Humanitas University & Research Hospital-IRCCS, Milano, Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University, Madrid, Spain
| | - Stefan Schülke
- Vice Presidents Research Group, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
5
|
Yang X, Wang H, Zhao D, Wang J, Liu X, Yuan X, Zhang M, Li G, Ran P, Yang P, Liu Z. Dust mite-derived Enterobacterial fimbriae H protein enforces the allergen specific immunotherapy in asthma mice. Allergol Immunopathol (Madr) 2020; 48:654-665. [PMID: 32446781 DOI: 10.1016/j.aller.2020.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The mite alimentary canal contains plenty of microbiota. It is accepted that some of the microbial products function as adjuvants to speed up immune responses. OBJECTIVES We identified five bacterial proteins from dust mite, and Enterobacterial fimbriae H (FimH) was one of them. This study aims to test a hypothesis that the FimH protein enforces immunotherapy in asthmatic mice. METHODS Asthmatic mice were treated by allergen specific immunotherapy (ASIT) with rDer f1/f2 or rDer f1/f2 plus FimH. Changes in inflammatory cell infiltration, airway hyperreactivity, frequency of Tregs, splenic CD4+IFN-γ+ cells, and serum levels of TGF-β, IL-10, IL-13 and IL-17A of asthmatic mice were checked. RESULTS ASIT with rDer f1/f2 plus FimH reduced inflammatory cell infiltration, airway hyperreactivity (AHR), and levels of IgE and IgG1 compared to ASIT with rDer f1/f2 alone, but the levels of IgG2a increased. Asthmatic mice that underwent ASIT with rDer f1/f2 plus FimH showed increased frequency of Tregs, splenic CD4+IFN-γ+ cells, serum levels of TGF-β and IL-10; and deceased splenic CD4+IL-4+ cells, and serum levels of IL-13 and IL-17A. In vitro study showed FimH triggered IL-10 expression in a concentration dependent manner and facilitated the differentiation of Tregs. CONCLUSION Used as an adjuvant, FimH enforces the effect of ASIT in asthmatic mice via augmenting Tregs.
Collapse
|
6
|
DC-targeted gold nanoparticles as an efficient and biocompatible carrier for modulating allergic responses in sublingual immunotherapy. Int Immunopharmacol 2020; 86:106690. [PMID: 32585607 DOI: 10.1016/j.intimp.2020.106690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/06/2020] [Accepted: 06/06/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Sublingual immunotherapy (SLIT) was introduced to deliver allergens in an effective and non-invasive route, which can be considered as an alternative for allergen-specific subcutaneous immunotherapy (SCIT). On the other hand, the use of gold nanoparticles (AuNPs) in allergen delivery has beneficial effects on sublingual immunotherapy. In addition, the molecular targeting agents like aptamers (Apt), have been widely applied for targeted drug delivery. Therefore, the current study aimed to evaluate the effects of dendritic cells (DCs)-specific Aptamer-modified AuNPs coated with ovalbumin (OVA) on the improvement of the SLIT outcome in the mouse model of allergy. MATERIAL AND METHODS AuNPs with approximately 15 nm diameter were prepared by citrate reduction of HAuCl4. Afterward, Apt-modified AuNP complex was prepared and OVA was then loaded onto this complex. Following sensitization of Balb/c mice to OVA, SLIT was performed with Apt-AuNPs containing 5 µg OVA twice a week for a 2-month period. Allergen-specific IgE in serum, as well as cytokines secretion of spleen cells, were analyzed using ELISA. Also, nasopharyngeal lavage Fluid (NALF) was collected for total and eosinophil counts. Moreover, the lungs were removed for histopathological examination. RESULTS SLIT with Apt-modified AuNPs complex containing 5 μg OVA, decreased the IgE levels compared to the other groups. Also, IL-4 production has significantly decreased in spleen cells, while TGF-β and IFN-γ have significantly increased. The assessment of NALF in the group treated by this complex showed a decrease in total cell as well as in eosinophil count. Also, the examination of lung tissues revealed that, in the group treated by this complex, inflammation and perivascular infiltration were lesser than the other groups, which were observed in only one vessel of tissue. CONCLUSION It was shown that, Sublingual immunotherapy with DC specific Apt-modified AuNPs containing 5 μg OVA can improve the Th1 and Treg immunomodulatory responses.
Collapse
|
7
|
Jensen‐Jarolim E, Bachmann MF, Bonini S, Jacobsen L, Jutel M, Klimek L, Mahler V, Mösges R, Moingeon P, O´Hehir RE, Palomares O, Pfaar O, Renz H, Rhyner C, Roth‐Walter F, Rudenko M, Savolainen J, Schmidt‐Weber CB, Traidl‐Hoffmann C, Kündig T. State-of-the-art in marketed adjuvants and formulations in Allergen Immunotherapy: A position paper of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy 2020; 75:746-760. [PMID: 31774179 DOI: 10.1111/all.14134] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/07/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023]
Abstract
Since the introduction of allergen immunotherapy (AIT) over 100 years ago, focus has been on standardization of allergen extracts, with reliable molecular composition of allergens receiving the highest attention. While adjuvants play a major role in European AIT, they have been less well studied. In this Position Paper, we summarize current unmet needs of adjuvants in AIT citing current evidence. Four adjuvants are used in products marketed in Europe: aluminium hydroxide (Al(OH)3 ) is the most frequently used adjuvant, with microcrystalline tyrosine (MCT), monophosphoryl lipid A (MPLA) and calcium phosphate (CaP) used less frequently. Recent studies on humans, and using mouse models, have characterized in part the mechanisms of action of adjuvants on pre-existing immune responses. AIT differs from prophylactic vaccines that provoke immunity to infectious agents, as in allergy the patient is presensitized to the antigen. The intended mode of action of adjuvants is to simultaneously enhance the immunogenicity of the allergen, while precipitating the allergen at the injection site to reduce the risk of anaphylaxis. Contrasting immune effects are seen with different adjuvants. Aluminium hydroxide initially boosts Th2 responses, while the other adjuvants utilized in AIT redirect the Th2 immune response towards Th1 immunity. After varying lengths of time, each of the adjuvants supports tolerance. Further studies of the mechanisms of action of adjuvants may advise shorter treatment periods than the current three-to-five-year regimens, enhancing patient adherence. Improved lead compounds from the adjuvant pipeline are under development and are explored for their capacity to fill this unmet need.
Collapse
Affiliation(s)
- Erika Jensen‐Jarolim
- Institute of Pathophysiology & Allergy Research Center of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University of Vienna University of Vienna Vienna Austria
| | - Martin F. Bachmann
- Institute of Immunology Inselspital University of Berne Bern Switzerland
| | - Sergio Bonini
- Institute of Translational Pharmacology Italian National Research Council Rome Italy
| | - Lars Jacobsen
- ALC, Allergy Learning & Consulting Copenhagen Denmark
| | - Marek Jutel
- Department of Clinical Immunology Wroclaw Medical University Wrocław Poland
- ALL‐MED Medical Research Institute Wroclaw Poland
| | - Ludger Klimek
- Center of Rhinology and Allergology Wiesbaden Germany
| | - Vera Mahler
- Division of Allergology Paul‐Ehrlich‐Institut Federal Institute for Vaccines and Biomedicines Langen Germany
| | - Ralph Mösges
- CRI‐Clinical Research International Ltd Hamburg Germany
- Institute of Medical Statistics and Bioinformatics University of Cologne Cologne Germany
| | - Philippe Moingeon
- Center for Therapeutic Innovation – Immuno‐Inflammatory Disease Servier Suresnes France
| | - Robyn E. O´Hehir
- Department of Respiratory Medicine, Allergy and Clinical Immunology (Research) Central Clinical School Monash University and Alfred Hospital Melbourne Vic. Australia
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology Chemistry School Complutense University of Madrid Madrid Spain
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery Section of Rhinology and Allergy University Hospital MarburgPhilipps‐Universität Marburg Marburg Germany
| | - Harald Renz
- Institute of Laboratory Medicine Universities of Giessen and Marburg Lung Center (UGMLC) German Center for Lung Research (DZL) Philipps Universität Marburg Marburg Germany
| | - Claudio Rhyner
- SIAF – Swiss Institute of Allergy and Asthma Research Davos Switzerland
| | - Franziska Roth‐Walter
- The Interuniversity Messerli Research Institute University of Veterinary Medicine Vienna Medical University of Vienna University of Vienna Vienna Austria
| | | | - Johannes Savolainen
- Department of Pulmonary Diseases and Clinical Allergology University of Turku and Turku University Hospital Turku Finland
| | - Carsten B. Schmidt‐Weber
- Center of Allergy and Environment (ZAUM) German Center of Lung Research (DZL) and Helmholtz I&I Initiative Technical University, and Helmholtz Center Munich Munich Germany
| | - Claudia Traidl‐Hoffmann
- Institute of Environmental Medicine (IEM) Technical University Munich and Helmholtz Center Munich Munich Germany
| | - Thomas Kündig
- Department of Dermatology University Hospital Zurich Zurich Switzerland
| |
Collapse
|
8
|
Zielen S, Kuna P, Aberer W, Lassmann S, Pfaar O, Klimek L, Wade A, Kluehr K, Raab J, Wessiepe D, Lee D, Kramer M, Gunawardena K, Higenbottam T, Heath M, Skinner M, de Kam P. Strong dose response after immunotherapy with PQ grass using conjunctival provocation testing. World Allergy Organ J 2019; 12:100075. [PMID: 31709029 PMCID: PMC6831906 DOI: 10.1016/j.waojou.2019.100075] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022] Open
Abstract
Background Pollinex Quattro Grass (PQ Grass) is an effective, well-tolerated, short pre-seasonal subcutaneous immunotherapy to treat seasonal allergic rhinoconjunctivitis (SAR) due to grass pollen. In this Phase II study, 4 cumulative doses of PQ Grass and placebo were evaluated to determine its optimal cumulative dose. Methods Patients with grass pollen-induced SAR were randomised to either a cumulative dose of PQ Grass (5100, 14400, 27600 and 35600 SU) or placebo, administered as 6 weekly subcutaneous injections over 31-41 days (EudraCT number 2017-000333-31). Standardized conjunctival provocation tests (CPT) using grass pollen allergen extract were performed at screening, baseline and post-treatment to determine the total symptom score (TSS) assessed approximately 4 weeks after dosing. Three models were pre-defined (Emax, logistic, and linear in log-dose model) to evaluate a dose response relationship. Results In total, 95.5% of the 447 randomized patients received all 6 injections. A highly statistically significant (p < 0.0001), monotonic dose response was observed for all three pre-specified models. All treatment groups showed a statistically significant decrease from baseline in TSS compared to placebo, with the largest decrease observed after 27600 SU (p < 0.0001). The full course of 6 injections was completed by 95.5% of patients. Treatment-emergent adverse events were similar across PQ Grass groups, and mostly mild and transient in nature. Conclusions PQ Grass demonstrated a strong curvilinear dose response in TSS following CPT without compromising its safety profile.
Collapse
Key Words
- ADRs, adverse drug reactions
- AE, adverse events
- AIT, allergen immunotherapy
- ANCOVA, analysis of covariance
- ARC, adverse reaction complexes
- Allergen immunotherapy
- Allergoid
- CIA-CPT, Culture – Independent Assessment of the Conjunctival Provocation Test
- CPT, conjunctival provocation test
- Cumulative dose
- Curvilinear dose response
- EAACI, European Academy of Allergy and Clinical Immunology
- EMA, European Medicine Agency
- FAS, Full Analysis Set
- FEV, forced expiratory volume
- FVC, forced vital capacity
- Grass pollen
- HEP, Histamine Equivalent Potency
- LPS, lipopolysaccharide
- MCP-Mod, Multiple Comparison Procedure and Modelling
- MCT, microcrystalline tyrosine
- MPL, Monophosphoryl Lipid A
- MedDRA, Medical Dictionary for Regulatory Activities
- PPS, Per Protocol Set
- SAEs, serious adverse events
- SAF, safety set
- SAR, seasonal allergic rhinoconjunctivitis
- SD, standard deviation
- SU, standardized units
- TEAEs, treatment-emergent adverse events
- TLR, Toll-like receptor
- TSS, Total Symptom Score
- mFAS, Modified Full Analysis Set
Collapse
Affiliation(s)
- S. Zielen
- Department for Children and Adolescents, Division of Allergology, Pulmonology and Cystic fibrosis, Goethe University, Frankfurt, Germany
| | - P. Kuna
- Poradnia Alergologii i Chorób Płuc Lodz, Poland
| | - W. Aberer
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - S. Lassmann
- Specialist in Otolaryngology, Saalfeld, Germany
| | - O. Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Germany
| | - L. Klimek
- Centre for Rhinology and Allergology, Wiesbaden, Germany
| | - A. Wade
- Allergy Therapeutics Ltd., Worthing, UK
| | - K. Kluehr
- Allergy Therapeutics Ltd., Worthing, UK
| | - J. Raab
- Allergy Therapeutics Ltd., Worthing, UK
| | - D. Wessiepe
- Metronomia Clinical Research GmbH, Munich, Germany
| | - D. Lee
- Allergy Therapeutics Ltd., Worthing, UK
| | | | | | | | | | | | - P.J. de Kam
- Allergy Therapeutics Ltd., Worthing, UK
- Corresponding author. Allergy Therapeutics (UK) Ltd, Dominion Way Worthing, West Sussex BN14 8SA, UK
| |
Collapse
|
9
|
Entwicklung der subkutanen Allergen-Immuntherapie (Teil 2): präventive Aspekte der SCIT und Innovationen. ALLERGO JOURNAL 2019. [DOI: 10.1007/s15007-019-1847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Development of subcutaneous allergen immunotherapy (part 2): preventive aspects and innovations. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40629-019-0097-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Pfaar O, Lou H, Zhang Y, Klimek L, Zhang L. Recent developments and highlights in allergen immunotherapy. Allergy 2018; 73:2274-2289. [PMID: 30372537 DOI: 10.1111/all.13652] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/30/2022]
Abstract
Allergen immunotherapy (AIT) is the only disease-modifying treatment option for patients with IgE-mediated inhalant allergies. Though used in clinical practice for more than 100 years, most innovations in AIT efficacy and safety have been developed in the last two decades. This expert review aimed to highlight the recent progress in AIT for both application routes, the sublingual (SLIT) and subcutaneous (SCIT) forms. As such, it covers recent aspects regarding efficacy and safety in clinical trials and real-life data and outlines new concepts in consensus and position papers as well as in guidelines for AIT. Potential clinical and nonclinical biomarkers are discussed. This review also focuses on potential future perspectives in AIT, such as alternative application routes, immune-modulating adjuvants, and recombinant vaccines. In conclusion, this state of the art review provides a comprehensive overview of AIT and highlights unmet needs for the future.
Collapse
Affiliation(s)
- Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery; Section of Rhinology and Allergy; University Hospital Marburg; Philipps-Universität Marburg; Marburg Germany
| | - Hongfei Lou
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy; Beijing TongRen Hospital; Capital Medical University; Beijing China
| | - Yuan Zhang
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy; Beijing TongRen Hospital; Capital Medical University; Beijing China
| | - Ludger Klimek
- Center for Rhinology and Allergology; Wiesbaden Germany
| | - Luo Zhang
- Department of Otolaryngology; Head and Neck Surgery; Beijing TongRen Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Nasal Diseases; Beijing Institute of Otolaryngology; Beijing China
- Department of Allergy; Beijing TongRen Hospital; Capital Medical University; Beijing China
| |
Collapse
|
12
|
Akkoç T, Genç D, Zibandeh N, Akkoç T. Intranasal ovalbumin immunotherapy with mycobacterial adjuvant promotes regulatory T cell accumulation in lung tissues. Microbiol Immunol 2018; 62:531-540. [PMID: 29989252 DOI: 10.1111/1348-0421.12634] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/04/2018] [Accepted: 06/17/2018] [Indexed: 12/24/2022]
Abstract
Allergen-specific immunotherapy to induce T regulatory cells in the periphery has been used to treat allergic diseases. Mycobacteria can be used as an adjuvant for inducing T regulatory cells. However, it is unclear whether intranasal immunotherapy in combination with Mycobacteria adjuvant induces regulatory T cell differentiation and attenuates allergic responses in vivo. To investigate the role of intranasal ovalbumin (OVA) treatment alone and in combination with Mycobacteria vaccae, proportions of FoxP3+ regulatory T cells and anti-inflammatory responses were evaluated in a murine model of asthma that was established in three groups of bicistronic Foxp3EGFP reporter BALB/c mice. Before establishment of the asthma model, two groups of mice received intranasal OVA immunotherapy and one also received simultaneous s.c. M. vaccae. Expression of CD4+ CD25+ Foxp3+EGFP+ T cells in the lung and spleen was analyzed by flow cytometry and the cytokine profiles of allergen-stimulated lung and spleen lymphocytes assessed. The intranasal OVA immunotherapy group showed greater expression of CD4+ CD25+ Foxp3+EGFP+ T cells in the spleen whereas in the group that also received M. vaccae such greater expression was demonstrated in the lung. Additionally, the proportion of IL-10 and IFN-γ-secreting splenocytes was greater in the intranasal OVA + M. vaccae group. CD25 neutralization decreased CD4+ Foxp3+ cells more than other groups. In parallel with this finding, production of IL-10 and IFN-γ was down-regulated. Mucosal administration of OVA antigen results in a greater proportion of CD4+ Foxp3+ T cells in the spleen. IL-10 and IFN-γ induced by intranasal OVA immunotherapy and M. vaccae administration is down-regulated after CD25 neutralization.
Collapse
Affiliation(s)
- Tunç Akkoç
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, İstanbul, Turkey
| | - Deniz Genç
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, İstanbul, Turkey
| | - Noushin Zibandeh
- Faculty of Medicine, Division of Pediatric Allergy and Immunology, Marmara University, İstanbul, Turkey
| | - Tolga Akkoç
- Scientific and Technological Research Council of Turkey, Marmara Research Center, Kocaeli, Turkey
| |
Collapse
|
13
|
OK-432 Acts as Adjuvant to Modulate T Helper 2 Inflammatory Responses in a Murine Model of Asthma. J Immunol Res 2018; 2018:1697276. [PMID: 30402504 PMCID: PMC6196917 DOI: 10.1155/2018/1697276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 09/10/2018] [Indexed: 11/28/2022] Open
Abstract
Enhanced type 2 helper T (Th2) cell responses to inhaled harmless allergens are strongly associated with the development of allergic diseases. Antigen formulated with an appropriate adjuvant can elicit suitable systemic immunity to protect individuals from disease. Although much has been learned about Th1-favored immunomodulation of OK-432, a streptococcal preparation with antineoplastic activity, little is known about its adjuvant effect for allergic diseases. Herein, we demonstrate that OK-432 acts as an adjuvant to favor a systemic Th1 polarization with an elevation in interferon- (IFN-) γ and ovalbumin- (OVA-) immunoglobulin (Ig) G2a. Prior vaccination with OK-432 formulated against OVA attenuated lung eosinophilic inflammation and Th2 cytokine responses that were caused by challenging with OVA through the airway. This vaccination with OK-432 augmented the ratios of IFN-γ/interleukin- (IL-) 4 cytokine and IgG2a/IgG1 antibody compared to the formulation with Th2 adjuvant aluminum hydroxide (Alum) or antigen only. The results obtained in this study lead us to propose a potential novel adjuvant for clinical use such as prophylactic vaccination for pathogens and immunotherapy in atopic diseases.
Collapse
|
14
|
Fassio F, Guagnini F. House dust mite-related respiratory allergies and probiotics: a narrative review. Clin Mol Allergy 2018; 16:15. [PMID: 29946225 PMCID: PMC6006752 DOI: 10.1186/s12948-018-0092-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/23/2018] [Indexed: 12/24/2022] Open
Abstract
The socio-economic burden of allergic respiratory conditions on continental Europe is even higher than that of mainstream diseases, such as diabetes and cardiovascular disease, as allergic rhinitis alone accounts for billions of Euros in healthcare expenses across Europe. House dust mites (HDM) are one of the most common triggers behind allergic rhinitis and asthma. The role of probiotics in the treatment and prevention of some allergic conditions, such as atopic dermatitis, is already well recognized, whereas evidence about their efficacy in patients with respiratory allergies—while increasing—is still limited. Here the current evidence for the use of probiotics in patients with allergic rhinitis and/or asthma is discussed.
Collapse
Affiliation(s)
- Filippo Fassio
- 1SOC Allergologia e Immunologica Clinica, Azienda USL Toscana Centro, Nuovo Ospedale S. Giovanni di Dio, Via di Torregalli, 3, 50143 Florence, Italy
| | - Fabio Guagnini
- Allergy Therapeutics Italia, via IV Novembre 76, 20019 Settimo Milanese, Milan Italy
| |
Collapse
|
15
|
Roberts G, Pfaar O, Akdis CA, Ansotegui IJ, Durham SR, Gerth van Wijk R, Halken S, Larenas-Linnemann D, Pawankar R, Pitsios C, Sheikh A, Worm M, Arasi S, Calderon MA, Cingi C, Dhami S, Fauquert JL, Hamelmann E, Hellings P, Jacobsen L, Knol E, Lin SY, Maggina P, Mösges R, Oude Elberink JNG, Pajno G, Pastorello EA, Penagos M, Rotiroti G, Schmidt-Weber CB, Timmermans F, Tsilochristou O, Varga EM, Wilkinson JN, Williams A, Zhang L, Agache I, Angier E, Fernandez-Rivas M, Jutel M, Lau S, van Ree R, Ryan D, Sturm GJ, Muraro A. EAACI Guidelines on Allergen Immunotherapy: Allergic rhinoconjunctivitis. Allergy 2018; 73:765-798. [PMID: 28940458 DOI: 10.1111/all.13317] [Citation(s) in RCA: 464] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2017] [Indexed: 12/12/2022]
Abstract
Allergic rhinoconjunctivitis (AR) is an allergic disorder of the nose and eyes affecting about a fifth of the general population. Symptoms of AR can be controlled with allergen avoidance measures and pharmacotherapy. However, many patients continue to have ongoing symptoms and an impaired quality of life; pharmacotherapy may also induce some side-effects. Allergen immunotherapy (AIT) represents the only currently available treatment that targets the underlying pathophysiology, and it may have a disease-modifying effect. Either the subcutaneous (SCIT) or sublingual (SLIT) routes may be used. This Guideline has been prepared by the European Academy of Allergy and Clinical Immunology's (EAACI) Taskforce on AIT for AR and is part of the EAACI presidential project "EAACI Guidelines on Allergen Immunotherapy." It aims to provide evidence-based clinical recommendations and has been informed by a formal systematic review and meta-analysis. Its generation has followed the Appraisal of Guidelines for Research and Evaluation (AGREE II) approach. The process included involvement of the full range of stakeholders. In general, broad evidence for the clinical efficacy of AIT for AR exists but a product-specific evaluation of evidence is recommended. In general, SCIT and SLIT are recommended for both seasonal and perennial AR for its short-term benefit. The strongest evidence for long-term benefit is documented for grass AIT (especially for the grass tablets) where long-term benefit is seen. To achieve long-term efficacy, it is recommended that a minimum of 3 years of therapy is used. Many gaps in the evidence base exist, particularly around long-term benefit and use in children.
Collapse
|
16
|
Leuthard DS, Duda A, Freiberger SN, Weiss S, Dommann I, Fenini G, Contassot E, Kramer MF, Skinner MA, Kündig TM, Heath MD, Johansen P. Microcrystalline Tyrosine and Aluminum as Adjuvants in Allergen-Specific Immunotherapy Protect from IgE-Mediated Reactivity in Mouse Models and Act Independently of Inflammasome and TLR Signaling. THE JOURNAL OF IMMUNOLOGY 2018; 200:3151-3159. [PMID: 29592962 PMCID: PMC5911931 DOI: 10.4049/jimmunol.1800035] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/02/2018] [Indexed: 01/01/2023]
Abstract
Allergen immunotherapy (AIT) is the only modality that can modify immune responses to allergen exposure, but therapeutic coverage is low. One strategy to improve AIT safety and efficacy is the use of new or improved adjuvants. This study investigates immune responses produced by microcrystalline tyrosine (MCT)–based vaccines as compared with conventional aluminum hydroxide (alum). Wild-type, immune-signaling–deficient, and TCR-transgenic mice were treated with different Ags (e.g., OVA and cat dander Fel d 1), plus MCT or alum as depot adjuvants. Specific Ab responses in serum were measured by ELISA, whereas cytokine secretion was measured both in culture supernatants by ELISA or by flow cytometry of spleen cells. Upon initiation of AIT in allergic mice, body temperature and further clinical signs were used as indicators for anaphylaxis. Overall, MCT and alum induced comparable B and T cell responses, which were independent of TLR signaling. Alum induced stronger IgE and IL-4 secretion than MCT. MCT and alum induced caspase-dependent IL-1β secretion in human monocytes in vitro, but inflammasome activation had no functional effect on inflammatory and Ab responses measured in vivo. In sensitized mice, AIT with MCT-adjuvanted allergens caused fewer anaphylactic reactions compared with alum-adjuvanted allergens. As depot adjuvants, MCT and alum are comparably effective in strength and mechanism of Ag-specific IgG induction and induction of T cell responses. The biocompatible and biodegradable MCT seems therefore a suitable alternative adjuvant to alum-based vaccines and AIT.
Collapse
Affiliation(s)
- Deborah S Leuthard
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Agathe Duda
- Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | | | - Sina Weiss
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Isabella Dommann
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Gabriele Fenini
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland
| | - Emmanuel Contassot
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Matthias F Kramer
- Bencard Allergie GmbH, 80992 Munich, Germany; and.,Allergy Therapeutics Ltd., Worthing BN14 8SA, United Kingdom
| | | | - Thomas M Kündig
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland.,Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Matthew D Heath
- Allergy Therapeutics Ltd., Worthing BN14 8SA, United Kingdom
| | - Pål Johansen
- Department of Dermatology, University of Zurich, 8091 Zurich, Switzerland; .,Department of Dermatology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
17
|
Tran TH, Tran TTP, Nguyen HT, Phung CD, Jeong JH, Stenzel MH, Jin SG, Yong CS, Truong DH, Kim JO. Nanoparticles for dendritic cell-based immunotherapy. Int J Pharm 2018; 542:253-265. [PMID: 29555438 DOI: 10.1016/j.ijpharm.2018.03.029] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022]
Abstract
Crosstalk among immune cells has attracted considerable attention with the advent of immunotherapy as a novel therapeutic approach for challenging diseases, especially cancer, which is the leading cause of mortality worldwide. Dendritic cells-the key antigen-presenting cells-play a pivotal role in immunological response by presenting exogenous epitopes to T cells, which induces the self-defense mechanisms of the body. Furthermore, nanotechnology has provided promising ways for diagnosing and treating cancer in the last decade. The progress in nanoparticle drug carrier development, combined with enhanced understanding of the immune system, has enabled harnessing of anti-tumor immunity. This review focuses on the recent advances in nanotechnology that have improved the therapeutic efficacy of immunotherapies, with emphasis on dendritic cell physiology and its role in presenting antigens and eliciting therapeutic T cell response.
Collapse
Affiliation(s)
- Tuan Hiep Tran
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam; Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Thi Thu Phuong Tran
- The Institute of Molecular Genetics of Montpellier, CNRS, Montpellier, France
| | - Hanh Thuy Nguyen
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Cao Dai Phung
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jee-Heon Jeong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, University of New South Wales, Kensington, NSW 2052, Australia
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, 119 Dandae-ro, Cheonan 31116, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Duy Hieu Truong
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam.
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
18
|
Pfaar O, Bonini S, Cardona V, Demoly P, Jakob T, Jutel M, Kleine-Tebbe J, Klimek L, Klysner S, Kopp MV, Kuna P, Larché M, Muraro A, Schmidt-Weber CB, Shamji MH, Simonsen K, Somoza C, Valovirta E, Zieglmayer P, Zuberbier T, Wahn U. Perspectives in allergen immunotherapy: 2017 and beyond. Allergy 2018; 73 Suppl 104:5-23. [PMID: 29171712 DOI: 10.1111/all.13355] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2017] [Indexed: 01/01/2023]
Abstract
The Future of the Allergists and Specific Immunotherapy (FASIT) workshop provides a regular platform for global experts from academia, allergy clinics, regulatory authorities and industry to review developments in the field of allergen immunotherapy (AIT). The most recent meeting, held in February 2017, had two main themes: advances in AIT and hot topics in AIT from the regulatory point of view. The first theme covered opportunities for personalized AIT, advances in adjuvants and delivery systems, and the development of new molecules and future vaccines for AIT. Key topics in the second part of the meeting were the effects of the enactment of European Directive 2001/83 on the availability of allergens for therapy and diagnosis across the EU, the challenges of conducting Phase 3 studies in the field, the future role of allergen exposure chambers in AIT studies and specific considerations in performing AIT studies in the paediatric population. Finally, the group highlighted the forthcoming EAACI guidelines and their particular importance for the standardization of practice in the treatment of allergies. This review presents a comprehensive insight into those panel discussions and highlights unmet needs and also possible solutions to them for the future.
Collapse
Affiliation(s)
- O. Pfaar
- Department of Otorhinolaryngology; Head and Neck Surgery; Universitätsmedizin Mannheim; Medical Faculty Mannheim; Heidelberg University; Mannheim Germany
- Center for Rhinology and Allergology; Wiesbaden Germany
| | - S. Bonini
- Italian National Research Council; Institute of Translational Pharmacology; Rome, and University of Campania ‘Luigi Vanvitelli’; Naples Italy
- Expert-on Secondment at the European Medicines Agency; London UK
| | - V. Cardona
- Hospital Vall D'Hebron, S. Allergologia, S. Medicina Interna; Barcelona Spain
| | - P. Demoly
- Departement de Pneumologie et Addictologie; Hopital Arnaud de Villeneuve; University Hospital of Montpellier; Montpellier France
| | - T. Jakob
- Department of Dermatology and Allergology; University Medical Center Giessen (UKGM); Justus-Liebig-University Giessen; Giessen Germany
- Allergy Research Group; Department of Dermatology; Medical Center - University Freiburg; Freiburg Germany
| | - M. Jutel
- Department of Clinical Immunology; Wroclaw Medical University; Wroclaw Poland
- All-Med Medical Research Institute; Wroclaw Poland
| | - J. Kleine-Tebbe
- Allergy & Asthma Center Westend; Outpatient Clinic and Clinical Research Center; Berlin Germany
| | - L. Klimek
- Center for Rhinology and Allergology; Wiesbaden Germany
| | - S. Klysner
- Expres ion Biotechnologies Aps; Hørsholm Denmark
| | - M. V. Kopp
- Department of Pediatric Allergy and Pulmonology; University of Luebeck; Luebeck Germany
- Airway Research Center North (ARCN); Member of the Deutsches Zentrum für Lungenforschung (DZL); Luebeck Germany
| | - P. Kuna
- Department of Internal Medicine, Asthma and Allergy; Barlicki University Hospital; Medical University of Lodz; Lodz Poland
| | - M. Larché
- Divisions of Clinical Immunology & Allergy, and Respirology; Department of Medicine and Firestone Institute for Respiratory Health; McMaster University; Hamilton ON Canada
| | - A. Muraro
- Food Allergy Referral Centre; Padua University Hospital; Padua Italy
| | - C. B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM); Member of the German Center for Lung Research (DZL); Technical University of Munich and Helmholtz Center Munich; Munich Germany
| | - M. H. Shamji
- Immunomodulation and Tolerance Group; Allergy and Clinical Immunology; Inflammation Repair and Development; National Heart and Lung Institute; Imperial College; London UK
- MRC & Asthma UK Centre in Allergic Mechanisms of Asthma; London UK
| | | | - C. Somoza
- Biological Products and Biotechnology Division; Medicines for Human Use Department; Agencia Española de Medicamentos y Productos Sanitarios (AEMPS); Madrid Spain
| | - E. Valovirta
- Department of Lung Disease and Clinical Allergology; University of Turku and Terveystalo Allergy Clinic; Turku Finland
| | - P. Zieglmayer
- Allergy Center Vienna West; Vienna Challenge Chamber; Vienna Austria
| | - T. Zuberbier
- Comprehensive Allergy-Centre-Charité; Department of Dermatology and Allergy; Charité - Universitätsmedizin Berlin; Berlin Germany
- Member of Global Allergy and Asthma European Network (GA LEN); GA LEN coordinating Office; Charité - Universitätsmedizin Berlin; Germany
| | - U. Wahn
- Department for Pediatric Pneumology and Immunology; Charité - Universitätsmedizin Berlin; Berlin Germany
| | | |
Collapse
|
19
|
Pfaar O, Lang S, Pieper‐Fürst U, Astvatsatourov A, Gerich F, Klimek L, Kramer MF, Reydelet Y, Shah‐Hosseini K, Mösges R. Ultra-short-course booster is effective in recurrent grass pollen-induced allergic rhinoconjunctivitis. Allergy 2018; 73:187-195. [PMID: 28675499 PMCID: PMC5763416 DOI: 10.1111/all.13240] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND A relevant proportion of allergic rhinoconjunctivitis (ARC) patients experience recurrent symptoms after successfully completing allergen immunotherapy (AIT). This prospective, controlled, noninterventional study used internationally standardized instruments to determine the clinical effects of a preseasonal, ultra-short-course booster AIT on clinical outcome parameters. METHODS This two-arm study included patients aged ≥12 years with recurrent grass pollen-induced seasonal AR who had completed a successful course of any grass pollen AIT at least 5 years before enrolment. Overall, 56 patients received one preseasonal short-course booster AIT using tyrosine-absorbed grass pollen allergoids containing the adjuvant monophosphoryl lipid A (MPL® ); 51 control patients received symptomatic medication. The combined symptom and medication score (CSMS) was recorded in the (peak) grass pollen season. Furthermore, concomitant (antiallergic) medication use, the patients' state of health, Mini Rhinoconjunctivitis Quality of Life Questionnaire (MiniRQLQ) results and safety/tolerability of the treatment were assessed. RESULTS The CSMS in the peak grass pollen season was significantly lower in the booster AIT group (Δ=38.4%, P<.01). Moreover, significantly more patients in this group used no concomitant antiallergic medication throughout the peak grass pollen season. Twice as many patients in the booster AIT group as in the control group reported having a better state of health than in the preceding season. MiniRQLQ results showed significant differences favouring the booster AIT. The booster AIT was generally well tolerated, with only two patients reporting mild, grade 1 systemic adverse events. CONCLUSION Booster AIT using tyrosine-absorbed allergoids containing the adjuvant MPL® effectively prevents re-occurrence of symptoms in patients with grass pollen-induced ARC.
Collapse
Affiliation(s)
- O. Pfaar
- Department of OtorhinolaryngologyHead and Neck SurgeryUniversitätsmedizin MannheimMedical Faculty MannheimHeidelberg UniversityMannheimGermany
- Center for Rhinology and AllergologyWiesbadenGermany
| | - S. Lang
- Institute of Medical StatisticsInformatics and Epidemiology (IMSIE)Faculty of MedicineUniversity of CologneCologneGermany
| | - U. Pieper‐Fürst
- Institute of Medical StatisticsInformatics and Epidemiology (IMSIE)Faculty of MedicineUniversity of CologneCologneGermany
| | - A. Astvatsatourov
- Institute of Medical StatisticsInformatics and Epidemiology (IMSIE)Faculty of MedicineUniversity of CologneCologneGermany
| | - F. Gerich
- Institute of Medical StatisticsInformatics and Epidemiology (IMSIE)Faculty of MedicineUniversity of CologneCologneGermany
| | - L. Klimek
- Center for Rhinology and AllergologyWiesbadenGermany
| | | | - Y. Reydelet
- Institute of Medical StatisticsInformatics and Epidemiology (IMSIE)Faculty of MedicineUniversity of CologneCologneGermany
| | - K. Shah‐Hosseini
- Institute of Medical StatisticsInformatics and Epidemiology (IMSIE)Faculty of MedicineUniversity of CologneCologneGermany
| | - R. Mösges
- Institute of Medical StatisticsInformatics and Epidemiology (IMSIE)Faculty of MedicineUniversity of CologneCologneGermany
| |
Collapse
|
20
|
Aliu H, Rask C, Brimnes J, Andresen TL. Enhanced efficacy of sublingual immunotherapy by liposome-mediated delivery of allergen. Int J Nanomedicine 2017; 12:8377-8388. [PMID: 29200850 PMCID: PMC5702530 DOI: 10.2147/ijn.s137033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Immunotherapy by sublingual administration of allergens provides high patient compliance and has emerged as an alternative to subcutaneous immunotherapy for the treatment of IgE-associated allergic diseases. However, sublingual immunotherapy (SLIT) can cause adverse events. Development of allergen delivery systems enabling more efficient delivery and hence lower allergen load might reduce the adverse events. In the present study, we have investigated neutral and cationic liposomes as delivery systems of ovalbumin (OVA), as a model allergen, in an OVA-induced allergic airway inflammation model. We investigated the liposome carriers' ability to improve tolerance induction of antigens compared to the corresponding dose of free OVA. Mice were treated sublingually over 2 weeks with free or liposome encapsulated OVA followed by intraperitoneal injections and intranasal challenge. Mice sublingually treated with OVA-liposomes showed a significant reduction of airway eosinophilia and splenocyte proliferation in comparison to free OVA. A similar nonsignificant pattern was seen for OVA-specific IgE antibodies. In addition, reduced levels of interferon-γ and interleukin-5 were observed in spleen cell culture supernatants from OVA-liposome-treated mice compared to the sham-treated group. In conclusion, in vivo efficacy data showed that prophylactic SLIT with OVA-liposomes is significantly more effective in preventing allergic inflammation than the corresponding dose of free OVA.
Collapse
Affiliation(s)
- Have Aliu
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm.,Department of Micro- and Nanotechnology, Technical University of Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Carola Rask
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm
| | - Jens Brimnes
- Immunology Department, In vivo Biology Team, ALK Abelló A/S, Hørsholm
| | - Thomas Lars Andresen
- Department of Micro- and Nanotechnology, Technical University of Denmark.,Center for Nanomedicine and Theranostics, Technical University of Denmark, Kgs Lyngby, Denmark
| |
Collapse
|
21
|
Larenas-Linnemann D, Luna-Pech JA, Mösges R. Debates in Allergy Medicine: Allergy skin testing cannot be replaced by molecular diagnosis in the near future. World Allergy Organ J 2017; 10:32. [PMID: 29043011 PMCID: PMC5604190 DOI: 10.1186/s40413-017-0164-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 07/07/2017] [Indexed: 01/23/2023] Open
Abstract
Percutaneous skin prick tests (SPT) have been considered the preferred method for confirming IgE-mediated sensitization. This reliable and minimally invasive technique correlates with in vivo challenges, has good reproducibility, is easily quantified, and allows analyzing multiple allergens simultaneously. Potent extracts and a proficient tester improve its accuracy. Molecular-based allergy diagnostics (MA-Dx) quantifies allergenic components obtained either from purification of natural sources or recombinant technology to identify the patient’s reactivity to those specific allergenic protein components. For a correct allergy diagnosis, the patient selection is crucial. MA-Dx has been shown to have a high specificity, however, as MA-Dx testing can be ordered by any physician, the pre-selection of patients might not always be optimal, reducing test specificity. Also, MA-Dx is less sensitive than in vitro testing with the whole allergen or SPT. Secondly, no allergen-specific immunotherapy (AIT) trial has yet shown efficacy with patients selected on the basis of their MA-Dx results. Thirdly, why would we need molecular diagnosis, as no molecular treatment can yet be offered? Then there are the practical arguments of costs (SPT highly cost-efficient), test availability for MA-Dx still lacking in wide areas of the world and scarce in others. As such, it is hard physicians can build confidence in the test and their interpretation of the MA-Dx results. In conclusion: as of now these techniques should be reserved for situations of complex allergies and polysensitization; in the future MA-Dx might help to reduce the number of allergens for AIT, but trials are needed to prove this concept.
Collapse
Affiliation(s)
- Désirée Larenas-Linnemann
- Investigational Unit, Hospital Médica Sur, Torre 2, consultorio 602, Puente de Piedra 150, Col. Toriello Guerra, Del. Tlalpan, 14050 Mexico City, Mexico
| | - Jorge A Luna-Pech
- Departamento de Disciplinas Filosófico, Metodológico e Instrumentales, CUCS, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ralph Mösges
- Institute of Medical Statistics and Epidemiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
22
|
Epp A, Hobusch J, Bartsch YC, Petry J, Lilienthal GM, Koeleman CAM, Eschweiler S, Möbs C, Hall A, Morris SC, Braumann D, Engellenner C, Bitterling J, Rahmöller J, Leliavski A, Thurmann R, Collin M, Moremen KW, Strait RT, Blanchard V, Petersen A, Gemoll T, Habermann JK, Petersen F, Nandy A, Kahlert H, Hertl M, Wuhrer M, Pfützner W, Jappe U, Finkelman FD, Ehlers M. Sialylation of IgG antibodies inhibits IgG-mediated allergic reactions. J Allergy Clin Immunol 2017; 141:399-402.e8. [PMID: 28728998 DOI: 10.1016/j.jaci.2017.06.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 05/31/2017] [Accepted: 06/14/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Alexandra Epp
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Juliane Hobusch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Yannic C Bartsch
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Janina Petry
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Gina-Maria Lilienthal
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Simon Eschweiler
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Christian Möbs
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Ashley Hall
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Suzanne C Morris
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Dominique Braumann
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany; Laboratory of Glycodesign and Glycoanalytics, Institute for Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-University Medicine Berlin, Berlin, Germany
| | - Christine Engellenner
- Division of Biochemical Immunology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Josephine Bitterling
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Johann Rahmöller
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany; Department of Anesthesiology and Intensive Care, University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Alexei Leliavski
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Robina Thurmann
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Ga
| | - Richard T Strait
- Division of Emergency Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Véronique Blanchard
- Laboratory of Glycodesign and Glycoanalytics, Institute for Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-University Medicine Berlin, Berlin, Germany
| | - Arnd Petersen
- Division of Clinical & Molecular Allergology, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany
| | - Timo Gemoll
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck & Univesity Medical Center Schleswig Holstein, Lübeck, Germany
| | - Jens K Habermann
- Section for Translational Surgical Oncology & Biobanking, Department of Surgery, University of Lübeck & Univesity Medical Center Schleswig Holstein, Lübeck, Germany
| | - Frank Petersen
- Division of Biochemical Immunology, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Andreas Nandy
- Research and Preclinical Development, Allergopharma GmbH & Co. KG, a business of Merck, Darmstadt, Germany
| | - Helga Kahlert
- Research and Preclinical Development, Allergopharma GmbH & Co. KG, a business of Merck, Darmstadt, Germany
| | - Michael Hertl
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfgang Pfützner
- Department of Dermatology and Allergology, Philipps University Marburg, Marburg, Germany
| | - Uta Jappe
- Division of Clinical & Molecular Allergology, Research Center Borstel, Airway Research Center North (ARCN), German Center for Lung Research (DZL), Borstel, Germany; Interdisciplinary Allergy Outpatient Clinic, Department of Internal Medicine, University of Lübeck, Lübeck, Germany
| | - Fred D Finkelman
- Division of Immunology, Allergy and Rheumatology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Medicine, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio
| | - Marc Ehlers
- Laboratories of Immunology and Antibody Glycan Analysis, Institute for Nutrition Medicine, University of Lübeck & University Medical Center Schleswig Holstein, Lübeck, Germany.
| |
Collapse
|
23
|
Ramírez W, Bourg V, Torralba D, Facenda E, Tamargo B, González BO, Sierra G, Pérez O, Perez-Llano Y, Labrada A. Safety of a proteoliposome from Neisseria meningitides as adjuvant for a house dust mite allergy vaccine. J Immunotoxicol 2017; 14:152-159. [DOI: 10.1080/1547691x.2017.1346007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Wendy Ramírez
- Allergens Department, Centro Nacional de Biopreparados, Bejucal, Mayabeque, Cuba
| | - Virgilio Bourg
- Allergens Department, Centro Nacional de Biopreparados, Bejucal, Mayabeque, Cuba
| | - Damaris Torralba
- Allergens Department, Centro Nacional de Biopreparados, Bejucal, Mayabeque, Cuba
| | - Elisa Facenda
- Allergens Department, Centro Nacional de Biopreparados, Bejucal, Mayabeque, Cuba
| | - Beatriz Tamargo
- Pharmacy and Food Institute, University of Havana, Havana, Cuba
| | | | | | | | | | - Alexis Labrada
- Allergens Department, Centro Nacional de Biopreparados, Bejucal, Mayabeque, Cuba
| |
Collapse
|
24
|
Klimek L, Pfaar O, Bousquet J, Senti G, Kündig T. Allergen immunotherapy in allergic rhinitis: current use and future trends. Expert Rev Clin Immunol 2017; 13:897-906. [DOI: 10.1080/1744666x.2017.1333423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ludger Klimek
- Department of Otorhinolaryngology, Allergy Center, Wiesbaden, Germany
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Allergy Center, Wiesbaden, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jean Bousquet
- MACVIA-France, Contre les MAladies Chroniques pour un VIeillissement Actif en France European Innovation Partnership on Active and Healthy Ageing Reference Site, Montpellier, France
- INSERM U 1168, VIMA: Ageing and chronic diseases Epidemiological and public health approaches, Villejuif, Université Versailles St-Quentin-en-Yvelines, Montigny le Bretonneux, France
| | - Gabriela Senti
- Center for Clinical Trials, Zurich University Hospital, Zurich, Switzerland
| | - Thomas Kündig
- Dept. of Dermatology, Zurich University Hospital, Zurich, Switzerland
| |
Collapse
|
25
|
Gehring S, Pietrzak-Nguyen A, Fichter M, Landfester K. Novel strategies in vaccine design: can nanocapsules help prevent and treat hepatitis B? Nanomedicine (Lond) 2017; 12:1205-1207. [DOI: 10.2217/nnm-2016-0064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Stephan Gehring
- Children's Hospital, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Anette Pietrzak-Nguyen
- Children's Hospital, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Michael Fichter
- Children's Hospital, University Medical Center, Johannes Gutenberg University, 55128 Mainz, Germany
| | | |
Collapse
|
26
|
Kitzmüller C, Kalser J, Mutschlechner S, Hauser M, Zlabinger GJ, Ferreira F, Bohle B. Fusion proteins of flagellin and the major birch pollen allergen Bet v 1 show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity. J Allergy Clin Immunol 2017; 141:293-299.e6. [PMID: 28456624 DOI: 10.1016/j.jaci.2017.02.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/03/2017] [Accepted: 02/22/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND Recombinant fusion proteins of flagellin and antigens have been demonstrated to induce strong innate and adaptive immune responses. Such fusion proteins can enhance the efficacy of allergen-specific immunotherapy. OBJECTIVE We sought to characterize different fusion proteins of flagellin and the major birch pollen allergen Bet v 1 for suitability as allergy vaccines. METHODS A truncated version of flagellin (NtCFlg) was genetically fused to the N- or C-terminus of Bet v 1. Toll-like receptor (TLR) 5 binding was assessed with HEK293 cells expressing TLR5. Upregulation of CD40, CD80, CD83, and CD86 on monocyte-derived dendritic cells from allergic patients was analyzed by using flow cytometry. The T cell-stimulatory capacity of the fusion proteins was assessed with naive and Bet v 1-specific T cells. IgE binding was tested in inhibition ELISAs and basophil activation tests. Mice were immunized with the fusion proteins in the absence and presence of aluminum hydroxide. Cellular and antibody responses were monitored. Murine antibodies were tested for blocking capacity in basophil activation tests. RESULTS Both fusion proteins matured monocyte-derived dendritic cells through TLR5. Compared with Bet v 1, the fusion proteins showed stronger T cell-stimulatory and reduced IgE-binding capacity and induced murine Bet v 1-specific antibodies in the absence of aluminum hydroxide. However, only antibodies induced by means of immunization with NtCFlg fused to the C-terminus of Bet v 1 inhibited binding of patients' IgE antibodies to Bet v 1. CONCLUSION Bet v 1-flagellin fusion proteins show enhanced immunogenicity, reduced allergenicity, and intrinsic adjuvanticity and thus represent promising vaccines for birch pollen allergen-specific immunotherapy. However, the sequential order of allergen and adjuvant within a fusion protein determines its immunologic characteristics.
Collapse
Affiliation(s)
- Claudia Kitzmüller
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Julia Kalser
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Sonja Mutschlechner
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Michael Hauser
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | | | - Fatima Ferreira
- Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Barbara Bohle
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
27
|
Klimek L, Schmidt-Weber CB, Kramer MF, Skinner MA, Heath MD. Clinical use of adjuvants in allergen-immunotherapy. Expert Rev Clin Immunol 2017; 13:599-610. [DOI: 10.1080/1744666x.2017.1292133] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ludger Klimek
- Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Carsten B. Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | | | | | | |
Collapse
|
28
|
Marogna M, Massolo A, Passalacqua G. Effect of adjuvanted and standard sublingual immunotherapy on respiratory function in pure rhinitis due to house dust mite over a 5-year period. World Allergy Organ J 2017; 10:7. [PMID: 28232857 PMCID: PMC5307763 DOI: 10.1186/s40413-016-0132-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Allergen-specific immunotherapy (AIT) still remains the only causal treatment for IgE mediated respiratory diseases (rhinitis/asthma) In addition to the observed clinical decrease in symptoms, AIT can provide a long-lasting and preventive effect. In particular it can modify the progression from rhinitis to asthma. METHODS The study was observational, open, non randomized, controlled, prospective and performed in a real-life setting. Patients with pure mite-induced allergic rhinitis were followed-up, receiving adjuvanted SLIT (aSLIT), standard SLIT (sSLIT) or drug treatment alone, according to their preference starting between 2008 and 2009. The possible onset of asthma, changes in pulmonary function and bronchial hyperreactivity (BHR) were assessed over a 5-year horizon. Also the onset of new sensitizations and symptoms-medication score (SMS) were evaluated. RESULTS One hundred forty two patients fulfilling the inclusion criteria were assessed at baseline, and 124 had the 5-year evaluation (age range 8-57, 69 male). After 5 years of treatment, new sensitizations appeared differentially among treatments with 58.1% of new sensitizations in the drug treatment group, 13.2% in the sSLIT patients, and 8.1% in the aSLIT patients. At the end of 5 years, SMS significantly changed (P < 0.001) in all groups, with a negative trend for controls, as compared to the SLIT treatments. The SMS decreased in both SLIT groups at 5 years, with no change in patients on drug treatment alone. The use of salbutamol (absent at baseline), showed an overall increase only in the group receiving drugs alone with a significant difference at 5 years (P < 0.001). Considering the MCh challenge, there was a difference among treatments (P < 0.001) in PD20 after 5 years: the control group had a lower PD20 at 5 years. No significant difference in PD20 was detected between sSLIT and aSLIT. The FEV1 significantly decreased in controls, with no change in the sSLIT group and a significant increase in aSLIT as compared to sSLIT. DISCUSSION Despite the limitations inherent to a real-life setting study (absence of randomization and control, small sample size, lack of intermediate timepoint assessment) the results of this study evidenced that the investigated SLIT product, either adjuvanted or not, had a positive effect on the evolution of respiratory allergy due to house dust mite. CONCLUSION In the real life setting, considering a 5-year period, aSLIT and sSLIT reduced the onset of new sensistizations and maintained intact the pulmonary function, as compared to patients receiving drug treatment alone.
Collapse
Affiliation(s)
- Maurizio Marogna
- Pneumology Unit, Cuasso al Monte, Macchi Hospital Foundation, Varese, Italy
| | - Alessandro Massolo
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada.,O'Brien Institute for Public Health, University of Calgary, Alberta, Canada
| | - Giovanni Passalacqua
- Department of Internal Medicine, Allergy and Respiratory Diseases, IRCCS San Martino-IST-University of Genoa, Pad. Maragliano, Ospedale San Martino, L.go R. Benzi 10, 16133 Genova, Italy
| |
Collapse
|
29
|
Turkalj M, Banic I, Anzic SA. A review of clinical efficacy, safety, new developments and adherence to allergen-specific immunotherapy in patients with allergic rhinitis caused by allergy to ragweed pollen ( Ambrosia artemisiifolia). Patient Prefer Adherence 2017; 11:247-257. [PMID: 28243068 PMCID: PMC5317300 DOI: 10.2147/ppa.s70411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Allergic rhinitis is a common health problem in both children and adults. The number of patients allergic to ragweed (Ambrosia artemisiifolia) is on the rise throughout Europe, having a significant negative impact on the patients' and their family's quality of life. Allergen-specific immunotherapy (AIT) has disease-modifying effects and can induce immune tolerance to allergens. Both subcutaneous immunotherapy and sublingual immunotherapy with ragweed extracts/preparations have clear positive clinical efficacy, especially over pharmacological treatment, even years after the treatment has ended. AIT also has very good safety profiles with extremely rare side effects, and the extracts/preparations used in AIT are commonly well tolerated by patients. However, patient adherence to treatment with AIT seems to be quite low, mostly due to the fact that treatment with AIT is relatively time-demanding and, moreover, due to patients not receiving adequate information and education about the treatment before it starts. AIT is undergoing innovations and improvements in clinical efficacy, safety and patient adherence, especially with new approaches using new adjuvants, recombinant or modified allergens, synthetic peptides, novel routes of administration (epidermal or intralymphatic), and new protocols, which might make AIT more acceptable for a wider range of patients and novel indications. Patient education and support (eg, recall systems) is one of the most important goals for AIT in the future, to further enhance treatment success.
Collapse
Affiliation(s)
- Mirjana Turkalj
- Children’s Hospital Srebrnjak, Zagreb
- Faculty of Medicine, JJ Strossmayer University of Osijek, Osijek, Croatia
| | | | | |
Collapse
|
30
|
Ziegler A, Gerber V, Marti E. In vitro effects of the toll-like receptor agonists monophosphoryl lipid A and CpG-rich oligonucleotides on cytokine production by equine cells. Vet J 2016; 219:6-11. [PMID: 28093114 DOI: 10.1016/j.tvjl.2016.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 11/18/2016] [Accepted: 11/20/2016] [Indexed: 12/19/2022]
Abstract
Insect bite hypersensitivity (IBH) is an equine allergic dermatitis to Culicoides spp. antigens. Attempts at using allergen-specific immunotherapy (AIT) as a treatment for IBH have so far proven unsuccessful. Toll-like receptor (TLR) agonists can promote a shift in the immune response from the allergy-promoting T helper cell 2 (Th2) response towards a Th1 and/or regulatory response. The aim of this study was to evaluate two immunomodulatory TLR agonists in vitro as potential vaccine adjuvants for a more efficacious AIT in IBH. Peripheral blood mononuclear cells (PBMCs) from healthy and IBH-affected horses were stimulated with the TLR-agonists monophosphoryl lipid A (MPLA) or CpG-rich oligodeoxynucleotides (CpG-ODN) in the presence or absence of Culicoides spp. allergens. Cytokine concentrations of interferon (IFN)-α, IFN-γ, interleukin (IL)-4, IL-10 and IL-17 were quantified in the supernatants of stimulated PBMCs. MPLA induced IL-10 secretion in all horses, regardless of presence and nature of antigens, while suppressing antigen-induced production of IFN-γ, IL-4 and IL-17. CpG-ODN significantly increased IFN-α, IFN-γ and IL-4 production, but had little effect on IL-10 production. In conclusion, MPLA promotes a regulatory immune response and is therefore a promising adjuvant candidate for allergy vaccines in horses. While C-class CpG-ODN is an unsuitable adjuvant for AIT, it induces IFN-γ and IFN-α, and thus may be a useful adjuvant in combination with vaccines for equine infectious or neoplastic diseases.
Collapse
Affiliation(s)
- A Ziegler
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Länggass-Strasse 124, Bern CH-3001, Switzerland
| | - V Gerber
- Swiss Institute of Equine Medicine, University of Bern and Agroscope, Länggass-Strasse 124, Bern CH-3001, Switzerland
| | - E Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, Länggass-Strasse 124, Bern CH-3001, Switzerland.
| |
Collapse
|
31
|
Yu L, Hu T, Zou T, Shi Q, Chen G. Chronic Myelocytic Leukemia (CML) Patient-Derived Dendritic Cells Transfected with Autologous Total RNA Induces CML-Specific Cytotoxicity. Indian J Hematol Blood Transfus 2016; 32:397-404. [PMID: 27812247 DOI: 10.1007/s12288-016-0643-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/12/2016] [Indexed: 01/18/2023] Open
Abstract
The oncogenic bcr/abl1 fusion gene is a chronic myelogenous leukemia (CML)-specific antigen which is absent in normal tissues. This makes bcr/abl1 a perfect target for developing CML vaccines that elicit specific immune responses against minimal residual disease while sparing normal tissue. The aim of this study was to use different methods to induce dendritic cells (DCs) derived from patients with CML (CML-DCs) and analyze them for CML-specific tumor cytotoxicity for immune therapy. Bone marrow-derived mononuclear cells from ten CML patients were studied to induce CML-DC differentiation in the presence of recombinant human interleukin-4, rh-granulocyte-macrophage-colony stimulating factor, and tumor necrosis factor-alpha with either a total RNA-lipofectamine complex, total RNA or CML tumor lysate (freeze-thawed). CML-DC maturation, confirmed by expression of CD1α, CD40, CD80, CD83, CD86 and by real-time polymerase chain reaction, validated the CML-origin of these DC cells. CML-DCs stimulated cytotoxic T-cell (CTL) apoptosis, high levels of IL-12 secretion, and had significant inhibitory effect on K562 tumorigenicity in nude mice. CML-DCs pulsed with total RNA by lipofectamine transfection produced the strongest effect in tumor-specific CTL functions. These results indicate that CML-DCs transfected with total RNA by lipofectamine induce the strongest CTL cytotoxicity and have the greatest potential for CML immune therapy. This study holds promise for a DC-based strategy for inducing anti-leukemia responses and establishes a foundation for developing RNA vaccination against CML.
Collapse
Affiliation(s)
- Li Yu
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Ting Hu
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Tian Zou
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Qingzhi Shi
- Institute of Hematology, The Second Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| | - Guoan Chen
- Institute of Hematology, The First Affiliate Hospital of Nanchang University, Nanchang, 330000 China
| |
Collapse
|
32
|
Sampson HA. Food allergy: Past, present and future. Allergol Int 2016; 65:363-369. [PMID: 27613366 DOI: 10.1016/j.alit.2016.08.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Accepted: 08/09/2016] [Indexed: 01/26/2023] Open
Abstract
Hippocrates is often credited with first recognizing that food could be responsible for adverse symptoms and even death in some individuals, but it was not until the seminal observations by Prausnitz that the investigation of food allergy was viewed on a more scientific basis. In the first half of the 20th century, there were periodic reports in the medical literature describing various food allergic reactions. In the mid- to late- 1970's, the studies of Charles May and colleagues began to penetrate the medical world's skepticism about the relevance of food allergy and how to diagnose it, since standard skin testing was known to correlate poorly with clinical symptoms. With May's introduction of the double-blind placebo-controlled oral food challenge, the study of food allergy became evidence-based and exponential strides have been made over the past four decades in the study of basic immunopathogenic mechanisms and natural history, and the diagnosis and management of food allergies. Today IgE- and non-IgE-mediated food allergic disorders are well characterized and efforts to treat these allergies by various immunotherapeutic strategies are well under way.
Collapse
|
33
|
Abstract
One key approach to increase the efficacy and the safety of immunotherapy is the use of adjuvants. However, many of the adjuvants currently in use can cause adverse events, raising concerns regarding their clinical use, and are geared toward productive immune responses but not necessarily tolerogenic responses. Thus, novel adjuvants for immunotherapy are needed and are being developed. Essential is their potential to boost appropriate tolerogenic adaptive immune responses to allergens while limiting side effects. This review provides an overview of adjuvants currently in clinical use or under development and discusses their therapeutic effect in enhancing allergen-induced tolerance.
Collapse
|
34
|
Shin WJ, Noh HJ, Noh YW, Kim S, Um SH, Lim YT. Hyaluronic acid-supported combination of water insoluble immunostimulatory compounds for anti-cancer immunotherapy. Carbohydr Polym 2016; 155:1-10. [PMID: 27702491 DOI: 10.1016/j.carbpol.2016.08.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 08/01/2016] [Accepted: 08/13/2016] [Indexed: 01/27/2023]
Abstract
A novel powder-form combination adjuvant system containing two immunostimulatory compounds was firstly developed and evaluated as a therapeutic intervention for cancer immunotherapy. With the help of hyaluronic acid (HA), water insoluble monophosphoryl lipid A (MPL), QS21 and imiquimod (R837), could be easily dispersed in aqueous solution and lyophilized as powder-form, which have an advantage in room-temperature storage stability compared with those conventional liquid formulation that requires cold storage. Two kinds of HA-based combination vaccine adjuvants (HA/MPL/QS21, HMQ and HA/MPL/R837, HMR) contributed to the increase of both humoral and cellular immunity, which is very important for efficient cancer immunotherapy. Through the challenge experiments in EG7-OVA (mouse lymphoma-expressing OVA) tumor-bearing mice model, we found out that the immunostimulatory effects of HMQ and HMR were successful in the inhibition of tumor proliferation. Taken together, both HA-based powder-form combination adjuvant systems are expected to be used as potent prophylactic and therapeutic cancer vaccine.
Collapse
Affiliation(s)
- Woo Jung Shin
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jong Noh
- Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Woock Noh
- Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sohyun Kim
- Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Taik Lim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Nanomedical Systems Laboratory, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
35
|
Passalacqua G, Canonica GW. Allergen Immunotherapy: History and Future Developments. Immunol Allergy Clin North Am 2015; 36:1-12. [PMID: 26617223 DOI: 10.1016/j.iac.2015.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Allergen immunotherapy (AIT) was introduced in clinical practice more than 100 years ago. The clinical effectiveness in allergic rhinitis (and asthma) and in hymenoptera allergy was apparent early on but it was not until the mid-1900s that randomized placebo-controlled trials proved its efficacy. In the 1980s, sublingual immunotherapy (SLIT) was accepted in official guidelines. The availability of safer routes, such as SLIT, prompted increasing investigation of AIT for food allergy. The introduction of molecular-based diagnosis introduced the possibility of better targeted prescription of AIT. Other approaches are being explored, such as immunogenic peptides, recombinant allergens, and adjuvants.
Collapse
Affiliation(s)
- Giovanni Passalacqua
- Allergy and Respiratory Diseases, IRCCS San Martino-IST, University of Genoa, Genoa 16132, Italy.
| | - Giorgio Walter Canonica
- Allergy and Respiratory Diseases, IRCCS San Martino-IST, University of Genoa, Genoa 16132, Italy
| |
Collapse
|
36
|
Noh HJ, Chowdhury MYE, Cho S, Kim JH, Park HS, Kim CJ, Poo H, Sung MH, Lee JS, Lim YT. Programming of Influenza Vaccine Broadness and Persistence by Mucoadhesive Polymer-Based Adjuvant Systems. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26216889 DOI: 10.4049/jimmunol.1500492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of an anti-influenza vaccine with the potential for cross-protection against seasonal drift variants as well as occasionally emerging reassortant viruses is essential. In this study, we successfully generated a novel anti-influenza vaccine system combining conserved matrix protein 2 (sM2) and stalk domain of hemagglutinin (HA2) fusion protein (sM2HA2) and poly-γ-glutamic acid (γ-PGA)-based vaccine adjuvant systems that can act as a mucoadhesive delivery vehicle of sM2HA2 as well as a robust strategy for the incorporation of hydrophobic immunostimulatory 3-O-desacyl-4'-monophosphoryl lipid A (MPL) and QS21. Intranasal coadministration of sM2HA2 and the combination adjuvant γ-PGA/MPL/QS21 (CA-PMQ) was able to induce a high degree of protective mucosal, systemic, and cell-mediated immune responses. The sM2HA2/CA-PMQ immunization was able to prevent disease symptoms, confering complete protection against lethal infection with divergent influenza subtypes (H5N1, H1N1, H5N2, H7N3, and H9N2) that lasted for at least 6 mo. Therefore, our data suggest that mucosal administration of sM2HA2 in combination with CA-PMQ could be a potent strategy for a broad cross-protective influenza vaccine, and CA-PMQ as a mucosal adjuvant could be used for effective mucosal vaccines.
Collapse
Affiliation(s)
- Hyun Jong Noh
- Department of Chemical Engineering, Sungkyunkwan University Advanced Institute of Nanotechnology, Suwon 440-746, South Korea
| | - Mohammed Y E Chowdhury
- College of Veterinary Medicine (BK21 Plus Program), Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea; Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong 4202, Bangladesh
| | - Seonghun Cho
- College of Veterinary Medicine (BK21 Plus Program), Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| | - Jae-Hoon Kim
- College of Veterinary Medicine (BK21 Plus Program), Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| | - Hye Sun Park
- Korea Basic Science Institute, Chungbuk 363-883, South Korea
| | - Chul-Joong Kim
- College of Veterinary Medicine (BK21 Plus Program), Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea
| | - Haryoung Poo
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea; and
| | - Moon-Hee Sung
- Department of Advanced Fermentation Fusion Science and Technology, Kookmin University, Seoul 136-702, South Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine (BK21 Plus Program), Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon 305-764, South Korea;
| | - Yong Taik Lim
- Department of Chemical Engineering, Sungkyunkwan University Advanced Institute of Nanotechnology, Suwon 440-746, South Korea;
| |
Collapse
|
37
|
Fonseca DM, Wowk PF, Paula MO, Gembre AF, Baruffi MD, Fermino ML, Turato WM, Campos LW, Silva CL, Ramos SG, Horn C, Marchal G, Arruda LK, Russo M, Bonato VLD. Requirement of MyD88 and Fas pathways for the efficacy of allergen-free immunotherapy. Allergy 2015; 70:275-84. [PMID: 25477068 DOI: 10.1111/all.12555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND We have shown that mycobacterial antigens and CpG oligodeoxynucleotides downmodulate airway allergic inflammation by mechanisms dependent on T-cell activation. Here, we investigated the participation of the innate response, particularly the role of MyD88 adaptor, and Fas molecules in the effectiveness of DNA-HSP65 or CpG/culture filtrated proteins (CFP) immunotherapy. METHODS Mice sensitized and challenged with Der p 1 allergen were treated with DNA-HSP65, CpG/CFP, or with adoptively transferred cells from immunized mice. The treatment efficacy was assessed by evaluating eosinophil recruitment, antibody, and cytokine production. RESULTS In addition to downregulating the Th2 response, DNA-HSP65 and CpG/CFP promoted IL-10 and IFN-γ production. Adoptive transfer of cells from mice immunized with DNA-HSP65 or CpG/CFP to allergic recipients downmodulated the allergic response. Notably, transfer of cells from DNA-HSP65- or CpG/CFP-immunized MyD88(-/-) mice failed to reduce allergy. Additionally, for effective reduction of allergy by cells from CpG/CFP-immunized mice, Fas molecules were required. Although DNA-HSP65 or CpG/CFP immunization stimulated antigen-specific production of IFN-γ and IL-10, the effect of DNA-HSP65 was associated with IL-10 while CpG/CFP was associated with IFN-γ. Moreover, after stimulation with mycobacterial antigens plus Der p 1 allergen, cells from mite-allergic patients with asthma exhibited similar patterns of cytokine production as those found in the lung of treated mice. CONCLUSIONS This study provides new insights on the mechanisms of allergen-free immunotherapy by showing that both DNA-HSP65 and CpG/CFP downregulated house dust mite-induced allergic airway inflammation via distinct pathways that involve not only induction of mycobacterial-specific adaptive responses but also signaling via MyD88 and Fas molecules.
Collapse
Affiliation(s)
- D. M. Fonseca
- Department of Biochemistry and Immunology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - P. F. Wowk
- Department of Biochemistry and Immunology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
- Carlos Chagas Institute; Oswaldo Cruz Foundation; Curitiba Brazil
| | - M. O. Paula
- Department of Biochemistry and Immunology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - A. F. Gembre
- Department of Biochemistry and Immunology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - M. D. Baruffi
- Department of Clinical Analyses, Toxicology and Food Sciences; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - M. L. Fermino
- Department of Clinical Analyses, Toxicology and Food Sciences; Faculty of Pharmaceutical Sciences of Ribeirão Preto; University of São Paulo; Ribeirão Preto Brazil
| | - W. M. Turato
- Department of Biochemistry and Immunology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - L. W. Campos
- Department of Biochemistry and Immunology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - C. L. Silva
- Department of Biochemistry and Immunology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - S. G. Ramos
- Department of Pathology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - C. Horn
- Laboratory of Immunology and Immunogenetics; Evandro Chagas Clinical Research Institute; Oswaldo Cruz Foundation; Rio de Janeiro Brazil
| | - G. Marchal
- Immunotherapix Bio Top; Institute Pasteur; Paris France
| | - L. K. Arruda
- Department of Medicine; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| | - M. Russo
- Department of Immunology; Institute of Biomedical Sciences; University of São Paulo; São Paulo Brazil
| | - V. L. D. Bonato
- Department of Biochemistry and Immunology; Ribeirão Preto Medical School; University of São Paulo; Ribeirão Preto Brazil
| |
Collapse
|
38
|
Leitlinie zur (allergen-)spezifischen Immuntherapie bei IgE-vermittelten allergischen Erkrankungen. ALLERGO JOURNAL 2014. [DOI: 10.1007/s15007-014-0707-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Abstract
Allergen-specific immunotherapy is the only treatment of allergic diseases that aims at modifying the underlying immune mechanism. Current protocols are long and at risk of anaphylactic reactions. The main aim of current research is decreasing the risk of side effects and increasing efficacy, in particular targeting reduction of treatment duration. Since the advent of molecular biology, extracts can be replaced by recombinant hypo-allergens, peptides, or fusion proteins. In addition, different routes of administration are being pursued as well as the addition of new adjuvants that are targeted at skewing the immune system away from a Th2 to a more Th1 or regulatory T cell phenotype. In this review, we summarize the recent advances in this field focusing on the allergen modifications and new adjuvants.
Collapse
|
40
|
Weber RJ, Liang SI, Selden NS, Desai TA, Gartner ZJ. Efficient targeting of fatty-acid modified oligonucleotides to live cell membranes through stepwise assembly. Biomacromolecules 2014; 15:4621-6. [PMID: 25325667 PMCID: PMC4261982 DOI: 10.1021/bm501467h] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Lipid
modifications provide efficient targeting of oligonucleotides
to live cell membranes in a range of applications. Targeting efficiency
is a function of the rate of lipid DNA insertion into the cell surface
and its persistence over time. Here we show that increasing lipid
hydrophobicity increases membrane persistence, but decreases the rate
of membrane insertion due to the formation of nonproductive aggregates
in solution. To ameliorate this effect, we split the net hydrophobicity
of the membrane anchor between two complementary oligonucleotides.
When prehybridized in solution, doubly anchored molecules also aggregate
due to their elevated hydrophobicity. However, when added sequentially
to cells, aggregation does not occur so membrane insertion is efficient.
Hybridization between the two strands locks the complexes at the cell
surface by increasing net hydrophobicity, increasing their total concentration
and lifetime, and dramatically improving their utility in a variety
of biomedical applications.
Collapse
Affiliation(s)
- Robert J Weber
- Department of Pharmaceutical Chemistry, University of California, San Francisco , 600 16th Street, Box 2280, San Francisco, California 94158, United States
| | | | | | | | | |
Collapse
|
41
|
Schulten V, Peters B, Sette A. New strategies for allergen T cell epitope identification: going beyond IgE. Int Arch Allergy Immunol 2014; 165:75-82. [PMID: 25402674 DOI: 10.1159/000368406] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Type I allergy and allergic asthma are common diseases in the developed world associated with IgE antibodies and Th2 cell reactivity. To date, the only causative treatment for allergic disease is specific immunotherapy (SIT). METHOD Here, we review recent works from our laboratory focused on identifying human T cell epitopes associated with allergic disease and their potential use as biomarkers or therapeutic targets for SIT. In previous studies, we have mapped T cell epitopes associated with the major 10 timothy grass (Tg) allergens, defined on the basis of human IgE reactivity by ELISPOT. RESULTS Interestingly, in about 33% of allergic donors, no T cell epitopes from overlapping peptides spanning the entire sequences of these allergens were identified despite vigorous T cell responses to the Tg extract. Using a bioinformatic-proteomic approach, we identified a set of 93 novel Tg proteins, many of which were found to elicit IL-5 production in T cells from allergic donors despite lacking IgE reactivity. Next, we assessed T cell responses to the novel Tg proteins in donors who had been treated with subcutaneous SIT. A subset of these proteins showed a strong reduction of IL-5 responses in donors who had received subcutaneous SIT compared to allergic donors, which correlated with patients' self-reported improvement of allergic symptoms. CONCLUSION A bioinformatic-proteomic approach has successfully identified additional Tg-derived T cell targets independent of IgE reactivity. This method can be applied to other allergies potentially leading to the discovery of promising therapeutic targets for allergen-specific immunotherapy.
Collapse
|
42
|
Bohannon JK, Hernandez A, Enkhbaatar P, Adams WL, Sherwood ER. The immunobiology of toll-like receptor 4 agonists: from endotoxin tolerance to immunoadjuvants. Shock 2014; 40:451-62. [PMID: 23989337 DOI: 10.1097/shk.0000000000000042] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lipopolysaccharide (LPS, endotoxin) is a structural component of the gram-negative outer membrane. The lipid A moiety of LPS binds to the LPS receptor complex expressed by leukocytes, endothelial cells, and parenchymal cells and is the primary component of gram-negative bacteria that is recognized by the immune system. Activation of the LPS receptor complex by native lipid A induces robust cytokine production, leukocyte activation, and inflammation, which is beneficial for clearing bacterial infections at the local level but can cause severe systemic inflammation and shock at higher challenge doses. Interestingly, prior exposure to LPS renders the host resistant to shock caused by subsequent LPS challenge, a phenomenon known as endotoxin tolerance. Treatment with lipid A has also been shown to augment the host response to infection and to serve as a potent vaccine adjuvant. However, the adverse effects associated with the pronounced inflammatory response limit the use of native lipid A as a clinical immunomodulator. More recently, analogs of lipid A have been developed that possess attenuated proinflammatory activity but retain attractive immunomodulatory properties. The lipid A analog monophosphoryl lipid A exhibits approximately 1/1,000th of the toxicity of native lipid A but retains potent immunoadjuvant activity. As such, monophosphoryl lipid A is currently used as an adjuvant in several human vaccine preparations. Because of the potency of lipid A analogs as immunoadjuvants, numerous laboratories are actively working to identify and develop new lipid A mimetics and to optimize their efficacy and safety. Based on those characteristics, lipid A analogs represent an attractive family of immunomodulators.
Collapse
Affiliation(s)
- Julia K Bohannon
- *Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee; †Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas; and ‡School of Medicine, The University of Tennessee Health Science Center, Memphis; and §Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | |
Collapse
|
43
|
Pfaar O, Bachert C, Bufe A, Buhl R, Ebner C, Eng P, Friedrichs F, Fuchs T, Hamelmann E, Hartwig-Bade D, Hering T, Huttegger I, Jung K, Klimek L, Kopp MV, Merk H, Rabe U, Saloga J, Schmid-Grendelmeier P, Schuster A, Schwerk N, Sitter H, Umpfenbach U, Wedi B, Wöhrl S, Worm M, Kleine-Tebbe J, Kaul S, Schwalfenberg A. Guideline on allergen-specific immunotherapy in IgE-mediated allergic diseases: S2k Guideline of the German Society for Allergology and Clinical Immunology (DGAKI), the Society for Pediatric Allergy and Environmental Medicine (GPA), the Medical Association of German Allergologists (AeDA), the Austrian Society for Allergy and Immunology (ÖGAI), the Swiss Society for Allergy and Immunology (SGAI), the German Society of Dermatology (DDG), the German Society of Oto- Rhino-Laryngology, Head and Neck Surgery (DGHNO-KHC), the German Society of Pediatrics and Adolescent Medicine (DGKJ), the Society for Pediatric Pneumology (GPP), the German Respiratory Society (DGP), the German Association of ENT Surgeons (BV-HNO), the Professional Federation of Paediatricians and Youth Doctors (BVKJ), the Federal Association of Pulmonologists (BDP) and the German Dermatologists Association (BVDD). ALLERGO JOURNAL INTERNATIONAL 2014; 23:282-319. [PMID: 26120539 PMCID: PMC4479478 DOI: 10.1007/s40629-014-0032-2] [Citation(s) in RCA: 249] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The present guideline (S2k) on allergen-specific immunotherapy (AIT) was established by the German, Austrian and Swiss professional associations for allergy in consensus with the scientific specialist societies and professional associations in the fields of otolaryngology, dermatology and venereology, pediatric and adolescent medicine, pneumology as well as a German patient organization (German Allergy and Asthma Association; Deutscher Allergie- und Asthmabund, DAAB) according to the criteria of the Association of the Scientific Medical Societies in Germany (Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften, AWMF). AIT is a therapy with disease-modifying effects. By administering allergen extracts, specific blocking antibodies, toler-ance-inducing cells and mediators are activated. These prevent further exacerbation of the allergen-triggered immune response, block the specific immune response and attenuate the inflammatory response in tissue. Products for SCIT or SLIT cannot be compared at present due to their heterogeneous composition, nor can allergen concentrations given by different manufacturers be compared meaningfully due to the varying methods used to measure their active ingredients. Non-modified allergens are used for SCIT in the form of aqueous or physically adsorbed (depot) extracts, as well as chemically modified allergens (allergoids) as depot extracts. Allergen extracts for SLIT are used in the form of aqueous solutions or tablets. The clinical efficacy of AIT is measured using various scores as primary and secondary study endpoints. The EMA stipulates combined symptom and medication scores as primary endpoint. A harmonization of clinical endpoints, e. g., by using the combined symptom and medication scores (CSMS) recommended by the EAACI, is desirable in the future in order to permit the comparison of results from different studies. The current CONSORT recommendations from the ARIA/GA2LEN group specify standards for the evaluation, presentation and publication of study results. According to the Therapy allergen ordinance (TAV), preparations containing common allergen sources (pollen from grasses, birch, alder, hazel, house dust mites, as well as bee and wasp venom) need a marketing authorization in Germany. During the marketing authorization process, these preparations are examined regarding quality, safety and efficacy. In the opinion of the authors, authorized allergen preparations with documented efficacy and safety, or preparations tradeable under the TAV for which efficacy and safety have already been documented in clinical trials meeting WAO or EMA standards, should be preferentially used. Individual formulations (NPP) enable the prescription of rare allergen sources (e.g., pollen from ash, mugwort or ambrosia, mold Alternaria, animal allergens) for specific immunotherapy. Mixing these allergens with TAV allergens is not permitted. Allergic rhinitis and its associated co-morbidities (e. g., bronchial asthma) generate substantial direct and indirect costs. Treatment options, in particular AIT, are therefore evaluated using cost-benefit and cost-effectiveness analyses. From a long-term perspective, AIT is considered to be significantly more cost effective in allergic rhinitis and allergic asthma than pharmacotherapy, but is heavily dependent on patient compliance. Meta-analyses provide unequivocal evidence of the efficacy of SCIT and SLIT for certain allergen sources and age groups. Data from controlled studies differ in terms of scope, quality and dosing regimens and require product-specific evaluation. Therefore, evaluating individual preparations according to clearly defined criteria is recommended. A broad transfer of the efficacy of certain preparations to all preparations administered in the same way is not endorsed. The website of the German Society for Allergology and Clinical Immunology (www.dgaki.de/leitlinien/s2k-leitlinie-sit; DGAKI: Deutsche Gesellschaft für Allergologie und klinische Immunologie) provides tables with specific information on available products for AIT in Germany, Switzerland and Austria. The tables contain the number of clinical studies per product in adults and children, the year of market authorization, underlying scoring systems, number of randomized and analyzed subjects and the method of evaluation (ITT, FAS, PP), separately given for grass pollen, birch pollen and house dust mite allergens, and the status of approval for the conduct of clinical studies with these products. Strong evidence of the efficacy of SCIT in pollen allergy-induced allergic rhinoconjunctivitis in adulthood is well-documented in numerous trials and, in childhood and adolescence, in a few trials. Efficacy in house dust mite allergy is documented by a number of controlled trials in adults and few controlled trials in children. Only a few controlled trials, independent of age, are available for mold allergy (in particular Alternaria). With regard to animal dander allergies (primarily to cat allergens), only small studies, some with methodological deficiencies are available. Only a moderate and inconsistent therapeutic effect in atopic dermatitis has been observed in the quite heterogeneous studies conducted to date. SCIT has been well investigated for individual preparations in controlled bronchial asthma as defined by the Global Initiative for Asthma (GINA) 2007 and intermittent and mild persistent asthma (GINA 2005) and it is recommended as a treatment option, in addition to allergen avoidance and pharmacotherapy, provided there is a clear causal link between respiratory symptoms and the relevant allergen. The efficacy of SLIT in grass pollen-induced allergic rhinoconjunctivitis is extensively documented in adults and children, whilst its efficacy in tree pollen allergy has only been shown in adults. New controlled trials (some with high patient numbers) on house dust mite allergy provide evidence of efficacy of SLIT in adults. Compared with allergic rhinoconjunctivitis, there are only few studies on the efficacy of SLIT in allergic asthma. In this context, newer studies show an efficacy for SLIT on asthma symptoms in the subgroup of grass pollen allergic children, adolescents and adults with asthma and efficacy in primary house dust mite allergy-induced asthma in adolescents aged from 14 years and in adults. Aspects of secondary prevention, in particular the reduction of new sensitizations and reduced asthma risk, are important rationales for choosing to initiate treatment early in childhood and adolescence. In this context, those products for which the appropriate effects have been demonstrated should be considered. SCIT or SLIT with pollen or mite allergens can be performed in patients with allergic rhinoconjunctivitis using allergen extracts that have been proven to be effective in at least one double-blind placebo-controlled (DBPC) study. At present, clinical trials are underway for the indication in asthma due to house dust mite allergy, some of the results of which have already been published, whilst others are still awaited (see the DGAKI table "Approved/potentially completed studies" via www.dgaki.de/Leitlinien/s2k-Leitlinie-sit (according to www.clinicaltrialsregister.eu)). When establishing the indication for AIT, factors that favour clinical efficacy should be taken into consideration. Differences between SCIT and SLIT are to be considered primarily in terms of contraindications. In individual cases, AIT may be justifiably indicated despite the presence of contraindications. SCIT injections and the initiation of SLIT are performed by a physician experienced in this type of treatment and who is able to administer emergency treatment in the case of an allergic reaction. Patients must be fully informed about the procedure and risks of possible adverse events, and the details of this process must be documented (see "Treatment information sheet"; available as a handout via www.dgaki.de/Leitlinien/s2k-Leitlinie-sit). Treatment should be performed according to the manufacturer's product information leaflet. In cases where AIT is to be performed or continued by a different physician to the one who established the indication, close cooperation is required in order to ensure that treatment is implemented consistently and at low risk. In general, it is recommended that SCIT and SLIT should only be performed using preparations for which adequate proof of efficacy is available from clinical trials. Treatment adherence among AIT patients is lower than assumed by physicians, irrespective of the form of administration. Clearly, adherence is of vital importance for treatment success. Improving AIT adherence is one of the most important future goals, in order to ensure efficacy of the therapy. Severe, potentially life-threatening systemic reactions during SCIT are possible, but - providing all safety measures are adhered to - these events are very rare. Most adverse events are mild to moderate and can be treated well. Dose-dependent adverse local reactions occur frequently in the mouth and throat in SLIT. Systemic reactions have been described in SLIT, but are seen far less often than with SCIT. In terms of anaphylaxis and other severe systemic reactions, SLIT has a better safety profile than SCIT. The risk and effects of adverse systemic reactions in the setting of AIT can be effectively reduced by training of personnel, adhering to safety standards and prompt use of emergency measures, including early administration of i. m. epinephrine. Details on the acute management of anaphylactic reactions can be found in the current S2 guideline on anaphylaxis issued by the AWMF (S2-AWMF-LL Registry Number 061-025). AIT is undergoing some innovative developments in many areas (e. g., allergen characterization, new administration routes, adjuvants, faster and safer dose escalation protocols), some of which are already being investigated in clinical trials. Cite this as Pfaar O, Bachert C, Bufe A, Buhl R, Ebner C, Eng P, Friedrichs F, Fuchs T, Hamelmann E, Hartwig-Bade D, Hering T, Huttegger I, Jung K, Klimek L, Kopp MV, Merk H, Rabe U, Saloga J, Schmid-Grendelmeier P, Schuster A, Schwerk N, Sitter H, Umpfenbach U, Wedi B, Wöhrl S, Worm M, Kleine-Tebbe J. Guideline on allergen-specific immunotherapy in IgE-mediated allergic diseases - S2k Guideline of the German Society for Allergology and Clinical Immunology (DGAKI), the Society for Pediatric Allergy and Environmental Medicine (GPA), the Medical Association of German Allergologists (AeDA), the Austrian Society for Allergy and Immunology (ÖGAI), the Swiss Society for Allergy and Immunology (SGAI), the German Society of Dermatology (DDG), the German Society of Oto-Rhino-Laryngology, Head and Neck Surgery (DGHNO-KHC), the German Society of Pediatrics and Adolescent Medicine (DGKJ), the Society for Pediatric Pneumology (GPP), the German Respiratory Society (DGP), the German Association of ENT Surgeons (BV-HNO), the Professional Federation of Paediatricians and Youth Doctors (BVKJ), the Federal Association of Pulmonologists (BDP) and the German Dermatologists Association (BVDD). Allergo J Int 2014;23:282-319.
Collapse
Affiliation(s)
- Oliver Pfaar
- />Center for Rhinology and Allergology, Wiesbaden, Germany
- />Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, Mannheim, Germany
- />Center for Rhinology and Allergology Wiesbaden, Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, An den Quellen 10, 65189 Wiesbaden, Germany
| | - Claus Bachert
- />Department of Otorhinolaryngology, Ghent University Hospital, Ghent, Belgium
| | - Albrecht Bufe
- />Department of Experimental Pneumology, Ruhr-University Bochum, Bochum, Germany
| | - Roland Buhl
- />Pulmonary Department, University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Christof Ebner
- />Outpatient Clinic for Allergy and Clinical Immunology, Vienna, Austria
| | - Peter Eng
- />Department of Children and Adolescent Medicine, Aarau and Children‘s Hospital Lucerne, Lucerne, Switzerland
| | - Frank Friedrichs
- />Pediatric and Adolescent Medicine Practice, Laurensberg, Germany
| | - Thomas Fuchs
- />Department of Dermatology, Venereology and Allergology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Eckard Hamelmann
- />Department of Pediatric and Adolescent Medicine, Pediatric Center Bethel, Evangelical Hospital, Bielefeld, Germany
| | | | - Thomas Hering
- />Pulmonary Outpatient Practice, Tegel, Berlin, Germany
| | - Isidor Huttegger
- />Department of Pediatric and Adolescent Medicine, Paracelsus Private Medical University, Salzburg Regional Hospitals, Salzburg, Austria
| | | | - Ludger Klimek
- />Center for Rhinology and Allergology, Wiesbaden, Germany
| | - Matthias Volkmar Kopp
- />Clinic of Pediatric and Adolescent Medicine, Lübeck University, Airway Research Center North (ARCN), Member of the German Lung Center (DZL), Lübeck, Germany
| | - Hans Merk
- />Department of Dermatology and Allergology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Uta Rabe
- />Department of Allergology, Johanniter-Krankenhaus im Fläming Treuenbrietzen GmbH, Treuenbrietzen Germany, Treuenbrietzen, Germany
| | - Joachim Saloga
- />Department of Dermatology, University Medical Center, Johannes-Gutenberg University, Mainz, Germany
| | | | - Antje Schuster
- />Center for Pediatric and Adolescent Medicine, University Medical Center, Düsseldorf, Germany
| | - Nicolaus Schwerk
- />University Children’s hospital, Department of Pediatric Pneumology, Allergology and Neonatology, Hanover Medical University, Hannover, Germany
| | - Helmut Sitter
- />Institute for Theoretical Surgery, Marburg University, Marburg, Germany
| | | | - Bettina Wedi
- />Department of Dermatology, Allergology and Venereology, Hannover Medical University, Hannover, Germany
| | | | - Margitta Worm
- />Allergy-Centre-Charité, Department of Dermatology, Venereology, and Allergology, Charité University Hospital, Berlin, Germany
| | | | - Susanne Kaul
- />Division of Allergology, Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Langen, Germany
| | | |
Collapse
|
44
|
Perspectives in vaccine adjuvants for allergen-specific immunotherapy. Immunol Lett 2013; 161:207-10. [PMID: 24361819 DOI: 10.1016/j.imlet.2013.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/13/2013] [Indexed: 12/22/2022]
Abstract
The design of more powerful adjuvants is a tool of crucial interest to ameliorate vaccination strategies to reduce injections and/or dose of antigen, induce local immunity and obtain better protection. Effective anti-infectious vaccines should elicit protective TH1 responses, cytotoxic CD8+ cells and antibody-forming cells. However, cytokine microenvironment is a key point also in targeted therapeutic vaccinations, such as allergen-specific immunotherapy, where the interference with an already-existing but inappropriate immunity is required. In this case, safe, appropriately conditioning and potentially orally available adjuvants together with delivery to appropriate subsets of dendritic cells would be highly appreciated to properly boost innate immune cells. In fact, aluminium hydroxide, although safe, has been classically associated with the induction of a TH2 response to co-formulated antigens. Thus, detoxified lipopolysaccaride (MPL-A), CpG oligonucleotides, imidazoquinolines and adenine derivatives acting via innate sensors may represent improvements in therapeutic vaccinations for allergy as able to interfere with pathogenic TH2 cells with eventual induction of TH1 differentiation.
Collapse
|
45
|
Makatsori M, Pfaar O, Lleonart R, Calderon MA. Recombinant allergen immunotherapy: clinical evidence of efficacy--a review. Curr Allergy Asthma Rep 2013; 13:371-80. [PMID: 23740287 DOI: 10.1007/s11882-013-0359-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recombinant allergens for immunotherapy aim to overcome the problems of natural extracts as they can be produced in unlimited amounts with exact physiochemical and immunological properties. These can be modified to have more favourable characteristics including reduced IgE reactivity or enhanced immunogenicity. Different types of recombinant allergens have been evaluated in clinical phase II and III trials whilst others are currently under development. In this review, we identified double-blind, placebo-controlled randomised clinical trials assessing the efficacy and safety of various recombinant allergen preparations. The majority of studies have up to now focused on cat, grass, birch, ragweed and bee venom allergens. Some studies have shown some of these preparations to be effective and well tolerated. However, there are still outstanding issues regarding optimum doses, minimising side effects and long-term effects.
Collapse
Affiliation(s)
- Melina Makatsori
- Section of Allergy and Clinical Immunology, Imperial College London, NHLI, Royal Brompton Hospital, London SW3 6LY, UK
| | | | | | | |
Collapse
|
46
|
Lin C, Li Y. The role of peptide and DNA vaccines in myeloid leukemia immunotherapy. Cancer Cell Int 2013; 13:13. [PMID: 23394714 PMCID: PMC3571936 DOI: 10.1186/1475-2867-13-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 02/06/2013] [Indexed: 12/13/2022] Open
Abstract
While chemotherapy and targeted therapy are successful in inducing the remission of myeloid leukemia as acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), the disease remains largely incurable. This observation is likely due to the drug resistance of leukemic cells, which are responsible for disease relapse. Myeloid leukemia vaccines may most likely be beneficial for eradicating minimal residual disease after treatment with chemotherapy or targeted therapy. Several targeted immunotherapies using leukemia vaccines have been heavily investigated in clinical and preclinical trials. This review will focus on peptides and DNA vaccines in the context of myeloid leukemias, and optimal strategies for enhancing the efficacy of vaccines based on myeloid leukemia immunization are also summarized.
Collapse
Affiliation(s)
- Chen Lin
- Department of Microbiology and Immunology, Medical College, Jinan University, Guangzhou, 510632, China.
| | | |
Collapse
|