1
|
Singh Y, Ahmad R, Raza A, Warsi MS, Mustafa M, Khan H, Hassan MI, Khan R, Moinuddin, Habib S. Exploring the effects of 4-chloro-o-phenylenediamine on human fibrinogen: A comprehensive investigation via biochemical, biophysical and computational approaches. Int J Biol Macromol 2024; 280:135825. [PMID: 39313050 DOI: 10.1016/j.ijbiomac.2024.135825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
Fibrinogen (Fg), an essential plasma glycoprotein involved in the coagulation cascade, undergoes structural alterations upon exposure to various chemicals, impacting its functionality and contributing to pathological conditions. This research article explored the effects of 4-Chloro-o-phenylenediamine (4-Cl-o-PD), a common hair dye component (IUPAC = 1-Chloro-3,4-diaminobenzene), on human fibrinogen through comprehensive computational, biophysical, and biochemical approaches. The formation of a stable ligand-protein complex is confirmed through molecular docking and molecular dynamics simulations, revealing possible interaction having a favorable -4.8 kcal/mol binding energy. Biophysical results, including UV-vis and fluorescence spectroscopies, corroborated with the computational findings, whereas Fourier transform infrared spectroscopy (FT-IR) and circular dichroism spectroscopy (CD) provide insights into the alterations of secondary structures upon interaction with 4-Cl-o-PD. Anilinonaphthalene-sulfonic acid (ANS) fluorescence showed a partially unfolded protein, with enhanced α to β-sheet transition as evidenced by thioflavin T (ThT) spectroscopy and microscopy. Moreover, biochemical assays confirmed the formation of carbonyl compounds that may be responsible for the oxidation of methionine residues in fibrinogen. Electrophoresis and electron microscopy confirmed the formation of aggregates. Our findings elucidate the interaction pattern of 4-Cl-o-PD with Fg, leading to structural perturbation, which may have potential implications for fibrinogen misfolding or its aggregation. Protein aggregation or its misfolded products affect peripheral tissues and the central nervous system. Many chronic progressive diseases, like type II diabetes mellitus, Alzheimer's disease, Parkison's disease, and Creutzfeldt-Jakob disease are associated with intrinsically aberrant disordered proteins. Understanding these interactions may offer new perspectives on the safety and biocompatibility of dye compounds, which may contribute to developing improved strategies for acquired amyloidogenesis.
Collapse
Affiliation(s)
- Yogendra Singh
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Rizwan Ahmad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Ali Raza
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Sharib Warsi
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Mohd Mustafa
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Hamda Khan
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ruhi Khan
- Department of Medicine, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Moinuddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Seadler MS, Ferraresso F, Bansal M, Haugen A, Hayssen WG, Flick MJ, de Moya M, Dyer MR, Kastrup CJ. Suppressing upregulation of fibrinogen after polytrauma mitigates thrombosis in mice. J Trauma Acute Care Surg 2024; 97:01586154-990000000-00798. [PMID: 39238094 PMCID: PMC11882931 DOI: 10.1097/ta.0000000000004442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
BACKGROUND Polytrauma results in systemic inflammation and increased circulating fibrinogen, which increases the risk of microvascular and macrovascular thrombosis that contributes to secondary organ damage and venous thromboembolism (VTE). There are no clinically approved agents to prevent hyperfibrinogenemia after polytrauma. We hypothesized that preventing the increase in fibrinogen levels after polytrauma would suppress thrombosis. METHODS Small-interfering ribonucleic acid (siRNA) against fibrinogen was encapsulated in lipid nanoparticles (siFibrinogen). Mice underwent a model of polytrauma and were then given varying doses of siFibrinogen, control siRNA, or no treatment. Fibrinogen was measured for 1 week via enxyme-linked immunosorbent assay (ELISA). To model postinjury VTE, the inferior vena cava was ligated 2 days after polytrauma in a portion of the mice. Thrombus weight was measured 48 hours after the inferior vena cava was ligated. RESULTS Treatment with siFibrinogen prevented hyperfibrinogenemia after trauma without exacerbating the hypofibrinogenemic state that occurs in the acute injury period (1 hour). In treated groups, fibrinogen was significantly lower from 6 hours postinjury through the 7-day monitoring period. Maximal fibrinogen reduction was observed at 72 hours. Here, mice that received 2.0 mg/kg of siFibrinogen had 1% of normal values relative to untreated mice, and mice that received 1.0 or 0.5 mg/kg had 4%. Mice treated with siFibrinogen that underwent the postinjury VTE model had significantly reduced thrombus weight compared with control siRNA-treated animals. More notably, among all siFibrinogen treated mice, 12 of 18 were completely protected from thrombosis, compared with 0 of 9 displaying protection in the control group. CONCLUSION The rise of fibrinogen and the size of thrombi after polytrauma can be mitigated via the administration of siRNA against fibrinogen. siFibrinogen represents a promising novel target for VTE prophylaxis posttrauma.
Collapse
Affiliation(s)
- Monica S. Seadler
- Department of Surgery, Division of Trauma, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Francesca Ferraresso
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Muskan Bansal
- Department of Surgery, Division of Trauma, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Amber Haugen
- Department of Surgery, Division of Trauma, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - William G. Hayssen
- Department of Surgery, Division of Trauma, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Matthew J. Flick
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- UNC Blood Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Marc de Moya
- Department of Surgery, Division of Trauma, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Mitchell R. Dyer
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Department of Surgery, Division of Vascular Surgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Christian J. Kastrup
- Department of Surgery, Division of Trauma, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
- Versiti Blood Research Institute, Milwaukee, WI, 53226, USA
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Departments of Biochemistry, Biomedical Engineering, and Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
3
|
Chae R, Nguyen C, Archdeacon C, Wattley L, Sisak S, Price A, Perez E, Schuster R, Lentsch A, Caldwell C, Goodman M, Pritts T. Whole blood storage duration alters fibrinogen levels and thrombin formation. J Trauma Acute Care Surg 2024; 97:39-47. [PMID: 38531825 PMCID: PMC11199101 DOI: 10.1097/ta.0000000000004317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Whole blood resuscitation for hemorrhagic shock in trauma represents an opportunity to correct coagulopathy in trauma while also supplying red blood cells. The production of microvesicles in stored whole blood and their effect on its hemostatic parameters have not been described in previous literature. We hypothesized that microvesicles in aged stored whole blood are procoagulant and increase thrombin production via phosphatidylserine. METHODS Whole blood was obtained from male C57BL/6 male mice and stored in anticoagulant solution for up to 10 days. At intervals, stored whole blood underwent examination with rotational thromboelastography, and platelet-poor plasma was prepared for analysis of thrombin generation. Microvesicles were prepared from 10-day-old whole blood aliquots and added to fresh whole blood or platelet-poor plasma to assess changes in coagulation and thrombin generation. Microvesicles were treated with recombinant mouse lactadherin prior to addition to plasma to inhibit phosphatidylserine's role in thrombin generation. RESULTS Aged murine whole blood had decreased fibrin clot formation compared with fresh samples with decreased plasma fibrinogen levels. Thrombin generation in plasma from aged blood increased over time of storage. The addition of microvesicles to fresh plasma resulted in increased thrombin generation compared with controls. When phosphatidylserine on microvesicles was blocked with lactadherin, there was no difference in the endogenous thrombin potential, but the generation of thrombin was blunted with lower peak thrombin levels. CONCLUSION Cold storage of murine whole blood results in decreased fibrinogen levels and fibrin clot formation. Aged whole blood demonstrates increased thrombin generation, and this is due in part to microvesicle production in stored whole blood. One mechanism by which microvesicles are procoagulant is by phosphatidylserine expression on their membranes.
Collapse
Affiliation(s)
- Ryan Chae
- From the Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Heo Y, Chang SW, Lee SW, Ma DS, Kim DH. Hemostatic effect of fibrinogen concentrate on traumatic massive hemorrhage: a propensity score matching study. Trauma Surg Acute Care Open 2024; 9:e001271. [PMID: 38298819 PMCID: PMC10828838 DOI: 10.1136/tsaco-2023-001271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Background Fibrinogen concentrate (FC) can be administered during massive transfusions to manage trauma-induced coagulopathy. However, its effectiveness in survival remains inconclusive due to scarce high-level evidence. This study aimed to investigate the hemostatic effects of FC regarding mortality in massive hemorrhage caused by trauma. Methods This retrospective study analyzed 839 patients who received massive transfusions (red blood cells (RBCs) ≥5 units in 4 hours or ≥10 units in 24 hours) at a level I trauma center between 2015 and 2022. Patients who were transferred to other hospitals or were deceased upon arrival, suffered or died from severe brain injury, and were aged 15 years or less were excluded (n=334). 1:2 propensity score matching was performed to compare the 'FC (+)' group who had received FC in 24 hours (n=68) with those who had not ('FC (-)', n=437). The primary outcome was mortality, and the secondary outcomes included transfusion volume. Results The variables for matching included vital signs, injury characteristics, prehospital time, implementation of resuscitative endovascular balloon occlusion of the aorta, and blood gas analysis results. The administration of FC did not significantly reduce or predict mortality (in-hospital, 24 hours, 48 hours, or 7 days). The FC (-) group received more units of RBC (25.69 units vs. 16.71 units, p<0.001, standardized mean difference [SMD] 0.595), fresh frozen plasma (16.79 units vs. 12.91 units, p=0.023, SMD 0.321), and platelets (8.76 units vs. 5.46 units, p=0.002, SMD 0.446) than the FC (+) group. Conclusion The use of FC did not show survival benefits but reduced transfusion requirements in traumatic massive hemorrhages, highlighting a need for future investigations. In the future, individualized goal-directed transfusion with FC may play a significant role in treating massive bleeding. Level of evidence IV, retrospective study having more than one negative criterion.
Collapse
Affiliation(s)
- Yoonjung Heo
- Division of Surgery, Department of Medicine, Dankook University Graduate School, Cheonan, Chungnam, Korea (the Republic of)
- Department of Trauma Surgery, Trauma Center, Dankook University Hospital, Cheonan, Chungnam, Korea (the Republic of)
| | - Sung Wook Chang
- Department of Thoracic and Cardiovascular Surgery, Trauma Center, Dankook University Hospital, Cheonan, Chungnam, Korea (the Republic of)
| | - Seok Won Lee
- Department of Trauma Surgery, Trauma Center, Dankook University Hospital, Cheonan, Chungnam, Korea (the Republic of)
| | - Dae Sung Ma
- Department of Thoracic and Cardiovascular Surgery, Trauma Center, Dankook University Hospital, Cheonan, Chungnam, Korea (the Republic of)
| | - Dong Hun Kim
- Division of Trauma Surgery, Department of Surgery, Dankook University College of Medicine, Cheonan, Chungnam, Korea (the Republic of)
| |
Collapse
|