1
|
da Silva CB, dos Santos CP, Serpe L, Sanchez JB, Ferreira LEN, de Melo NFS, Groppo FC, Fraceto LF, Volpato MC, Franz-Montan M. Polymeric Nanocapsules Loaded with Lidocaine: A Promising Formulation for Topical Dental Anesthesia. Pharmaceuticals (Basel) 2024; 17:485. [PMID: 38675445 PMCID: PMC11054800 DOI: 10.3390/ph17040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Lidocaine is the most commonly used local anesthetic worldwide, known for its rapid onset and moderate duration of anesthesia. However, it is short-lived and does not effectively promote effective topical anesthesia in the oral cavity when used alone. Our aim was to investigate whether an approximate 50% encapsulation of lidocaine in poly(ε-caprolactone) nanocapsules (LDC-Nano) would be able to increase its permeation and analgesic efficacy and reduce cytotoxicity. In this study, we characterized LDC-Nano and conducted MTT tests with HaCaT cells to assess their in vitro cytotoxicity. Additionally, in vitro permeation assays across the pig esophageal epithelium and the anesthetic efficacy of the hind paw incision model in rats were performed. Plain lidocaine (LDC) was compared with LDC-Nano and lidocaine hydrochloride plus epinephrine (LDC-Epi). The physicochemical characteristics of LDC-Nano were satisfactory (pH: 8.1 ± 0.21; polydispersity index: 0.08 ± 0.01; mean diameter (nm): 557.8 ± 22.7; and encapsulation efficiency (%): 51.8 ± 1.87) and remained stable for up to 4 months. LDC-Nano presented similar in vitro cytotoxicity to LDC but was higher than LDC-Epi (LD50: LDC = 0.48%; LDC-Nano = 0.47%; and LDC-Epi = 0.58%; p < 0.0001). Encapsulation increased the permeability coefficient about 6.6 times and about 7.5 the steady-state flux of lidocaine across the mucosal epithelium. Both encapsulation and epinephrine improved anesthesia duration, with epinephrine demonstrating superior efficacy (100% of animals were anesthetized up to 100, 30, and 20 min when LDC-Epi, LDC-nano, and LDC were used, respectively). Although LDC-Epi demonstrated superior in vivo anesthetic efficacy, the in vitro permeation and cytotoxicity of LDC-Nano indicate promising avenues for future research, particularly in exploring its potential application as a topical anesthetic in the oral cavity.
Collapse
Affiliation(s)
- Camila Batista da Silva
- Department of Biosciences, Piracicaba Dental School, Universidade Estadual de Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil; (C.B.d.S.); (C.P.d.S.); (L.S.); (J.B.S.); (L.E.N.F.); (F.C.G.); (M.C.V.)
| | - Cleiton Pita dos Santos
- Department of Biosciences, Piracicaba Dental School, Universidade Estadual de Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil; (C.B.d.S.); (C.P.d.S.); (L.S.); (J.B.S.); (L.E.N.F.); (F.C.G.); (M.C.V.)
| | - Luciano Serpe
- Department of Biosciences, Piracicaba Dental School, Universidade Estadual de Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil; (C.B.d.S.); (C.P.d.S.); (L.S.); (J.B.S.); (L.E.N.F.); (F.C.G.); (M.C.V.)
| | - Jonny Burga Sanchez
- Department of Biosciences, Piracicaba Dental School, Universidade Estadual de Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil; (C.B.d.S.); (C.P.d.S.); (L.S.); (J.B.S.); (L.E.N.F.); (F.C.G.); (M.C.V.)
| | - Luiz Eduardo Nunes Ferreira
- Department of Biosciences, Piracicaba Dental School, Universidade Estadual de Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil; (C.B.d.S.); (C.P.d.S.); (L.S.); (J.B.S.); (L.E.N.F.); (F.C.G.); (M.C.V.)
- Laboratory of Inflammation and Immunology, Guarulhos University, Guarulhos, SP 07023-070, Brazil
| | | | - Francisco Carlos Groppo
- Department of Biosciences, Piracicaba Dental School, Universidade Estadual de Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil; (C.B.d.S.); (C.P.d.S.); (L.S.); (J.B.S.); (L.E.N.F.); (F.C.G.); (M.C.V.)
| | - Leonardo Fernandes Fraceto
- Department of Environmental Engineering, São Paulo State University, Sorocaba, SP 18087-180, Brazil; (N.F.S.d.M.); (L.F.F.)
| | - Maria Cristina Volpato
- Department of Biosciences, Piracicaba Dental School, Universidade Estadual de Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil; (C.B.d.S.); (C.P.d.S.); (L.S.); (J.B.S.); (L.E.N.F.); (F.C.G.); (M.C.V.)
| | - Michelle Franz-Montan
- Department of Biosciences, Piracicaba Dental School, Universidade Estadual de Campinas, Av. Limeira, 901, Piracicaba, SP 13414-903, Brazil; (C.B.d.S.); (C.P.d.S.); (L.S.); (J.B.S.); (L.E.N.F.); (F.C.G.); (M.C.V.)
| |
Collapse
|
2
|
Kumatia EK, Ayertey F, Ohta T, Uto T, Tung NH. Iridoids from Morinda lucida, (Benth.) Rubiaceae, produced analgesic and anti-inflammatory activities via agonism at the kappa and delta opioid receptors, inhibition of COX-2 besides elevation of CAT and SOD activities. JOURNAL OF ETHNOPHARMACOLOGY 2023; 309:116355. [PMID: 36914035 DOI: 10.1016/j.jep.2023.116355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pain and inflammation are the major symptoms of almost every human disease. Herbal preparations from Morinda lucida are used to treat pain and inflammation in traditional medicine. However, the analgesic and anti-inflammatory activities of some of the plant's chemical constituents are not known. AIM OF THE STUDY The aim of this study is to evaluate the analgesic and anti-inflammatory activities and possible mechanisms of these activities of iridoids from Morinda lucida. MATERIAL AND METHODS The compounds were isolated using column chromatography and characterized by NMR spectroscopy and LC-MS. Anti-inflammatory activity was evaluated using carrageenan-induced paw edema. Whereas, the analgesic activity was assessed in the hot plate and acetic acid-induced writhing assays. Mechanistic studies were conducted using pharmacological blockers, determination of antioxidant enzymes, lipid peroxidation, and docking studies. RESULTS The iridoid, ML2-2 exhibited inverse dose-dependent anti-inflammatory activity (42.62% maximum at 2 mg/kg p. o). ML2-3 produced dose-dependent anti-inflammatory activity (64.52% maximum at 10 mg/kg p. o.). Anti-inflammatory activity of diclofenac sodium was 58.60% at 10 mg/kg p. o. Furthermore, ML2-2 and ML2-3 produced analgesic activity (P < 0.01) of 44.44 ± 5.84 and 54.18 ± 19.01%. at 10 mg/kg p. o. respectively in the hot plate assay and 64.88 and 67.44% in the writhing assay. ML2-2 significantly elevated catalase activity. However, ML2-3 elevated SOD and catalase activity significantly. In the docking studies, both iridoids formed stable crystal complexes with delta and kappa opioid receptors, and the COX-2 enzyme with very low free binding energies (ΔG) from -11.2 to -14.0 kcal/mol. However, they did not bind with the mu opioid receptor. The lower bound RMSD of most of the poses were found to be ≤ 2. Several amino acids were involved in the interactions through various inter molecular forces. CONCLUSION These results indicate that ML2-2 and ML2-3 possessed very significant analgesic and anti-inflammatory activities via acting as both delta and kappa opioid receptor agonist, elevation of anti-oxidant activity and inhibition of COX-2.
Collapse
Affiliation(s)
- Emmanuel Kofi Kumatia
- Department of Phytochemistry, Centre for Plant Medicine Research, Mampong-Akwapim. Ghana; Department of Quality Management, Centre for Plant Medicine Research, Mampong-Akwapim, Ghana.
| | - Frederick Ayertey
- Department of Phytochemistry, Centre for Plant Medicine Research, Mampong-Akwapim. Ghana
| | - Tomoe Ohta
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences. Nagasaki International University. Nagasaki 859-3298, Japan
| | - Takuhiro Uto
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences. Nagasaki International University. Nagasaki 859-3298, Japan
| | | |
Collapse
|
3
|
Delgado MA, Ferreira LA, Gomes BJDS, Leite IKO, Gomez MV, Castro-Junior C. Preclinical study in a postoperative pain model to investigate the action of ketamine, lidocaine, and ascorbic acid in reversing fentanyl-induced, non-glutamate-dependent hyperalgesia. Pain Rep 2023; 8:e1062. [PMID: 37731750 PMCID: PMC10508464 DOI: 10.1097/pr9.0000000000001062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 04/03/2023] Open
Abstract
Introduction Opioid-induced hyperalgesia (OIH) is a paradoxical phenomenon in which exposure to opioids can increase sensitivity to painful stimuli. Currently, several drugs have been used in an attempt to prevent OIH. We design this study to address the effect of preemptive treatment with ketamine, lidocaine, and ascorbic acid in a rat preclinical model of perioperative opioid-induced hyperalgesia. Methods To reproduce OIH in a model of postoperative pain, rats received successive doses of fentanyl subcutaneously and underwent an incision in the paw. In an attempt to prevent OIH, ketamine, lidocaine, and ascorbic acid were administered before treatment with fentanyl. The von Frey test and the hot-plate test were used to evaluate mechanical allodynia and thermal hyperalgesia, respectively, with a follow-up period from 1 hour up to 7 days after surgery. Spinal cord nerve terminals (synaptosomes) were used to assess glutamate release under our experimental conditions. Results Consecutive fentanyl injections increased the postoperative pain as indicated by increased thermal hyperalgesia and allodynia 48 hours after incision. Ketamine, lidocaine, and the combination of ketamine + lidocaine were able to prevent thermal hyperalgesia but not mechanical allodynia. Ascorbic acid did not prevent the hyperalgesia induced by fentanyl. We found no correlation between spinal glutamate release and the pharmacological treatments. Conclusion Fentanyl induced a hyperalgesic effect that last few days in a postoperative model of pain. Hyperalgesic effect was not totally inhibited by ketamine and lidocaine in rats. Increased glutamate release was not the main molecular mechanism of fentanyl-induced hyperalgesia.
Collapse
Affiliation(s)
- Marina Ayres Delgado
- Programa de pós graduação em ciências da saúde, Santa Casa de Belo Horizonte Ensino e Pesquisa, Belo Horizonte, Minas Gerais, Brazil
| | - Luana Assis Ferreira
- Programa de pós graduação em ciências da saúde, Santa Casa de Belo Horizonte Ensino e Pesquisa, Belo Horizonte, Minas Gerais, Brazil
| | - Bianka Jaciara dos Santos Gomes
- Programa de pós graduação em ciências da saúde, Santa Casa de Belo Horizonte Ensino e Pesquisa, Belo Horizonte, Minas Gerais, Brazil
| | - Isis Katarine Orlandi Leite
- Programa de pós graduação em ciências da saúde, Santa Casa de Belo Horizonte Ensino e Pesquisa, Belo Horizonte, Minas Gerais, Brazil
| | - Marcus Vinícius Gomez
- Programa de pós graduação em ciências da saúde, Santa Casa de Belo Horizonte Ensino e Pesquisa, Belo Horizonte, Minas Gerais, Brazil
| | - Célio Castro-Junior
- Programa de pós graduação em ciências da saúde, Santa Casa de Belo Horizonte Ensino e Pesquisa, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Tappe-Theodor A, Pitzer C, Lewejohann L, Jirkof P, Siegeler K, Segelcke A, Drude N, Pradier B, Pogatzki-Zahn E, Hollinderbäumer B, Segelcke D. The “WWHow” Concept for Prospective Categorization of Post-operative Severity Assessment in Mice and Rats. Front Vet Sci 2022; 9:841431. [PMID: 35372532 PMCID: PMC8964947 DOI: 10.3389/fvets.2022.841431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
The prospective severity assessment in animal experiments in the categories' non-recovery, mild, moderate, and severe is part of each approval process and serves to estimate the harm/benefit. Harms are essential for evaluating ethical justifiability, and on the other hand, they may represent confounders and effect modifiers within an experiment. Catalogs and guidelines provide a way to assess the experimental severity prospectively but are limited in adaptation due to their nature of representing particular examples without clear explanations of the assessment strategies. To provide more flexibility for current and future practices, we developed the modular Where-What-How (WWHow) concept, which applies findings from pre-clinical studies using surgical-induced pain models in mice and rats to provide a prospective severity assessment. The WWHow concept integrates intra-operative characteristics for predicting the maximum expected severity of surgical procedures. The assessed severity categorization is mainly congruent with examples in established catalogs; however, because the WWHow concept is based on anatomical location, detailed analysis of the tissue trauma and other intra-operative characteristics, it enables refinement actions, provides the basis for a fact-based dialogue with authority officials and other stakeholders, and helps to identify confounder factors of study findings.
Collapse
Affiliation(s)
- Anke Tappe-Theodor
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany
| | - Claudia Pitzer
- Interdisciplinary Neurobehavioral Core, University of Heidelberg, Heidelberg, Germany
| | - Lars Lewejohann
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Katja Siegeler
- Department of Work and Environmental Protection, Westphalian Wilhelms University Muenster, Münster, Germany
| | | | - Natascha Drude
- Berlin Institute of Health (BIH) at Charité, QUEST Center for Responsible Research, Berlin, Germany
| | - Bruno Pradier
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Münster, Germany
| | - Esther Pogatzki-Zahn
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Münster, Germany
| | | | - Daniel Segelcke
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Münster, Germany
- *Correspondence: Daniel Segelcke
| |
Collapse
|
5
|
Jung YH, Kim H, Kim H, Kim E, Baik J, Kang H. The anti-nociceptive effect of BPC-157 on the incisional pain model in rats. J Dent Anesth Pain Med 2022; 22:97-105. [PMID: 35449779 PMCID: PMC8995671 DOI: 10.17245/jdapm.2022.22.2.97] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Young-Hoon Jung
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
| | - Haekyu Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Korea
| | - Hyaejin Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
| | - Eunsoo Kim
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Korea
| | - Jiseok Baik
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
- Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Busan, Korea
| | - Hyunjong Kang
- Department of Anesthesia and Pain Medicine, Pusan National University Hospital, Busan, Korea
| |
Collapse
|
6
|
Segelcke D, Pradier B, Reichl S, Schäfer LC, Pogatzki-Zahn EM. Investigating the Role of Ly6G+ Neutrophils in Incisional and Inflammatory Pain by Multidimensional Pain-Related Behavioral Assessments: Bridging the Translational Gap. FRONTIERS IN PAIN RESEARCH 2021; 2:735838. [PMID: 35295496 PMCID: PMC8915677 DOI: 10.3389/fpain.2021.735838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
In recent years, preclinical pain research has failed to develop genuinely new analgesics for clinical use. This fact is reflected by a high number of patients, limited drug efficacy accompanied by side effects, and a long-term opioid intake. Two main aspects have been addressed, which hinder translation: the use of non-relevant pain models and a mismatch between pain-related outcomes in preclinical and clinical studies. Conversely, disease-specific pain models that mirror more closely the clinical situation and multidimensional behavioral outcome measures that objectively and reproducibly assess relevant pain-related symptoms in a preclinical setting could improve translation. Mechanistically, a matter of debate is the role of Ly6G+ neutrophil granulocytes (NGs) for pain. NGs are essential to eliminate pathogens and promote the wound healing process. For this purpose, there is a need to release various pro- and anti-inflammatory mediators, some of which could ameliorate or enhance pain. However, the contribution of NGs to different pain entities is contradictory for reflex-based tests, and completely unknown in the context of non-evoked pain (NEP) and movement-evoked pain (MEP). First, we combined withdrawal reflex-based assays with novel video-based assessments for NEP- and MEP-related behavior in two mouse pain models. The pain models utilized in this study were incision (INC) and pathogen/adjuvant-induced inflammation (CFA), translating well to postsurgical and inflammatory pain entities. Second, we depleted NGs and applied a set of behavioral assessments to investigate the role of NG migration in different pain modalities. Our comprehensive behavioral approach identified pain-related behaviors in mice that resemble (NEP) or differentiate (MEP) behavioral trajectories in comparison to mechanical and heat hypersensitivity, thereby indicating modality-dependent mechanisms. Further, we show that injury-induced accumulation of NGs minimally affects pain-related behaviors in both pain models. In conclusion, we report a novel assessment to detect NEP in mice after unilateral injuries using a more unbiased approach. Additionally, we are capable of detecting an antalgic gait for both pain entities with unique trajectories. The different trajectories between MEP and other pain modalities suggest that the underlying mechanisms differ. We further conclude that NGs play a subordinate role in pain-related behaviors in incisional and inflammatory pain.
Collapse
Affiliation(s)
- Daniel Segelcke
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
| | - Bruno Pradier
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
| | - Sylvia Reichl
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
- Department of Anesthesiology, Perioperative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Lukas C. Schäfer
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
| | - Esther M. Pogatzki-Zahn
- Department for Anesthesiology, Operative Intensive Care and Pain Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Muenster, Germany
- *Correspondence: Esther M. Pogatzki-Zahn
| |
Collapse
|
7
|
Kumatia EK, Appiah-Opong R. The Hydroethanolic Stem Bark Extract of Tieghemella heckelii (A.Chev.) Pierre ex Dubard (Sapotaceae) Produced N-Methyl-D-Aspartate (NMDA) Receptor-Dependent Analgesia and Attenuates Acute Inflammatory Pain via Disruption of Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:3466757. [PMID: 34422066 PMCID: PMC8371650 DOI: 10.1155/2021/3466757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/22/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Tieghemella heckelii stem bark is used in African traditional medicine to treat inflammatory pain conditions. However, these biological actions of the plant have not been proven. This study investigates the phytochemical composition and the mechanisms of analgesic and anti-inflammatory actions of the hydroethanolic stem bark extract of T. heckelii (THBE). METHODS Phytochemical composition of THBE was investigated using qualitative and quantitative phytochemical analyses. Anti-inflammatory activity was evaluated using the carrageenan-induced paw oedema assay. Analgesic activity was evaluated using hot plate and acetic acid-induced writhing assays. Mechanism of analgesic action was determined using pharmacological antagonist such as naloxone, atropine, flumazenil, nifedipine, or ketamine. Test agents were administered orally as follows: Tween 80 (5%) (control), diclofenac sodium (DS) 10/tramadol 9 mg/kg (standard), or THBE 10, 100, and 450 mg/kg. Glutathione peroxidase (GPx), superoxide dismutase (SOD), and lipid peroxidation levels were also measured. RESULTS THBE which contained 58.45% saponins, 229.04 ± 0.049 GAE mg/g phenolic compounds,and 0.482 ± 0.0028 QE mg/g flavonoids produced (p < 0.5) anti-inflammatory effect of 56.22% and analgesia of 330 ± 72% and 50.4% in the hot plate and writhing assays, respectively, at 10 mg/kg and inhibited oxidative stress by GPx and SOD elevation in rats during inflammation. Ketamine significantly blocked the analgesia of THBE, indicating NMDA receptor-dependent analgesic action. Whereas, naloxone, atropine, nifedipine, and flumazenil could not antagonize the analgesic action of THBE. CONCLUSION These results show that THBE produced potent anti-inflammatory effect via disruption of oxidative stress and also generated NMDA receptor-dependent analgesia.
Collapse
Affiliation(s)
- Emmanuel K. Kumatia
- Centre for Plant Medicine Research, Department of Phytochemistry, Mampong-Akwapim, Ghana
| | - Regina Appiah-Opong
- University of Ghana, Noguchi Memorial Institute for Medical Research, Department of Clinical Pathology, Accra, Ghana
| |
Collapse
|
8
|
Guo R, Li H, Shi R, Wang Y. Intrathecal Injection of GRIP-siRNA Reduces Postoperative Synaptic Abundance of Kainate Receptor GluK2 Subunits in Rat Dorsal Horns and Pain Hypersensitivity. Neurochem Res 2021; 46:1771-1780. [PMID: 33847855 DOI: 10.1007/s11064-021-03323-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/13/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022]
Abstract
The mechanisms underlying postoperative pain differ from the inflammatory or neuropathic pain. Previous studies have demonstrated that intrathecal α-amino-3-hydroxy-5-methy-4-isoxazole propionate (AMPA) -kainate (KA) receptor antagonist inhibits the guarding pain behavior and mechanical hyperalgesia, indicating a critical role of spinal KA receptors in postoperative pain hypersensitivity. However, how the functional regulations of spinal KA receptor subunits are involved in the postoperative pain hypersensitivity remains elusive. Therefore, in the current study, we investigated the synaptic delivery of spinal KA receptor subunits and the interaction between KA receptor subunits and glutamate receptor-interacting protein (GRIP) during the postoperative pain. Our data indicated that plantar incision induced the synaptic delivery of GluK2, but not GluK1 or GluK3 in ipsilateral spinal cord dorsal horns. The co-immunoprecipitation showed an increased GluK2 -GRIP interaction in ipsilateral dorsal horn neurons at 6 h post-incision. Interestingly, Intrathecal pretreatment of GRIP siRNA increased the paw withdrawal thresholds to mechanical stimuli and decreased the cumulative pain scores in the paws ipsilateral to the incision at 6 h post-incision. Additionally, Intrathecal pretreatment of GRIP siRNA reduced the synaptic abundance of GluK2 in ipsilateral spinal dorsal horn at 6 h after plantar incision. In general, our data have demonstrated that the GluK2- GRIP interaction-mediated synaptic abundance of GluK2 in dorsal horn neurons plays an important role in the postoperative pain hypersensitivity. Disrupting the GluK2- GRIP interaction may provide a new approach for relieving postoperative pain.
Collapse
Affiliation(s)
- Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Beijing, 100020, China
| | - Rong Shi
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Beijing, 100020, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, No. 8, Gongtinan Road, Beijing, 100020, China.
| |
Collapse
|
9
|
Goh YS, Karunakaran T, Murugaiyah V, Santhanam R, Abu Bakar MH, Ramanathan S. Accelerated Solvent Extractions (ASE) of Mitragyna speciosa Korth. (Kratom) Leaves: Evaluation of Its Cytotoxicity and Antinociceptive Activity. Molecules 2021; 26:molecules26123704. [PMID: 34204457 PMCID: PMC8234130 DOI: 10.3390/molecules26123704] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 01/29/2023] Open
Abstract
Mitragyna speciosa Korth (kratom) is known for its psychoactive and analgesic properties. Mitragynine is the primary constituent present in kratom leaves. This study highlights the utilisation of the green accelerated solvent extraction technique to produce a better, non-toxic and antinociceptive active botanical extract of kratom. ASE M. speciosa extract had a dry yield (0.53–2.91 g) and showed a constant mitragynine content (6.53–7.19%) when extracted with organic solvents of different polarities. It only requires a shorter extraction time (5 min) and a reduced amount of solvents (less than 100 mL). A substantial amount of total phenolic (407.83 ± 2.50 GAE mg/g and flavonoids (194.00 ± 5.00 QE mg/g) were found in ASE kratom ethanol extract. The MTT test indicated that the ASE kratom ethanolic leaf extract is non-cytotoxic towards HEK-293 and HeLa Chang liver cells. In mice, ASE kratom ethanolic extract (200 mg/kg) demonstrated a better antinociceptive effect compared to methanol and ethyl acetate leaf extracts. The presence of bioactive indole alkaloids and flavonols such as mitragynine, paynantheine, quercetin, and rutin in ASE kratom ethanolic leaf extract was detected using UHPLC-ESI-QTOF-MS/MS analysis supports its antinociceptive properties. ASE ethanolic leaf extract offers a better, safe, and cost-effective choice of test botanical extract for further preclinical studies.
Collapse
Affiliation(s)
- Yong Sean Goh
- Centre for Drug Research, Universiti Sains Malaysia, Gelugor 11800 USM, Pulau Pinang, Malaysia; (Y.S.G.); (S.R.)
| | - Thiruventhan Karunakaran
- Centre for Drug Research, Universiti Sains Malaysia, Gelugor 11800 USM, Pulau Pinang, Malaysia; (Y.S.G.); (S.R.)
- School of Chemical Sciences, Universiti Sains Malaysia, Gelugor 11800 USM, Pulau Pinang, Malaysia
- Correspondence: ; Tel.: +604-6533287
| | - Vikneswaran Murugaiyah
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor 11800 USM, Pulau Pinang, Malaysia;
| | - Rameshkumar Santhanam
- BioSES Research Interest Group, Faculty of Science and Marine Environment, Universiti MalaysiaTerengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800 USM, Penang, Malaysia;
| | - Surash Ramanathan
- Centre for Drug Research, Universiti Sains Malaysia, Gelugor 11800 USM, Pulau Pinang, Malaysia; (Y.S.G.); (S.R.)
| |
Collapse
|
10
|
Cata JP, Gorur A, Yuan X, Berg NK, Sood AK, Eltzschig HK. Role of Micro-RNA for Pain After Surgery. Anesth Analg 2020; 130:1638-1652. [DOI: 10.1213/ane.0000000000004767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
11
|
Guo R, Sun Y, Li H, Ma D, Wang Y. Upregulation of spinal glucose-dependent insulinotropic polypeptide receptor induces membrane translocation of PKCγ and synaptic target of AMPA receptor GluR1 subunits in dorsal horns in a rat model of incisional pain. Neurochem Int 2019; 134:104651. [PMID: 31870892 DOI: 10.1016/j.neuint.2019.104651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 01/28/2023]
Abstract
It is unclear whether glucose-dependent insulinotropic polypeptide receptor (GIPR) signaling plays an important role in spinal nociception. We hypothesized that the spinal GIPR is implicated in central sensitization of postoperative pain. Our data showed that the cumulative pain scores peaked at 3 h, kept at a high level at 1 d after incision, gradually decreased afterwards and returned to the baseline values at 5 d after incision. Correspondingly, the expression of GIPR in spinal cord dorsal horn peaked at 1 d after incision, and returned to the baseline value at 5 d after incision. The double-labeling immunofluorescence demonstrated that spinal GIPR was expressed in dorsal horn neurons, but not in astrocyte or microglial cells. At 1 d after incision, the effects of intrathecal saline, GIPR antagonist (Pro3)GIP on pain behaviors were investigated. Our data showed that at 30 min and 60 min following intrathecal treatments of 300 ng (Pro3)GIP, the cumulative pain scores were decreased and paw withdrawal thresholds to mechanical stimuli were increased when compared to those immediately before intrathecal treatments. Accordingly, at 30 min after intrathecal injections, the membrane translocation levels of PKCγ and the GluR1 expression in postsynaptic membrane in ipsilateral dorsal horns to the incision were significantly upregulated in rats with intrathecal saline injections, as compared to normal control group. At 30 min after intrathecal treatment, (Pro3)GIP inhibited the membrane translocation levels of PKCγ and the GluR1 expression in postsynaptic membrane in ipsilateral dorsal horns. Our study indicates that upregulation of spinal GIPR may contribute to pain hypersensitivity through inducing membrane translocation level of PKCγ and synaptic target of AMPA receptor GluR1 subunits in ipsilateral dorsal horns of rats with plantar incision.
Collapse
Affiliation(s)
- Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Yuqing Sun
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Huili Li
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Danxu Ma
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
12
|
A novel rat model of extremity trauma for prehospital pain management research. J Trauma Acute Care Surg 2019; 85:S49-S56. [PMID: 29443860 DOI: 10.1097/ta.0000000000001833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pain management is important in prehospital care of patients with extremity trauma (ET). The goal of this study was to establish a rat model of ET for prehospital pain research and validate it using pain behaviors and analgesics. METHODS Rats were anesthetized using isoflurane, and ET was induced in one hindlimb via clamping retrofemoral tissues for 30 seconds, followed by closed fibula fracture. Rats regained consciousness after ET. Pain responses in the injured hindlimb to thermal hyperalgesia (paw withdrawal latency [PWL]), mechanical allodynia (paw withdrawal pressure [PWP]), and weight bearing (WB) were determined before and 90 minutes after ET. Morphine (2 mg/kg), fentanyl (10 μg/kg), sufentanil (1 μg/kg), ketamine (5 mg/kg), or vehicle (saline) were then administered via intravenous (i.v.) injection, followed by PWL, PWP, and WB assessments at 10 minutes, 40 minutes, 80 minutes, and 120 minutes after analgesia. RESULTS After ET, PWL, PWP, and WB were significantly decreased by 61 ± 4%, 64 ± 8%, and 65 ± 4%, respectively, compared with pre-ET values. These pain behaviors were maintained for 3 hours to 4 hours. Compared with the saline group, opioid analgesics significantly increased PWL for at least 80 minutes, with sufentanil exhibiting the highest analgesic effect. An increase in PWL was only observed at 10 minutes after ketamine. The PWP was transiently increased with opioid analgesics for 10 minutes to 40 minutes, but was not changed with ketamine. Weight bearing was improved with opioid analgesics for at least 2 hours, but only for up to 80 minutes with ketamine. CONCLUSION Our ET model includes long bone fracture and soft tissue injury, but no fixation surgery, mimicking prehospital ET. Our model produces acute, steady, and reproducible trauma-related pain behaviors, and is clinically relevant regarding the pain behaviors and established responses to common analgesics. This model of acute pain due to ET is ideal for prehospital pain management research.
Collapse
|
13
|
Santenna C, Kumar S, Balakrishnan S, Jhaj R, Ahmed SN. A comparative experimental study of analgesic activity of a novel non-steroidal anti-inflammatory molecule - zaltoprofen, and a standard drug - piroxicam, using murine models. J Exp Pharmacol 2019; 11:85-91. [PMID: 31447593 PMCID: PMC6683967 DOI: 10.2147/jep.s212988] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 06/17/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose Pain is an unpleasant sensation, but a protective mechanism of our body. It is the most common medical complaint requiring a visit to a physician. The new non-steroidal anti-inflammatory drug (NSAID) - zaltoprofen, is a preferential COX-2 inhibitor. It also inhibits bradykinin-induced nociceptive responses by blocking the B2 receptor-mediated pathway in the primary sensory neurons. The present study was conducted to evaluate and compare the anti-nociceptive activity of zaltoprofen with a conventional NSAID - piroxicam, in a mouse model of acute pain using hot plate and tail flick tests. Materials and methods Twenty-four adult Swiss albino mice (20-25 g) of either sex were used in this study. Oral zaltoprofen and piroxicam were used as test and standard drugs respectively. Anti-nociceptive activity was evaluated and compared using hot plate and tail flick tests. Results In comparison to the control group (vehicle), zaltoprofen showed a significant increase in reaction time at various time periods in the hot plate and tail flick tests. In the hot plate method, zaltoprofen groups (15 and 20 mg/kg) showed a significant elevation in pain threshold in comparison to control group (vehicle) (p<0.001). In the tail flick model also, zaltoprofen groups (15 and 20 mg/kg) showed a significant increase in the reaction time in comparison to control group (vehicle). In both the analgesiometer assays, zaltoprofen was found to be non-inferior compared to a standard drug - piroxicam (positive control). Conclusion Our study concludes that zaltoprofen is an effective analgesic agent in various pain models. Our results support that zaltoprofen has therapeutic potential for treating pain disorders and is non-inferior to a standard drug - piroxicam.
Collapse
Affiliation(s)
- C Santenna
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| | - Sunil Kumar
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| | - S Balakrishnan
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| | - Ratinder Jhaj
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| | - Shah Newaz Ahmed
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
14
|
Kumar R, Gupta S, Gautam M, Jhajhria SK, Ray SB. Diverse characters of Brennan's paw incision model regarding certain parameters in the rat. Korean J Pain 2019; 32:168-177. [PMID: 31257825 PMCID: PMC6615451 DOI: 10.3344/kjp.2019.32.3.168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/26/2022] Open
Abstract
Background Brennan’s rodent paw incision model has been extensively used for understanding mechanisms underlying postoperative pain in humans. However, alterations of physiological parameters like blood pressure and heart rate, or even feeding and drinking patterns after the incision have not been documented as yet. Moreover, though eicosanoids like prostaglandins and leukotrienes contribute to inflammation, tissue levels of these inflammatory mediators have never been studied. This work further investigates the antinociceptive effect of protein C after intra-wound administration. Methods Separate groups of Sprague–Dawley rats were used for quantitation of cyclooxygenase (COX) activity and leukotriene B4 level by enzyme-linked immunosorbent assay, as well as estimation of cardiovascular parameters and feeding and drinking behavior after paw incision. In the next part, rats were subjected to incision and 10 μg of protein C was locally administered by a micropipette. Both evoked and non-evoked pain parameters were then estimated. Results COX, particularly COX-2 activity and leukotriene B4 levels increased after incision. Hemodynamic parameters were normal. Feeding and drinking were affected on days 1 and 3, and on day 1, respectively. Protein C attenuated non-evoked pain behavior alone up to day 2. Conclusions Based upon current observations, Brennan’s rodent paw incision model appears to exhibit a prolonged period of nociception similar to that after surgery, with minimal interference of physiological parameters. Protein C, which is likely converted to activated protein C in the wound, attenuated the guarding score, which probably represents pain at rest after surgery in humans.
Collapse
Affiliation(s)
- Rahul Kumar
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shivani Gupta
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Mayank Gautam
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Saroj Kaler Jhajhria
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Subrata Basu Ray
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Kumar R, Gautam M, Prasoon P, Gupta S, Ray SB. Comparison of the peripheral antinociceptive effect of somatostatin with bupivacaine and morphine in the rodent postoperative pain model. Eur J Anaesthesiol 2019; 35:955-965. [PMID: 29762151 DOI: 10.1097/eja.0000000000000825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Infiltration of surgical wound with local anaesthetics attenuate postoperative pain. However, side effects can also occur. Somatostatin (SST) and its analogues like octreotide reportedly reduce peripheral sensitisation. The current study evaluates peripherally mediated antinociceptive effect of SST in a rat model of postoperative pain. This was compared with bupivacaine and morphine under identical experimental conditions. DESIGN Randomised vehicle-controlled blind study. SETTING Pain research laboratory, All India Institute of Medical Sciences, New Delhi from February 2014 to July 2017. EXPERIMENTAL SUBJECT Rodent hind paw incision model. INTERVENTIONS Sprague-Dawley rats were subjected to incision and one of the following drugs administered into the open wound once by a micropipette: SST (10, 30 or 100 μg), bupivacaine (3, 10, 30, 50 or 100 μg) or morphine (100 μg). Antinociceptive effect of SST was further evaluated for its reversibility, site of action, effect on spinal c-fos expression and blood glucose level. The site of action of morphine was also investigated. MAIN OUTCOME MEASURE Nociception was estimated by nonevoked (guarding behaviour) and evoked (mechanical allodynia and thermal hyperalgesia) pain behaviours between 2 h and days 4 to 7. RESULTS Nociception was maximum 2 h after incision. SST (10 to 100 μg) significantly attenuated guarding behaviour between 2 h and day 2. A delayed inhibitory effect was observed on allodynia. Bupivacaine (10 to 100 μg doses) similarly decreased guarding score up to day 2 though evoked pain behaviours were relatively unaffected. In contrast, morphine produced a potent but transient inhibitory effect on guarding score at 2 h, which was mediated by both peripheral and central opioid receptors. The antinociceptive effect of SST was peripherally mediated by type 2 receptors and was associated with decreased c-fos staining. Blood glucose level was unaltered. CONCLUSION Guarding behaviour, which likely represents pain-at-rest following surgery, was attenuated by both bupivacaine and SST to comparable extents. This novel peripherally mediated antinociceptive effect of SST needs further evaluation.
Collapse
Affiliation(s)
- Rahul Kumar
- From the Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India (RK, MG, PP, SG, SBR)
| | | | | | | | | |
Collapse
|
16
|
Mechanisms of acute and chronic pain after surgery: update from findings in experimental animal models. Curr Opin Anaesthesiol 2019; 31:575-585. [PMID: 30028733 DOI: 10.1097/aco.0000000000000646] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Management of postoperative pain is still a major issue and relevant mechanisms need to be investigated. In preclinical research, substantial progress has been made, for example, by establishing specific rodent models of postoperative pain. By reviewing most recent preclinical studies in animals related to postoperative, incisional pain, we outline the currently available surgical-related pain models, discuss assessment methods for pain-relevant behavior and their shortcomings to reflect the clinical situation, delineate some novel clinical-relevant mechanisms for postoperative pain, and point toward future needs. RECENT FINDINGS Since the development of the first rodent model of postoperative, incisional pain almost 20 years ago, numerous variations and some procedure-specific models have been emerged including some conceivably relevant for investigating prolonged, chronic pain after surgery. Many mechanisms have been investigated by using these models; most recent studies focussed on endogenous descending inhibition and opioid-induced hyperalgesia. However, surgical models beyond the classical incision model have so far been used only in exceptional cases, and clinical relevant behavioral pain assays are still rarely utilized. SUMMARY Pathophysiological mechanisms of pain after surgery are increasingly discovered, but utilization of pain behavior assays are only sparsely able to reflect clinical-relevant aspects of acute and chronic postoperative pain in patients.
Collapse
|
17
|
Xiao Z, Hu S, Zhang Q, Tian X, Chen Y, Wang J, Chen Z. Ensembles of change-point detectors: implications for real-time BMI applications. J Comput Neurosci 2018; 46:107-124. [PMID: 30206733 DOI: 10.1007/s10827-018-0694-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 08/22/2018] [Accepted: 08/30/2018] [Indexed: 12/29/2022]
Abstract
Brain-machine interfaces (BMIs) have been widely used to study basic and translational neuroscience questions. In real-time closed-loop neuroscience experiments, many practical issues arise, such as trial-by-trial variability, and spike sorting noise or multi-unit activity. In this paper, we propose a new framework for change-point detection based on ensembles of independent detectors in the context of BMI application for detecting acute pain signals. Motivated from ensemble learning, our proposed "ensembles of change-point detectors" (ECPDs) integrate multiple decisions from independent detectors, which may be derived based on data recorded from different trials, data recorded from different brain regions, data of different modalities, or models derived from different learning methods. By integrating multiple sources of information, the ECPDs aim to improve detection accuracy (in terms of true positive and true negative rates) and achieve an optimal trade-off of sensitivity and specificity. We validate our method using computer simulations and experimental recordings from freely behaving rats. Our results have shown superior and robust performance of ECPDS in detecting the onset of acute pain signals based on neuronal population spike activity (or combined with local field potentials) recorded from single or multiple brain regions.
Collapse
Affiliation(s)
- Zhengdong Xiao
- Department of Instrument Science and Technology, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | - Sile Hu
- Department of Instrument Science and Technology, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, 10016, USA
| | - Xiang Tian
- Department of Instrument Science and Technology, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Key Laboratory for Biomedical Engineering of Ministry of Education of China, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yaowu Chen
- Department of Instrument Science and Technology, Zhejiang University, Hangzhou, Zhejiang, 310027, China.,Zhejiang Provincial Key Laboratory for Network Multimedia Technologies, Key Laboratory for Biomedical Engineering of Ministry of Education of China, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University School of Medicine, New York, NY, 10016, USA.,Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA
| | - Zhe Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY, 10016, USA. .,Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
18
|
Hu S, Zhang Q, Wang J, Chen Z. Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity. J Neurophysiol 2017; 119:1394-1410. [PMID: 29357468 DOI: 10.1152/jn.00684.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Sequential change-point detection from time series data is a common problem in many neuroscience applications, such as seizure detection, anomaly detection, and pain detection. In our previous work (Chen Z, Zhang Q, Tong AP, Manders TR, Wang J. J Neural Eng 14: 036023, 2017), we developed a latent state-space model, known as the Poisson linear dynamical system, for detecting abrupt changes in neuronal ensemble spike activity. In online brain-machine interface (BMI) applications, a recursive filtering algorithm is used to track the changes in the latent variable. However, previous methods have been restricted to Gaussian dynamical noise and have used Gaussian approximation for the Poisson likelihood. To improve the detection speed, we introduce non-Gaussian dynamical noise for modeling a stochastic jump process in the latent state space. To efficiently estimate the state posterior that accommodates non-Gaussian noise and non-Gaussian likelihood, we propose particle filtering and smoothing algorithms for the change-point detection problem. To speed up the computation, we implement the proposed particle filtering algorithms using advanced graphics processing unit computing technology. We validate our algorithms, using both computer simulations and experimental data for acute pain detection. Finally, we discuss several important practical issues in the context of real-time closed-loop BMI applications. NEW & NOTEWORTHY Sequential change-point detection is an important problem in closed-loop neuroscience experiments. This study proposes novel sequential Monte Carlo methods to quickly detect the onset and offset of a stochastic jump process that drives the population spike activity. This new approach is robust with respect to spike sorting noise and varying levels of signal-to-noise ratio. The GPU implementation of the computational algorithm allows for parallel processing in real time.
Collapse
Affiliation(s)
- Sile Hu
- Department of Instrument Science and Technology, Zhejiang University , Hangzhou, Zhejiang , People's Republic of China.,Department of Psychiatry, New York University School of Medicine , New York, New York
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine , New York, New York
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, New York University School of Medicine , New York, New York.,Department of Neuroscience and Physiology, New York University School of Medicine , New York, New York
| | - Zhe Chen
- Department of Psychiatry, New York University School of Medicine , New York, New York.,Department of Neuroscience and Physiology, New York University School of Medicine , New York, New York
| |
Collapse
|
19
|
Papathanasiou T, Juul RV, Gabel-Jensen C, Kreilgaard M, Heegaard AM, Lund TM. Quantification of the Pharmacodynamic Interaction of Morphine and Gabapentin Using a Response Surface Approach. AAPS JOURNAL 2017; 19:1804-1813. [DOI: 10.1208/s12248-017-0140-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/18/2017] [Indexed: 02/03/2023]
|
20
|
Role of calcitonin gene-related peptide in nociception resulting from hind paw incision in rats. J ANAT SOC INDIA 2017. [DOI: 10.1016/j.jasi.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Chen Z, Zhang Q, Tong APS, Manders TR, Wang J. Deciphering neuronal population codes for acute thermal pain. J Neural Eng 2017; 14:036023. [PMID: 28384122 DOI: 10.1088/1741-2552/aa644d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Current pain research mostly focuses on molecular and synaptic changes at the spinal and peripheral levels. However, a complete understanding of pain mechanisms requires the physiological study of the neocortex. Our goal is to apply a neural decoding approach to read out the onset of acute thermal pain signals, which can be used for brain-machine interface. APPROACH We used micro wire arrays to record ensemble neuronal activities from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) in freely behaving rats. We further investigated neural codes for acute thermal pain at both single-cell and population levels. To detect the onset of acute thermal pain signals, we developed a novel latent state-space framework to decipher the sorted or unsorted S1 and ACC ensemble spike activities, which reveal information about the onset of pain signals. MAIN RESULTS The state space analysis allows us to uncover a latent state process that drives the observed ensemble spike activity, and to further detect the 'neuronal threshold' for acute thermal pain on a single-trial basis. Our method achieved good detection performance in sensitivity and specificity. In addition, our results suggested that an optimal strategy for detecting the onset of acute thermal pain signals may be based on combined evidence from S1 and ACC population codes. SIGNIFICANCE Our study is the first to detect the onset of acute pain signals based on neuronal ensemble spike activity. It is important from a mechanistic viewpoint as it relates to the significance of S1 and ACC activities in the regulation of the acute pain onset.
Collapse
Affiliation(s)
- Zhe Chen
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016, United States of America. Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, United States of America
| | | | | | | | | |
Collapse
|
22
|
The Transition of Acute Postoperative Pain to Chronic Pain: An Integrative Overview of Research on Mechanisms. THE JOURNAL OF PAIN 2017; 18:359.e1-359.e38. [DOI: 10.1016/j.jpain.2016.11.004] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 10/15/2016] [Accepted: 11/16/2016] [Indexed: 01/01/2023]
|
23
|
Pogatzki-Zahn EM, Segelcke D, Schug SA. Postoperative pain-from mechanisms to treatment. Pain Rep 2017; 2:e588. [PMID: 29392204 PMCID: PMC5770176 DOI: 10.1097/pr9.0000000000000588] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/04/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION Pain management after surgery continues to be suboptimal; there are several reasons including lack of translation of results from basic science studies and scientific clinical evidence into clinical praxis. OBJECTIVES This review presents and discusses basic science findings and scientific evidence generated within the last 2 decades in the field of acute postoperative pain. METHODS In the first part of the review, we give an overview about studies that have investigated the pathophysiology of postoperative pain by using rodent models of incisional pain up to July 2016. The second focus of the review lies on treatment recommendations based on guidelines and clinical evidence, eg, by using the fourth edition of the "Acute Pain Management: Scientific Evidence" of the Australian and New Zealand College of Anaesthetists and Faculty of Pain Medicine. RESULTS Preclinical studies in rodent models characterized responses of primary afferent nociceptors and dorsal horn neurons as one neural basis for pain behavior including resting pain, hyperalgesia, movement-evoked pain or anxiety- and depression-like behaviors after surgery. Furthermore, the role of certain receptors, mediators, and neurotransmitters involved in peripheral and central sensitization after incision were identified; many of these are very specific, relate to some modalities only, and are unique for incisional pain. Future treatment should focus on these targets to develop therapeutic agents that are effective for the treatment of postoperative pain as well as have few side effects. Furthermore, basic science findings translate well into results from clinical studies. Scientific evidence is able to point towards useful (and less useful) elements of multimodal analgesia able to reduce opioid consumption, improve pain management, and enhance recovery. CONCLUSION Understanding basic mechanisms of postoperative pain to identify effective treatment strategies may improve patients' outcome after surgery.
Collapse
Affiliation(s)
- Esther M. Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital of Muenster, Muenster, Germany
| | - Stephan A. Schug
- Pharmacology, Pharmacy and Anaesthesiology Unit, School of Medicine and Pharmacology, University of Western Australia, Perth, Western Australia, Australia
- Department of Anaesthesia and Pain Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
24
|
Bone pain: current and future treatments. Curr Opin Pharmacol 2016; 28:31-7. [PMID: 26940053 DOI: 10.1016/j.coph.2016.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/12/2016] [Accepted: 02/12/2016] [Indexed: 12/21/2022]
Abstract
Skeletal conditions are common causes of chronic pain and there is an unmet medical need for improved treatment options. Bone pain is currently managed with disease modifying agents and/or analgesics depending on the condition. Disease modifying agents affect the underlying pathophysiology of the disease and reduce as a secondary effect bone pain. Antiresorptive and anabolic agents, such as bisphosphonates and intermittent parathyroid hormone (1-34), respectively, have proven effective as pain relieving agents. Cathepsin K inhibitors and anti-sclerostin antibodies hold, due to their disease modifying effects, promise of a pain relieving effect. NSAIDs and opioids are widely employed in the treatment of bone pain. However, recent preclinical findings demonstrating a unique neuronal innervation of bone tissue and sprouting of sensory nerve fibers open for new treatment possibilities.
Collapse
|
25
|
|
26
|
Amirmohseni S, Segelcke D, Reichl S, Wachsmuth L, Görlich D, Faber C, Pogatzki-Zahn E. Characterization of incisional and inflammatory pain in rats using functional tools of MRI. Neuroimage 2016; 127:110-122. [DOI: 10.1016/j.neuroimage.2015.11.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 02/07/2023] Open
|
27
|
Saad SS, Hamza M, Bahr MH, Masoud SI. Nitric oxide is involved in ibuprofen preemptive analgesic effect in the plantar incisional model of postsurgical pain in mice. Neurosci Lett 2016; 614:33-8. [DOI: 10.1016/j.neulet.2015.12.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/03/2015] [Accepted: 12/15/2015] [Indexed: 11/29/2022]
|
28
|
Role of neurokinin type 1 receptor in nociception at the periphery and the spinal level in the rat. Spinal Cord 2015; 54:172-82. [PMID: 26690860 DOI: 10.1038/sc.2015.206] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 10/09/2015] [Accepted: 10/16/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Noxious stimuli activate small to medium-sized dorsal root ganglion (DRG) neurons. Intense noxious stimuli result in the release of substance P (SP) from the central terminals of these neurons. It binds to the neurokinin type 1 receptor (NK1r) and sensitises the dorsal horn neurons. SP is also released from the peripheral terminals leading to neurogenic inflammation. However, their individual contribution at spinal and peripheral levels to postincisional nociception has not been delineated as yet. METHODS Sprague-Dawley rats were administered different doses (3-100 μg) of an NK1r antagonist (L760735) by intrathecal (i.t.) route before hind paw incision. On the basis of its antinociceptive effect on guarding behaviour, the 30 μg dose was selected for further study. In different sets of animals, this was administered i.t. (postemptive) and intrawound (i.w.). Finally, in another group, drug (30 μg) was administered through both i.t and i.w. routes. The antinociceptive effect was assessed and compared. Expression of SP was examined in the spinal cord. Intrawound concentration of SP and inflammatory mediators was also evaluated. RESULTS Postemptive i.t. administration significantly attenuated guarding and allodynia. Guarding was alone decreased after i.w. drug treatment. Combined drug administration further attenuated all nociceptive parameters, more so after postemptive treatment. Expression of SP in the spinal cord decreased post incision but increased in the paw tissue. Inflammatory mediators like the nerve growth factor also increased after incision. CONCLUSION In conclusion, SP acting through the NK1r appears to be an important mediator of nociception, more so at the spinal level. These findings could have clinical relevance.
Collapse
|
29
|
Antinociceptive effect of 1400 W, an inhibitor of inducible nitric oxide synthase, following hind paw incision in rats. Nitric Oxide 2015; 50:98-104. [PMID: 26362773 DOI: 10.1016/j.niox.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 07/29/2015] [Accepted: 09/04/2015] [Indexed: 11/20/2022]
Abstract
Acute tissue damage is accompanied by synthesis of nitric oxide (NO) in the inflamed tissue as well as in the spinal cord. NO release at the spinal level is likely involved in the neuroplastic changes contributing to pain. Also, previous studies indicate that this could be due to the inducible isoform of the nitric oxide synthase (iNOS) enzyme. Though, the role of NO has been investigated in several animal models of nociception, the precise contribution of NO to nociception arising from hind paw incision is unknown, which is a rodent model of postoperative pain. In the present work, we have estimated the formation of NO in Sprague-Dawley rats, both at the site of incision and the corresponding spinal cord levels by Griess assay. Subsequently, naive rats were implanted with chronic indwelling intrathecal (i.t.) catheters. Fixed quantity (30 μg) of 1400 W, an iNOS inhibitor, was either administered locally into the wound at the time of incision or into the i.t. space, 15 min before hind paw incision. In a different set, i.t. 1400 W was administered, 20 h after incision. Control group received i.t. saline. Nociception was evaluated by guarding score, mechanical allodynia and thermal hyperalgesia. NO level was significantly increased between 4 h - day 1 locally and at 4 h at the spinal level after incision. Local inhibition of iNOS produced transient decrease of guarding (4-12 h) whereas pronounced decrease of guarding and allodynia was evident after spinal inhibition of iNOS. Also, spinal NO level decreased after i.t. drug administration. Post-incision drug treatment resulted in greater antinociceptive effect at day 1 though not on day 2. These results indicate involvement of NO in postincisional nociception in rats.
Collapse
|
30
|
Shao CJ, Gao Y, Zhao L, Jin D, Wang D, Wang DQ. Co-application of lidocaine and QX-572 induces divergent pain behaviours in mice. ACTA ACUST UNITED AC 2015; 67:1272-8. [PMID: 25904024 DOI: 10.1111/jphp.12419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/13/2015] [Indexed: 11/25/2022]
Abstract
OBJECTIVES We investigated the analgesic effects of lidocaine (LDC) and lidocane derivative, QX-572, co-application on the evoked pain behaviour (complete Freund's Adjuvant (CFA)-induced) and spontaneous pain behaviour (formalin-induced) in mice. METHODS The experiments were performed using adult male Kunming mice. Formalin-induced acute pain model and CFA-induced chronic pain model was established by injecting formalin and CFA, respectively. Separate injections of LDC and QX-572, or co-injection of LDC and QX-572, were performed to observe the differences in neurobehavioural responses, paw withdrawal latency (PWL) and mechanical withdrawal threshold (MWT). KEY FINDINGS QX-572 injection alone did not influence PWL and MWT, but injection of LDC alone led to a substantial, but short-lived, elevation in PWL and MWT (45 min). Co-injection of LDC and QX-572, however, resulted in a significant increase in PWL and MWT (120 min) compared with the LDC group. Injection of LDC and QX-572 combination in the adjacent sciatic nerve also produced a long-lasting sensory-specific nerve block. Additionally, intraplantar co-injection of LDC and QX-572 combination inhibited spontaneous pain in formalin-treated mice, but did not detectably attenuated hyperalgesia and allodynia in CFA-treated mice. CONCLUSIONS Our results provide evidence that QX-572 induced sensory-selective blockade and co-injection of QX-572 and LDC enhance pain blockade, as evident from formalin-treated mice.
Collapse
Affiliation(s)
- Cui-Jie Shao
- Department of Pain, The Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong, China
| | - Yong Gao
- Department of Pain, The Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong, China
| | - Li Zhao
- The People's Hospital of Binzhou, Binzhou, Shandong, China
| | - Dan Jin
- Department of Pain, The Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong, China
| | - Dan Wang
- Department of Pain, The Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong, China
| | - De-Qiang Wang
- Department of Pain, The Affiliated Hospital of Binzhou Medical College, Binzhou, Shandong, China
| |
Collapse
|
31
|
Wienemann T, Chantelau EA, Koller A. Effect of painless diabetic neuropathy on pressure pain hypersensitivity (hyperalgesia) after acute foot trauma. Diabet Foot Ankle 2014; 5:24926. [PMID: 25397867 PMCID: PMC4224703 DOI: 10.3402/dfa.v5.24926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/17/2014] [Accepted: 10/13/2014] [Indexed: 12/20/2022]
Abstract
Introduction and objective Acute injury transiently lowers local mechanical pain thresholds at a limb. To elucidate the impact of painless (diabetic) neuropathy on this post-traumatic hyperalgesia, pressure pain perception thresholds after a skeletal foot trauma were studied in consecutive persons without and with neuropathy (i.e. history of foot ulcer or Charcot arthropathy). Design and methods A case–control study was done on 25 unselected clinical routine patients with acute unilateral foot trauma (cases: elective bone surgery; controls: sprain, toe fracture). Cases were 12 patients (11 diabetic subjects) with severe painless neuropathy and chronic foot pathology. Controls were 13 non-neuropathic persons. Over 1 week after the trauma, cutaneous pressure pain perception threshold (CPPPT) and deep pressure pain perception threshold (DPPPT) were measured repeatedly, adjacent to the injury and at the opposite foot (pinprick stimulators, Algometer II®). Results In the control group, post-traumatic DPPPT (but not CPPPT) at the injured foot was reduced by about 15–25%. In the case group, pre- and post-operative CPPPT and DPPPT were supranormal. Although DPPPT fell post-operatively by about 15–20%, it remained always higher than the post-traumatic DPPPT in the control group: over musculus abductor hallucis 615 kPa (kilopascal) versus 422 kPa, and over metatarsophalangeal joint 518 kPa versus 375 kPa (medians; case vs. control group); CPPPT did not decrease post-operatively. Conclusion Physiological nociception and post-traumatic hyperalgesia to pressure are diminished at the foot with severe painless (diabetic) neuropathy. A degree of post-traumatic hypersensitivity required to ‘pull away’ from any one, even innocuous, mechanical impact in order to avoid additional damage is, therefore, lacking.
Collapse
Affiliation(s)
| | | | - Armin Koller
- Interdisciplinary Diabetic Foot Centre, Mathias-Spital, Rheine, Germany
| |
Collapse
|
32
|
Schreiber KL, Kehlet H, Belfer I, Edwards RR. Predicting, preventing and managing persistent pain after breast cancer surgery: the importance of psychosocial factors. Pain Manag 2014; 4:445-59. [DOI: 10.2217/pmt.14.33] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
33
|
Grosu I, Lavand'homme P, Thienpont E. Pain after knee arthroplasty: an unresolved issue. Knee Surg Sports Traumatol Arthrosc 2014; 22:1744-58. [PMID: 24201900 DOI: 10.1007/s00167-013-2750-2] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 10/25/2013] [Indexed: 12/27/2022]
Abstract
PURPOSE Despite the recent advances in the understanding of pain mechanisms and the introduction of new drugs and new techniques in the postoperative management, pain after total knee arthroplasty (TKA) is still an unresolved issue. It affects the quality of life and rehabilitation of an important percentage of patients undergoing TKA. The aim of this narrative review was to give an overview on pain mechanisms and multimodal pain management. METHODS A review of all peer-reviewed articles on pain after knee arthroplasty was performed by two reviewers. Recent articles on incisional pain mechanisms were included because of their importance in the understanding of postsurgical pain. Search was performed in Pubmed, Cochrane and Google Scholar data bases. RESULTS Postsurgical pain mechanisms are based on both local and systemic inflammatory reactions. Peri-operative pain management starts with the anaesthetic technique and resides on a multimodal analgesia regimen. New concepts, drugs and techniques have shown their efficacy in reducing the severity of acute postoperative pain and the risk of developing chronic pain after TKA. CONCLUSION This narrative review offers a clear overview of pain mechanism after knee arthroplasty and an understanding on how multimodal pain management can reduce the intensity and duration of pain after knee arthroplasty.
Collapse
Affiliation(s)
- Irina Grosu
- Department of Anesthesiology, Cliniques Universitaires Saint Luc, Av. Hippocrate 10, 1200, Brussels, Belgium
| | | | | |
Collapse
|
34
|
Locally Mediated Analgesic Effect of Bradykinin Type 2 Receptor Antagonist HOE 140 During Acute Inflammatory Pain in Rats. J Burn Care Res 2014; 35:e391-8. [DOI: 10.1097/bcr.0000000000000042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
Chantelau EA, Wienemann T. Pressure pain perception in the diabetic Charcot foot: facts and hypotheses. Diabet Foot Ankle 2013; 4:20981. [PMID: 23705057 PMCID: PMC3661900 DOI: 10.3402/dfa.v4i0.20981] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/17/2013] [Accepted: 04/23/2013] [Indexed: 11/20/2022]
Abstract
Background Reduced traumatic and posttraumatic (nociceptive) pain is a key feature of diabetic neuropathy. Underlying condition is a gradual degeneration of endings of pain nerves (A-delta fibers and C-fibers), which operate as receivers of noxious stimuli (nociceptors). Hence, the absence of A-delta fiber mediated sharp pain (“first” pain), and of C-fiber mediated dull pain (“second” pain). However, patients with diabetic neuropathy and acute Charcot foot often experience deep dull aching in the Charcot foot while walking on it. Aim To create a unifying hypothesis on the kind of pain in an acute Charcot foot. Result Absence of punctuate (pinprick) pain perception at the sole of a Charcot foot, as was shown recently, likely corresponds to vanished intraepidermal A-delta fiber endings. C-fiber nociceptors are reduced, according to histopathology studies. Both types of fibers contribute to posttraumatic hyperalgesia at the skin level, as studies show. Their deficiencies likely impact on posttraumatic hyperalgesia at the skin level and, probably, also at the skeletal level. Conclusion It is hypothesised that deep dull aching in an acute diabetic Charcot foot may represent faulty posttraumatic hyperalgesia involving cutaneous and skeletal tissues.
Collapse
Affiliation(s)
- Ernst A Chantelau
- Diabetic Foot Clinic, Department of Endocrinology and Diabetes, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
36
|
Carreira EU, Carregaro V, Teixeira MM, Moriconi A, Aramini A, Verri WA, Ferreira SH, Cunha FQ, Cunha TM. Neutrophils recruited by CXCR1/2 signalling mediate post-incisional pain. Eur J Pain 2012; 17:654-63. [PMID: 23132735 DOI: 10.1002/j.1532-2149.2012.00240.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2012] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neutrophil recruitment mediated by the CXCL1/KC chemokine and its receptors CXCR1/CXCR2 plays a critical role in inflammatory diseases. Recently, neutrophil migration and activation triggered by CXCL1-CXCR1/2 signalling was implicated in inflammatory nociception; however, their role in post-surgical pain has not been elucidated. In this study, we addressed the function of neutrophils in the genesis of post-incisional pain in an experimental model of post-surgical pain. METHODS Mechanical hyperalgesia was determined with an electronic von Frey test in a mouse hindpaw incisional model. Neutrophil accumulation and the level of CXCL1/KC in the plantar tissue were determined by myeloperoxidase activity assay and enzyme-linked immunosorbent assay, respectively. RESULTS An incision in the mouse hindpaw produces long-lasting mechanical hyperalgesia that persists for at least 72 h after surgery. Following surgery, there was an increase in both neutrophil accumulation and the CXCL1/KC level in the incised paws. The depletion of the mouse neutrophils by vinblastine sulphate or anti-neutrophil antibody treatments reduced the mechanical hyperalgesia after paw incision. Furthermore, the treatment of mice with ladarixin, an orally acting CXCR1/2 antagonist, also reduced both the mechanical hyperalgesia and the infiltration of neutrophils in the incised paws. CONCLUSION In conclusion, it appears that after surgical processes, neutrophils are recruited by CXCL1-CXCR1/2 signalling and participate in the cascade of events, leading to mechanical hyperalgesia. These results suggest that blocking neutrophil migration through the inhibition of CXCL1-CXCR1/2 signalling might be a target to control post-surgical pain.
Collapse
Affiliation(s)
- E U Carreira
- Department of Pharmacology, School of Medicine of Ribeirão Preto University of Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pogatzki-Zahn EM, Schnabel A, Zahn PK. Room for improvement: unmet needs in postoperative pain management. Expert Rev Neurother 2012; 12:587-600. [PMID: 22550987 DOI: 10.1586/ern.12.30] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Postoperative pain treatment is an important healthcare issue. However, the management of pain in patients after surgery remains insufficient. In the present review, several key areas important for postoperative pain management are discussed. New findings about efficacy and side effects of nonopioid analgesics, such as paracetamol, NSAIDs and COX-2 inhibitors, are presented and discussed in light of acute, short-term application in the perioperative period. Second, new findings about postoperative pain management in patients with preoperative pain and chronic opioid consumption are reported. Third, feasibility of the transversus abdominal plane block as a new and promising regional anesthesia technique is discussed. Finally, potential predictors, mechanisms and preventive treatment strategies of persistent chronic pain after surgery are presented.
Collapse
Affiliation(s)
- Esther M Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital of Muenster, Albert-Schweitzer-Campus 1, Building A1, 48149 Muenster, Germany.
| | | | | |
Collapse
|