1
|
Yogi A, Banderali U, Moreno MJ, Martina M. Preclinical Animal Models to Investigate the Role of Na v1.7 Ion Channels in Pain. Life (Basel) 2025; 15:640. [PMID: 40283194 PMCID: PMC12028925 DOI: 10.3390/life15040640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/03/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Chronic pain is a maladaptive neurological disease that remains a major global healthcare problem. Voltage-gated sodium channels (Navs) are major drivers of the excitability of sensory neurons, and the Nav subtype 1.7 (Nav1.7) has been shown to be critical for the transmission of pain-related signaling. This is highlighted by demonstrations that gain-of-function mutations in the Nav1.7 gene SCN9A result in various pain pathologies, whereas loss-of-function mutations cause complete insensitivity to pain. A substantial body of evidence demonstrates that chronic neuropathy and inflammation result in an upregulation of Nav1.7, suggesting that this channel contributes to pain transmission and sensation. As such, Nav1.7 is an attractive human-validated target for the treatment of pain. Nonetheless, a lack of subtype selectivity, insufficient efficacy, and adverse reactions are some of the issues that have hindered Nav1.7-targeted drug development. This review summarizes the pain behavior profiles mediated by Nav1.7 reported in multiple preclinical models, outlining the current knowledge of the biophysical, physiological, and distribution properties required for a Nav1.7 inhibitor to produce analgesia.
Collapse
Affiliation(s)
- Alvaro Yogi
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON K1A 0R6, Canada; (U.B.); (M.J.M.); (M.M.)
| | | | | | | |
Collapse
|
2
|
Tyagi S, Higerd-Rusli GP, Akin EJ, Waxman SG, Dib-Hajj SD. Sculpting excitable membranes: voltage-gated ion channel delivery and distribution. Nat Rev Neurosci 2025:10.1038/s41583-025-00917-2. [PMID: 40175736 DOI: 10.1038/s41583-025-00917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2025] [Indexed: 04/04/2025]
Abstract
The polarized and domain-specific distribution of membrane ion channels is essential for neuronal homeostasis, but delivery of these proteins to distal neuronal compartments (such as the axonal ends of peripheral sensory neurons) presents a logistical challenge. Recent developments have enabled the real-time imaging of single protein trafficking and the investigation of the life cycle of ion channels across neuronal compartments. These studies have revealed a highly regulated process involving post-translational modifications, vesicular sorting, motor protein-driven transport and targeted membrane insertion. Emerging evidence suggests that neuronal activity and disease states can dynamically modulate ion channel localization, directly influencing excitability. This Review synthesizes current knowledge on the spatiotemporal regulation of ion channel trafficking in both central and peripheral nervous system neurons. Understanding these processes not only advances our fundamental knowledge of neuronal excitability, but also reveals potential therapeutic targets for disorders involving aberrant ion channel distribution, such as chronic pain and neurodegenerative diseases.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA.
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA.
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA.
| | - Grant P Higerd-Rusli
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Elizabeth J Akin
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Stephen G Waxman
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Center for Neuroscience and Regeneration Research, Yale School of Medicine, West Haven, CT, USA.
- Center for Restoration of Nervous System Function, VA Connecticut Healthcare System, West Haven, CT, USA.
| |
Collapse
|
3
|
Wang Z, Zhao B, Li Y, Jing J, Suo L, Zhang G. Comparison of the effects of 19 exercise interventions on symptoms, pain, balance, and muscular strength in patients with chemotherapy-induced peripheral neuropathy: A systematic review and network meta-analysis. Int J Nurs Stud 2025; 164:105014. [PMID: 39946864 DOI: 10.1016/j.ijnurstu.2025.105014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 01/17/2025] [Accepted: 01/26/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Exercise can improve the symptoms of chemotherapy-induced peripheral neuropathy. Traditional pairwise meta-analyses of exercise interventions can only identify the difference in effect between an exercise intervention and usual care. It is necessary to conduct network meta-analyses to establish evidence on the comparative effectiveness of all relevant exercise intervention strategies. OBJECTIVE To evaluate the comparative effectiveness of all known exercise interventions for chemotherapy-induced peripheral neuropathy, rank the best exercise intervention and explore the influencing factors of exercise intervention. DESIGN Systematic review and network meta-analysis. METHODS A comprehensive search was conducted in 14 databases. Risk of bias assessment, quality of evidence, sensitivity analysis, subgroup analysis and meta-regression were performed on the included studies. A network meta-analysis was used to identify the optimal exercise intervention. RESULTS Twenty-four eligible studies were included, and a total of 19 interventions were identified. Regular physical training combined with sensorimotor exercise, sensorimotor exercise, aerobic combined with resistance and balance training, aerobic exercise and resistance training had statistically significant differences in reducing CIPN symptoms with SMD and 95 % CI were - 1.06 (-1.77, -0.36), -0.61 (-1.08, -0.14), -1.88 (-2.81, -0.94), 0.94 (0.39, 1.49) and - 1.31 (-1.87, -0.74). For pain, the most effective interventions included hand-foot exercises, aerobic combined with resistance training, muscular strength combined with balance exercises, SMD and 95 % CI were - 1.99 (-2.85, -1.13), -1.13 (-1.58, -0.67) and - 1.04 (-1.66, -0.41). Endurance combined with strength training, endurance combined with resistance and balance training, regular physical training combined with sensorimotor exercise and balance training were found to be effective in treating balance with SMD and 95 % CI were 1.61 (0.74, 2.48), 1.10 (0.31, 1.88), 0.92 (0.23, 1.61), and 1.40 (0.59, 2.21). Nerve gliding exercises, aerobic combined with resistance and flexibility exercises, endurance combined with strength training, aerobic combined with resistance training and balance training were found to be effective in treating muscular strength with SMD and 95 % CI were 1.09 (0.48, 1.70), 0.94 (0.29, 1.60), 1.13 (0.32, 1.94), 0.75 (0.51, 1.00) and 1.00 (0.23, 1.76). Subgroup analysis showed that frequency of exercise, duration of exercise, exercise time per session, type of exercise supervision, types of cancer, types of chemotherapy drugs and age had a significant effect on CIPN patients. CONCLUSIONS This network meta-analysis found that multimodal exercise, consisting of aerobic, balance, resistance and sensorimotor training, was the most effective intervention for CIPN in adults. Healthcare professionals should consider the effects of patient characteristics and different exercise doses on CIPN patients. REGISTRATION CRD42024500334.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Bingxin Zhao
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Yao Li
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Jiamei Jing
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China
| | - Lina Suo
- Nursing Department, Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Guozeng Zhang
- Institute of Nursing and Health, School of Nursing and Health, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
4
|
Tarasiuk O, Invernizzi C, Alberti P. In vitro neurotoxicity testing: lessons from chemotherapy-induced peripheral neurotoxicity. Expert Opin Drug Metab Toxicol 2024; 20:1037-1052. [PMID: 39246127 DOI: 10.1080/17425255.2024.2401584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
INTRODUCTION Chemotherapy induced peripheral neurotoxicity (CIPN) is a long-lasting, or even permanent, late toxicity caused by largely used anticancer drugs. CIPN affects a growing population of cancer survivors and diminishes their quality of life since there is no curative/preventive treatment. Among several reasons for this unmet clinical need, there is an incomplete knowledge on mechanisms leading to CIPN. Therefore, bench side research is still greatly needed: in vitro studies are pivotal to both evaluate neurotoxicity mechanisms and potential neuroprotection strategies. AREAS COVERED Advantages and disadvantages of in vitro approaches are addressed with respect to their applicability to the CIPN field. Different cell cultures and techniques to assess neurotoxicity/neuroprotection are described. PubMed search-string: (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (in vitro) AND (((((model) OR SH-SY5Y) OR PC12) OR iPSC) OR DRG neurons); (chemotherapy-induced) AND (((neuropathy) OR neurotoxicity) OR neuropathic pain) AND (model) AND (((neurite elongation) OR cell viability) OR morphology). No articles published before 1990 were selected. EXPERT OPINION CIPN is an ideal experimental setting to test axonal damage and, in general, peripheral nervous system mechanisms of disease and neuroprotection. Therefore, starting from robust preclinical data in this field, potentially, relevant biological rationale can be transferred to other human spontaneous diseases of the peripheral nervous system.
Collapse
Affiliation(s)
- Olga Tarasiuk
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
| | - Chiara Invernizzi
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- Neuroscience, School of Medicine and Surgery, Monza, Italy
| | - Paola Alberti
- Experimental Neurology Unit, School of Medicine and Surgery, Monza, Italy
- NeuroMI (Milan Center for Neuroscience), Milan, Italy
- Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
5
|
Mortensen C, Thomsen MT, Chua KC, Hammer HS, Nielsen F, Pötz O, Svenningsen AF, Kroetz DL, Stage TB. Modeling mechanisms of chemotherapy-induced peripheral neuropathy and chemotherapy transport using induced pluripotent stem cell-derived sensory neurons. Neuropharmacology 2024; 258:110062. [PMID: 38972371 DOI: 10.1016/j.neuropharm.2024.110062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND and Purpose: Chemotherapy-induced peripheral neuropathy (CIPN) constitutes a significant health problem due to the increasing prevalence and lack of therapies for treatment and prevention. While pivotal for routine cancer treatment, paclitaxel and vincristine frequently cause CIPN and impact the quality of life among cancer patients and survivors. Here, we investigate molecular mechanisms and drug transport in CIPN. EXPERIMENTAL APPROACH Human sensory neurons were derived from induced pluripotent stem cells (iPSC-SNs), which were characterized using flow cytometry and immunolabeling. These iPSC-SNs were exposed to different concentrations of the two microtubule-targeting agents, paclitaxel and vincristine, with and without pre-exposure to inhibitors and inducers of efflux transporters. Neuronal networks were quantified via fluorescent staining against sensory neuron markers. Transcriptional effects of the chemotherapeutics were examined using quantitative polymerase chain reactions (qPCR). KEY RESULTS Paclitaxel exposure resulted in axonal retraction and thickening, while vincristine caused fragmentation and abolishment of axons. Both agents increased the mRNA expression of the pain receptor, transient receptor potential vanilloid (TRPV1), and highly induced neuronal damage, as measured by activating transcription factor 3 (ATF3) mRNA. iPSC-SNs express the efflux transporters, P-glycoprotein (P-gp, encoded by ABCB1) and multidrug resistance-associated protein 1 (MPR1, encoded by ABCC1). Modulation of efflux transporters indicate that P-gp and MRP1 play a role in modulating neuronal accumulation and neurotoxicity in preliminary experiments. CONCLUSION and Implications: iPSC-SNs are a valuable and robust model to study the role of efflux transporters and other mechanistic targets in CIPN. Efflux transporters may play a role in CIPN pathogenesis as they regulate the disposition of chemotherapy to the peripheral nervous system, and they may present potential therapeutic targets for CIPN.
Collapse
Affiliation(s)
- Christina Mortensen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mikkel Thy Thomsen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Katherina C Chua
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | | | - Flemming Nielsen
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | | | - Asa Fex Svenningsen
- Neurobiology Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Deanna L Kroetz
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Tore Bjerregaard Stage
- Clinical Pharmacology, Pharmacy, and Environmental Medicine, Department of Public Health, University of Southern Denmark, Odense, Denmark; Department of Clinical Pharmacology, Odense University Hospital, Odense, Denmark.
| |
Collapse
|
6
|
Sun X, Huang W, Yin D, Zhao X, Cheng X, Zhang J, Hao Y. Nicotinamide riboside activates SIRT3 to prevent paclitaxel-induced peripheral neuropathy. Toxicol Appl Pharmacol 2024; 491:117066. [PMID: 39128506 DOI: 10.1016/j.taap.2024.117066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/27/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Paclitaxel (PTX) is a microtubule stabilizer that disrupts the normal cycle of microtubule depolymerization and repolymerization, leading to cell cycle arrest and cancer cell death. It is commonly used as a first-line chemotherapeutics for various malignancies, such as breast cancer, non-small cell lung cancer, and ovarian cancer. However, PTX chemotherapy is associated with common and serious side effects, including chemotherapy-induced peripheral neuropathy (CIPN). As cancer treatment advances and survival rates increase, the impact of CIPN on patients' quality of life has become more significant. To date, there is no effective treatment strategy for CIPN. Surtuin3 (SIRT3) is a nicotinamide adenine dinucleotide (NAD+) dependent protein deacetylase located on mitochondria. It transfers the acetyl group of the lysine side chain of acetylated substrate proteins to NAD+, producing deacetylated proteins to regulate mitochondrial energy metabolic processes. SIRT3 has been found to play an important role in various diseases, including aging, neurodegenerative diseases, cancer, heart disease, metabolic diseases, etc. However, the role of SIRT3 in CIPN is still unknown. This study found for the first time that activating SIRT3 helps to improve paclitaxel-induced CIPN. Nicotinamide riboside (NR) can protect dorsal root ganglion (DRG) mitochondria against oxidative damage caused by paclitaxel through activating SIRT3-MnSOD2 and SIRT3-Nrf2 pathway. Moreover, NR can enhance the anticancer activity of paclitaxel. Together, our research provides new strategy and candidate drug for the treatment of CIPN.
Collapse
Affiliation(s)
- Xiaohan Sun
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Weiting Huang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Dejin Yin
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xi Zhao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Xiaoling Cheng
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| | - Yue Hao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
7
|
Garza-Carbajal A, Bavencoffe A, Herrera JJ, Johnson KN, Walters ET, Dessauer CW. Mechanism of gabapentinoid potentiation of opioid effects on cyclic AMP signaling in neuropathic pain. Proc Natl Acad Sci U S A 2024; 121:e2405465121. [PMID: 39145932 PMCID: PMC11348325 DOI: 10.1073/pnas.2405465121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/10/2024] [Indexed: 08/16/2024] Open
Abstract
Over half of spinal cord injury (SCI) patients develop opioid-resistant chronic neuropathic pain. Safer alternatives to opioids for treatment of neuropathic pain are gabapentinoids (e.g., pregabalin and gabapentin). Clinically, gabapentinoids appear to amplify opioid effects, increasing analgesia and overdose-related adverse outcomes, but in vitro proof of this amplification and its mechanism are lacking. We previously showed that after SCI, sensitivity to opioids is reduced by fourfold to sixfold in rat sensory neurons. Here, we demonstrate that after injury, gabapentinoids restore normal sensitivity of opioid inhibition of cyclic AMP (cAMP) generation, while reducing nociceptor hyperexcitability by inhibiting voltage-gated calcium channels (VGCCs). Increasing intracellular Ca2+ or activation of L-type VGCCs (L-VGCCs) suffices to mimic SCI effects on opioid sensitivity, in a manner dependent on the activity of the Raf1 proto-oncogene, serine/threonine-protein kinase C-Raf, but independent of neuronal depolarization. Together, our results provide a mechanism for potentiation of opioid effects by gabapentinoids after injury, via reduction of calcium influx through L-VGCCs, and suggest that other inhibitors targeting these channels may similarly enhance opioid treatment of neuropathic pain.
Collapse
Affiliation(s)
- Anibal Garza-Carbajal
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Alexis Bavencoffe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Juan J. Herrera
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Kayla N. Johnson
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Edgar T. Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| | - Carmen W. Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX77030
| |
Collapse
|
8
|
Sharma D, Feng X, Wang B, Yasin B, Bekker A, Hu H, Tao YX. NT-3 contributes to chemotherapy-induced neuropathic pain through TrkC-mediated CCL2 elevation in DRG neurons. EMBO Rep 2024; 25:2375-2390. [PMID: 38594391 PMCID: PMC11094060 DOI: 10.1038/s44319-024-00133-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024] Open
Abstract
Cancer patients undergoing treatment with antineoplastic drugs often experience chemotherapy-induced neuropathic pain (CINP), and the therapeutic options for managing CINP are limited. Here, we show that systemic paclitaxel administration upregulates the expression of neurotrophin-3 (Nt3) mRNA and NT3 protein in the neurons of dorsal root ganglia (DRG), but not in the spinal cord. Blocking NT3 upregulation attenuates paclitaxel-induced mechanical, heat, and cold nociceptive hypersensitivities and spontaneous pain without altering acute pain and locomotor activity in male and female mice. Conversely, mimicking this increase produces enhanced responses to mechanical, heat, and cold stimuli and spontaneous pain in naive male and female mice. Mechanistically, NT3 triggers tropomyosin receptor kinase C (TrkC) activation and participates in the paclitaxel-induced increases of C-C chemokine ligand 2 (Ccl2) mRNA and CCL2 protein in the DRG. Given that CCL2 is an endogenous initiator of CINP and that Nt3 mRNA co-expresses with TrkC and Ccl2 mRNAs in DRG neurons, NT3 likely contributes to CINP through TrkC-mediated activation of the Ccl2 gene in DRG neurons. NT3 may be thus a potential target for CINP treatment.
Collapse
Affiliation(s)
- Dilip Sharma
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Xiaozhou Feng
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Bing Wang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Bushra Yasin
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Huijuan Hu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
- Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
- Department of Physiology, Pharmacology & Neuroscience, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
- Department of Cell Biology & Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, 07103, USA.
| |
Collapse
|
9
|
Chen X, Gan Y, Au NPB, Ma CHE. Current understanding of the molecular mechanisms of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 2024; 17:1345811. [PMID: 38660386 PMCID: PMC11039947 DOI: 10.3389/fnmol.2024.1345811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common off-target adverse effects caused by various chemotherapeutic agents, such as cisplatin, oxaliplatin, paclitaxel, vincristine and bortezomib. CIPN is characterized by a substantial loss of primary afferent sensory axonal fibers leading to sensory disturbances in patients. An estimated of 19-85% of patients developed CIPN during the course of chemotherapy. The lack of preventive measures and limited treatment options often require a dose reduction or even early termination of life-saving chemotherapy, impacting treatment efficacy and patient survival. In this Review, we summarized the current understanding on the pathogenesis of CIPN. One prominent change induced by chemotherapeutic agents involves the disruption of neuronal cytoskeletal architecture and axonal transport dynamics largely influenced by the interference of microtubule stability in peripheral neurons. Due to an ineffective blood-nerve barrier in our peripheral nervous system, exposure to some chemotherapeutic agents causes mitochondrial swelling in peripheral nerves, which lead to the opening of mitochondrial permeability transition pore and cytochrome c release resulting in degeneration of primary afferent sensory fibers. The exacerbated nociceptive signaling and pain transmission in CIPN patients is often linked the increased neuronal excitability largely due to the elevated expression of various ion channels in the dorsal root ganglion neurons. Another important contributing factor of CIPN is the neuroinflammation caused by an increased infiltration of immune cells and production of inflammatory cytokines. In the central nervous system, chemotherapeutic agents also induce neuronal hyperexcitability in the spinal dorsal horn and anterior cingulate cortex leading to the development of central sensitization that causes CIPN. Emerging evidence suggests that the change in the composition and diversity of gut microbiota (dysbiosis) could have direct impact on the development and progression of CIPN. Collectively, all these aspects contribute to the pathogenesis of CIPN. Recent advances in RNA-sequencing offer solid platform for in silico drug screening which enable the identification of novel therapeutic agents or repurpose existing drugs to alleviate CIPN, holding immense promises for enhancing the quality of life for cancer patients who undergo chemotherapy and improve their overall treatment outcomes.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yumeng Gan
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Institute of Life Sciences and Healthcare, University of Portsmouth, Portsmouth, United Kingdom
| | - Chi Him Eddie Ma
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
10
|
Franco-Enzástiga Ú, Natarajan K, David ET, Patel K, Ravirala A, Price TJ. Vinorelbine causes a neuropathic pain-like state in mice via STING and MNK1 signaling associated with type I interferon induction. iScience 2024; 27:108808. [PMID: 38303713 PMCID: PMC10831286 DOI: 10.1016/j.isci.2024.108808] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/14/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Type I interferons (IFNs) increase the excitability of dorsal root ganglia (DRGs) neurons via MNK-eIF4E signaling to promote pain sensitization in mice. Activation of stimulator of interferon response cGAMP interactor 1 (STING) signaling is pivotal for type I IFN induction. We hypothesized that vinorelbine, a chemotherapeutic and activator of STING, would cause a neuropathic pain-like state in mice via STING signaling in DRG neurons associated with IFN production. Vinorelbine caused tactile allodynia and grimacing in wild-type (WT) mice and increased p-IRF3, type I IFNs, and p-eIF4E in peripheral nerves. Supporting our hypothesis, vinorelbine failed to induce IRF3-IFNs-MNK-eIF4E in StingGt/Gt mice and, subsequently, failed to cause pain. The vinorelbine-elicited increase of p-eIF4E was not observed in Mknk1-/- (MNK1 knockout) mice in peripheral nerves consistent with the attenuated pro-nociceptive effect of vinorelbine in these mice. Our findings show that activation of STING signaling in the periphery causes a neuropathic pain-like state through type I IFN signaling to DRG nociceptors.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Eric T. David
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Krish Patel
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Abhira Ravirala
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
11
|
Whitaker EE, Mecum NE, Cott RC, Goode DJ. Expression of MHC II in DRG neurons attenuates paclitaxel-induced cold hypersensitivity in male and female mice. PLoS One 2024; 19:e0298396. [PMID: 38330029 PMCID: PMC10852343 DOI: 10.1371/journal.pone.0298396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024] Open
Abstract
Chemotherapy is often a life-saving treatment, but the development of intractable pain caused by chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting toxicity that restricts cancer survival rates. Recent reports demonstrate that paclitaxel (PTX) robustly increases anti-inflammatory CD4+ T cells in the dorsal root ganglion (DRG), and that T cells and anti-inflammatory cytokines are protective against CIPN. However, the mechanism by which CD4+ T cells are activated, and the extent cytokines released by CD4+ T cells target DRG neurons are unknown. Here, we are the first to detect major histocompatibility complex II (MHCII) protein in mouse DRG neurons and to find CD4+ T cells breaching the satellite glial cell barrier to be in close proximity to neurons, together suggesting CD4+ T cell activation and targeted cytokine release. MHCII protein is primarily expressed in small nociceptive neurons in male and female mouse DRG but increased after PTX in small nociceptive neurons in only female DRG. Reducing one copy of MHCII in small nociceptive neurons decreased anti-inflammatory IL-10 and IL-4 producing CD4+ T cells in naïve male DRG and increased their hypersensitivity to cold. Administration of PTX to male and female mice that lacked one copy of MHCII in nociceptive neurons decreased anti-inflammatory CD4+ T cells in the DRG and increased the severity of PTX-induced cold hypersensitivity. Collectively, our results demonstrate expression of MHCII protein in mouse DRG neurons, which modulates cytokine producing CD4+ T cells in the DRG and attenuates cold hypersensitivity during homeostasis and after PTX treatment.
Collapse
Affiliation(s)
- Emily E. Whitaker
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, United States of America
| | - Neal E. Mecum
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, United States of America
| | - Riley C. Cott
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, United States of America
| | - Diana J. Goode
- Department of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine, United States of America
| |
Collapse
|
12
|
Alsalem M, Ellaithy A, Bloukh S, Haddad M, Saleh T. Targeting therapy-induced senescence as a novel strategy to combat chemotherapy-induced peripheral neuropathy. Support Care Cancer 2024; 32:85. [PMID: 38177894 DOI: 10.1007/s00520-023-08287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a treatment-limiting adverse effect of anticancer therapy that complicates the lifestyle of many cancer survivors. There is currently no gold-standard for the assessment or management of CIPN. Subsequently, understanding the underlying mechanisms that lead to the development of CIPN is essential for finding better pharmacological therapy. Therapy-induced senescence (TIS) is a form of senescence that is triggered in malignant and non-malignant cells in response to the exposure to chemotherapy. Recent evidence has also suggested that TIS develops in the dorsal root ganglia of rodent models of CIPN. Interestingly, several components of the senescent phenotype are commensurate with the currently established primary processes implicated in the pathogenesis of CIPN including mitochondrial dysfunction, oxidative stress, and neuroinflammation. In this article, we review the literature that supports the hypothesis that TIS could serve as a holistic mechanism leading to CIPN, and we propose the potential for investigating senotherapeutics as means to mitigate CIPN in cancer survivors.
Collapse
Affiliation(s)
- Mohammad Alsalem
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Amr Ellaithy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah Bloukh
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mansour Haddad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
13
|
Han X, Matsuda N, Ishibashi Y, Shibata M, Suzuki I. An In Vitro Assessment Method for Chemotherapy-Induced Peripheral Neurotoxicity Caused by Anti-Cancer Drugs Based on Electrical Measurement of Impedance Value and Spontaneous Activity. Pharmaceutics 2023; 15:2788. [PMID: 38140128 PMCID: PMC10748260 DOI: 10.3390/pharmaceutics15122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Chemotherapy-induced peripheral neurotoxicity (CIPN) is a major adverse event of anti-cancer drugs, which still lack standardized measurement and treatment methods. In the present study, we attempted to evaluate neuronal dysfunctions in cultured rodent primary peripheral neurons using a microelectrode array system. After exposure to typical anti-cancer drugs (i.e., paclitaxel, vincristine, oxaliplatin, and bortezomib), we successfully detected neurotoxicity in dorsal root ganglia neurons by measuring electrical activities, including impedance value and spontaneous activity. The impedance value decreased significantly for all compounds, even at low concentrations, which indicated cell loss and/or neurite degeneration. The spontaneous activity was also suppressed after exposure, which suggested neurotoxicity again. However, an acute response was observed for paclitaxel and bortezomib before toxicity, which showed different mechanisms based on compounds. Therefore, MEA measurement of impedance value could provide a simple assessment method for CIPN, combined with neuronal morphological changes.
Collapse
Affiliation(s)
| | | | | | | | - Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai 9828577, Japan; (X.H.); (N.M.); (Y.I.); (M.S.)
| |
Collapse
|
14
|
Walters ET. Exaptation and Evolutionary Adaptation in Nociceptor Mechanisms Driving Persistent Pain. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:314-330. [PMID: 38035556 PMCID: PMC10922759 DOI: 10.1159/000535552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/23/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Several evolutionary explanations have been proposed for why chronic pain is a major clinical problem. One is that some mechanisms important for driving chronic pain, while maladaptive for modern humans, were adaptive because they enhanced survival. Evidence is reviewed for persistent nociceptor hyperactivity (PNH), known to promote chronic pain in rodents and humans, being an evolutionarily adaptive response to significant bodily injury, and primitive molecular mechanisms related to cellular injury and stress being exapted (co-opted or repurposed) to drive PNH and consequent pain. SUMMARY PNH in a snail (Aplysia californica), squid (Doryteuthis pealeii), fruit fly (Drosophila melanogaster), mice, rats, and humans has been documented as long-lasting enhancement of action potential discharge evoked by peripheral stimuli, and in some of these species as persistent extrinsically driven ongoing activity and/or intrinsic spontaneous activity (OA and SA, respectively). In mammals, OA and SA are often initiated within the protected nociceptor soma long after an inducing injury. Generation of OA or SA in nociceptor somata may be very rare in invertebrates, but prolonged afterdischarge in nociceptor somata readily occurs in sensitized Aplysia. Evidence for the adaptiveness of injury-induced PNH has come from observations of decreased survival of injured squid exposed to predators when PNH is blocked, from plausible survival benefits of chronic sensitization after severe injuries such as amputation, and from the functional coherence and intricacy of mammalian PNH mechanisms. Major contributions of cAMP-PKA signaling (with associated calcium signaling) to the maintenance of PNH both in mammals and molluscs suggest that this ancient stress signaling system was exapted early during the evolution of nociceptors to drive hyperactivity following bodily injury. Vertebrates have retained core cAMP-PKA signaling modules for PNH while adding new extracellular modulators (e.g., opioids) and cAMP-regulated ion channels (e.g., TRPV1 and Nav1.8 channels). KEY MESSAGES Evidence from multiple phyla indicates that PNH is a physiological adaptation that decreases the risk of attacks on injured animals. Core cAMP-PKA signaling modules make major contributions to the maintenance of PNH in molluscs and mammals. This conserved signaling has been linked to ancient cellular responses to stress, which may have been exapted in early nociceptors to drive protective hyperactivity that can persist while bodily functions recover after significant injury.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
15
|
Toraman A, Toraman E, Özkaraca M, Budak H. Evaluated periodontal tissues and oxidative stress in rats with neuropathic pain-like behavior. Mol Biol Rep 2023; 50:9315-9322. [PMID: 37812355 DOI: 10.1007/s11033-023-08829-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/15/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND Oxidative stress has a critical effect on both persistent pain states and periodontal disease. Voltage-gated sodium NaV1.7 (SCN9A), and transient receptor potential ankyrin 1 (TRPA1) are pain genes. The goal of this study was to investigate oxidative stress markers, periodontal status, SCN9A, and TRPA1 channel expression in periodontal tissues of rats with paclitaxel-induced neuropathic pain-like behavior (NPLB). METHODS AND RESULTS Totally 16 male Sprague Dawley rats were used: control (n = 8) and paclitaxel-induced pain (PTX) (n = 8). The alveolar bone loss and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels were analyzed histometrically and immunohistochemically. Gingival superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities (spectrophotometric assay) were measured. The relative TRPA1 and SCN9A genes expression levels were evaluated using quantitative real-time PCR (qPCR) in the tissues of gingiva and brain. The PTX group had significantly higher alveolar bone loss and 8-OHdG compared to the control. The PTX group had significantly lower gingival SOD, GPx and CAT activity than the control groups. The PTX group had significantly higher relative gene expression of SCN9A (p = 0.0002) and TRPA1 (p = 0.0002) than the control in gingival tissues. Increased nociceptive susceptibility may affect the increase in oxidative stress and periodontal destruction. CONCLUSIONS Chronic pain conditions may increase TRPA1 and SCN9A gene expression in the periodontium. The data of the current study may help develop novel approaches both to maintain periodontal health and alleviate pain in patients suffering from orofacial pain.
Collapse
Affiliation(s)
- Ayşe Toraman
- Hamidiye Faculty of Dentistry, Department of Periodontology, Health Sciences University, İstanbul, 34668, Turkey.
| | - Emine Toraman
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| | - Mustafa Özkaraca
- Faculty of Veterinary Medicine, Department of Preclinical Sciences, Department of Veterinary Pathology, Cumhuriyet University, Sivas, Turkey
| | - Harun Budak
- Science Faculty, Department of Molecular Biology and Genetics, Atatürk University, Erzurum, Turkey
| |
Collapse
|
16
|
Whitaker EE, Mecum NE, Cott RC, Goode DJ. Novel expression of major histocompatibility complex II in dorsal root ganglion neurons attenuates paclitaxel-induced cold hypersensitivity in male and female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535136. [PMID: 37066176 PMCID: PMC10103942 DOI: 10.1101/2023.03.31.535136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Chemotherapy is often a life-saving treatment, but the development of intractable pain caused by chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting toxicity that restricts survival rates. Recent reports demonstrate that paclitaxel (PTX) robustly increases anti-inflammatory CD4+ T cells in the dorsal root ganglion (DRG), and that T cells and anti-inflammatory cytokines are protective against CIPN. However, the mechanism by which CD4+ T cells are activated, and the extent cytokines released by CD4+ T cells target DRG neurons are unknown. Here, we found novel expression of functional major histocompatibility complex II (MHCII) protein in DRG neurons, and CD4+ T cells in close proximity to DRG neurons, together suggesting CD4+ T cell activation and targeted cytokine release. MHCII protein is primarily expressed in small nociceptive neurons in male mouse DRG regardless of PTX, while MHCII is induced in small nociceptive neurons in female DRG after PTX. Accordingly, reducing MHCII in small nociceptive neurons increased hypersensitivity to cold only in naive male mice, but increased severity of PTX-induced cold hypersensitivity in both sexes. Collectively, our results demonstrate expression of MHCII on DRG neurons and a functional role during homeostasis and inflammation.
Collapse
|
17
|
Ivasiuk A, Matvieienko M, Kononenko NI, Duzhyy DE, Korogod SM, Voitenko N, Belan P. Diabetes-Induced Amplification of Nociceptive DRG Neuron Output by Upregulation of Somatic T-Type Ca 2+ Channels. Biomolecules 2023; 13:1320. [PMID: 37759720 PMCID: PMC10526307 DOI: 10.3390/biom13091320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The development of pain symptoms in peripheral diabetic neuropathy (PDN) is associated with the upregulation of T-type Ca2+ channels (T-channels) in the soma of nociceptive DRG neurons. Moreover, a block of these channels in DRG neurons effectively reversed mechanical and thermal hyperalgesia in animal diabetic models, indicating that T-channel functioning in these neurons is causally linked to PDN. However, no particular mechanisms relating the upregulation of T-channels in the soma of nociceptive DRG neurons to the pathological pain processing in PDN have been suggested. Here we have electrophysiologically identified voltage-gated currents expressed in nociceptive DRG neurons and developed a computation model of the neurons, including peripheral and central axons. Simulations showed substantially stronger sensitivity of neuronal excitability to diabetes-induced T-channel upregulation at the normal body temperature compared to the ambient one. We also found that upregulation of somatic T-channels, observed in these neurons under diabetic conditions, amplifies a single action potential invading the soma from the periphery into a burst of multiple action potentials further propagated to the end of the central axon. We have concluded that the somatic T-channel-dependent amplification of the peripheral nociceptive input to the spinal cord demonstrated in this work may underlie abnormal nociception at different stages of diabetes development.
Collapse
Affiliation(s)
- Arsentii Ivasiuk
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology of NAS of Ukraine, 01024 Kyiv, Ukraine; (A.I.); (M.M.); (N.I.K.); (S.M.K.)
| | - Maksym Matvieienko
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology of NAS of Ukraine, 01024 Kyiv, Ukraine; (A.I.); (M.M.); (N.I.K.); (S.M.K.)
| | - Nikolai I. Kononenko
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology of NAS of Ukraine, 01024 Kyiv, Ukraine; (A.I.); (M.M.); (N.I.K.); (S.M.K.)
| | - Dmytro E. Duzhyy
- Department of Sensory Signaling, Bogomoletz Institute of Physiology of NAS of Ukraine, 01024 Kyiv, Ukraine;
| | - Sergiy M. Korogod
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology of NAS of Ukraine, 01024 Kyiv, Ukraine; (A.I.); (M.M.); (N.I.K.); (S.M.K.)
| | - Nana Voitenko
- Department of Biomedicine and Neuroscience, Kyiv Academic University of NAS of Ukraine, 03142 Kyiv, Ukraine
- Research Center, Dobrobut Academy Medical School, 03022 Kyiv, Ukraine
| | - Pavel Belan
- Department of Molecular Biophysics, Bogomoletz Institute of Physiology of NAS of Ukraine, 01024 Kyiv, Ukraine; (A.I.); (M.M.); (N.I.K.); (S.M.K.)
- Department of Biomedicine and Neuroscience, Kyiv Academic University of NAS of Ukraine, 03142 Kyiv, Ukraine
| |
Collapse
|
18
|
Gomez K, Stratton HJ, Duran P, Loya S, Tang C, Calderon-Rivera A, François-Moutal L, Khanna M, Madura CL, Luo S, McKiver B, Choi E, Ran D, Boinon L, Perez-Miller S, Damaj MI, Moutal A, Khanna R. Identification and targeting of a unique Na V1.7 domain driving chronic pain. Proc Natl Acad Sci U S A 2023; 120:e2217800120. [PMID: 37498871 PMCID: PMC10410761 DOI: 10.1073/pnas.2217800120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Small molecules directly targeting the voltage-gated sodium channel (VGSC) NaV1.7 have not been clinically successful. We reported that preventing the addition of a small ubiquitin-like modifier onto the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 function and was antinociceptive in rodent models of neuropathic pain. Here, we discovered a CRMP2 regulatory sequence (CRS) unique to NaV1.7 that is essential for this regulatory coupling. CRMP2 preferentially bound to the NaV1.7 CRS over other NaV isoforms. Substitution of the NaV1.7 CRS with the homologous domains from the other eight VGSC isoforms decreased NaV1.7 currents. A cell-penetrant decoy peptide corresponding to the NaV1.7-CRS reduced NaV1.7 currents and trafficking, decreased presynaptic NaV1.7 expression, reduced spinal CGRP release, and reversed nerve injury-induced mechanical allodynia. Importantly, the NaV1.7-CRS peptide did not produce motor impairment, nor did it alter physiological pain sensation, which is essential for survival. As a proof-of-concept for a NaV1.7 -targeted gene therapy, we packaged a plasmid encoding the NaV1.7-CRS in an AAV virus. Treatment with this virus reduced NaV1.7 function in both rodent and rhesus macaque sensory neurons. This gene therapy reversed and prevented mechanical allodynia in a model of nerve injury and reversed mechanical and cold allodynia in a model of chemotherapy-induced peripheral neuropathy. These findings support the conclusion that the CRS domain is a targetable region for the treatment of chronic neuropathic pain.
Collapse
Affiliation(s)
- Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Harrison J. Stratton
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Santiago Loya
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Cheng Tang
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | | | - May Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - Cynthia L. Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Bryan McKiver
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Edward Choi
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Lisa Boinon
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ85724
| | - Samantha Perez-Miller
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology and Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, VA 23298-0613
| | - Aubin Moutal
- Department of Pharmacology and Physiology, School of Medicine, St. Louis University, St. Louis, MO63104
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY10010
- NYU Pain Research Center, New York, NY10010
- Department of Neuroscience and Physiology and Neuroscience Institute, School of Medicine, New York University, New York, NY10010
| |
Collapse
|
19
|
Ramasamy K, Shanmugasundaram J, Subramanian V, Manoharan R, Kathirvelu P, Vijayaraghavan R. 3', 4'-dihydroxyflavone ameliorates paclitaxel model of peripheral neuropathy in mice by modulating K ATP channel, adenosine (A 3) and GABA A (α 2 subunit) receptors. Bioinformation 2023; 19:754-763. [PMID: 37885774 PMCID: PMC10598353 DOI: 10.6026/97320630019754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 10/28/2023] Open
Abstract
Paclitaxel is a widely used cancer chemotherapeutic agent for many solid tumors; but peripheral neuropathy is a major limitation for its clinical use. Studies have demonstrated the usefulness of flavone derivatives in chemotherapy induced peripheral neuropathy. The present study evaluates the anti-neuropathic effect of 3', 4'-dihydroxyflavone on paclitaxel-induced peripheral neuropathy and the underlying mechanisms. Paclitaxel was administered to mice in a single dose of 10 mg/kg, i.p.The neuropathic behavioural parameters such as mechanical allodynia, cold allodynia and thermal hyperalgesia were assessed 24 h later. The test compound 3', 4'-dihydroxyflavone (50,100 or 200 mg/kg,s.c) was administered 30 min prior to the assessment of behavioral parameters. The possible mechanisms involving KATP channels, adenosine and GABAA receptors were explored by employing suitable interacting drugs. Molecular docking studies to predict the binding interactions of 3', 4'-dihydroxyflavone at the above targets were also carried out. The test compound 3', 4'-dihydroxyflavoneexhibited a significant reduction in paw withdrawal response score in both mechanical and cold allodynia and also increased the tail flick response time in thermal hyperalgesia due to paclitaxel-induced neuropathy. The anti-neuropathic effect of 3', 4'-dihydroxyflavonewas significantly reversed by pre-treatment with glibenclamide, caffeine or bicuculline revealing the involvement of KATP channels, adenosine and GABAA receptors respectively. Furthermore, the molecular docking studies indicated a favourable binding affinity and good H-bond interaction of 3', 4'-dihydroxyflavone at these targets. The findings of the present study suggests that, 3', 4'-dihydroxyflavone has anti-neuropathic effect against paclitaxel-induced peripheral neuropathy through mechanisms that involve KATP channels, adenosine (A3) and GABAA (α2 subunit) receptors.
Collapse
Affiliation(s)
- Kavitha Ramasamy
- Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Chennai - 600116, India
| | - Jaikumar Shanmugasundaram
- Department of Pharmacology, Panimalar Medical College Hospital and Research Institute, Chennai - 600123, India
| | - Viswanathan Subramanian
- Department of Pharmacology, Meenakshi Medical College Hospital and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram - 631552, India
| | - Rajesh Manoharan
- Department of Pharmacology, Sri Muthukumaran Medical College and Research Institute, Chennai - 600069, India
| | - Parimala Kathirvelu
- Department of Pharmacology, Meenakshi Medical College Hospital and Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram - 631552, India
| | - Rajagopalan Vijayaraghavan
- Director Research, Saveetha Institute of Medical And Technical Sciences, Thandalam, Chennai - 602105, India
| |
Collapse
|
20
|
Franco-Enzástiga Ú, Natarajan K, David ET, Patel KJ, Ravirala A, Price TJ. Vinorelbine causes a neuropathic pain-like state in mice via STING and MNK1 signaling associated with type I interferon induction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.03.543579. [PMID: 37333411 PMCID: PMC10274710 DOI: 10.1101/2023.06.03.543579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Type I interferons (IFNs) increase the excitability of dorsal root ganglion (DRG) neurons via activation of MNK-eIF4E translation signaling to promote pain sensitization in mice. Activation of STING signaling is a key component of type I IFN induction. Manipulation of STING signaling is an active area of investigation in cancer and other therapeutic areas. Vinorelbine is a chemotherapeutic that activates STING and has been shown to cause pain and neuropathy in oncology clinical trials in patients. There are conflicting reports on whether STING signaling promotes or inhibits pain in mice. We hypothesized that vinorelbine would cause a neuropathic pain-like state in mice via STING and signaling pathways in DRG neurons associated with type I IFN induction. Vinorelbine (10 mg/kg, i.v.) induced tactile allodynia and grimacing in WT male and female mice and increased p-IRF3 and type I IFN protein in peripheral nerves. In support of our hypothesis, vinorelbine-mediated pain was absent in male and female StingGt/Gt mice. Vinorelbine also failed to induce IRF3 and type I IFN signaling in these mice. Since type I IFNs engage translational control via MNK1-eIF4E in DRG nociceptors, we assessed vinorelbine-mediated p-eIF4E changes. Vinorelbine increased p-eIF4E in DRG in WT animals but not in StingGt/Gt or Mknk1-/- (MNK1 KO) mice. Consistent with these biochemical findings, vinorelbine had an attenuated pro-nociceptive effect in male and female MNK1 KO mice. Our findings support the conclusion that activation of STING signaling in the peripheral nervous system causes a neuropathic pain-like state that is mediated by type I IFN signaling to DRG nociceptors.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Eric T. David
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Krish J. Patel
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Abhira Ravirala
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
21
|
Navia-Pelaez JM, Lemes JBP, Gonzalez L, Delay L, dos Santos Aggum Capettini L, Lu JW, Dos Santos GG, Gregus AM, Dougherty PM, Yaksh TL, Miller YI. AIBP regulates TRPV1 activation in chemotherapy-induced peripheral neuropathy by controlling lipid raft dynamics and proximity to TLR4 in dorsal root ganglion neurons. Pain 2023; 164:e274-e285. [PMID: 36719418 PMCID: PMC10182209 DOI: 10.1097/j.pain.0000000000002834] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/21/2022] [Indexed: 02/01/2023]
Abstract
ABSTRACT Nociceptive afferent signaling evoked by inflammation and nerve injury is mediated by the opening of ligand-gated and voltage-gated receptors or channels localized to cholesterol-rich lipid raft membrane domains. Dorsal root ganglion (DRG) nociceptors express high levels of toll-like receptor 4 (TLR4), which also localize to lipid rafts. Genetic deletion or pharmacologic blocking of TLR4 diminishes pain associated with chemotherapy-induced peripheral neuropathy (CIPN). In DRGs of mice with paclitaxel-induced CIPN, we analyzed DRG neuronal lipid rafts, expression of TLR4, activation of transient receptor potential cation channel subfamily V member 1 (TRPV1), and TLR4-TRPV1 interaction. Using proximity ligation assay, flow cytometry, and whole-mount DRG microscopy, we found that CIPN increased DRG neuronal lipid rafts and TLR4 expression. These effects were reversed by intrathecal injection of apolipoprotein A-I binding protein (AIBP), a protein that binds to TLR4 and specifically targets cholesterol depletion from TLR4-expressing cells. Chemotherapy-induced peripheral neuropathy increased TRPV1 phosphorylation, localization to neuronal lipid rafts, and proximity to TLR4. These effects were also reversed by AIBP treatment. Regulation of TRPV1-TLR4 interactions and their associated lipid rafts by AIBP covaried with the enduring reversal of mechanical allodynia otherwise observed in CIPN. In addition, AIBP reduced intracellular calcium in response to the TRPV1 agonist capsaicin, which was increased in DRG neurons from paclitaxel-treated mice and in the naïve mouse DRG neurons incubated in vitro with paclitaxel. Together, these results suggest that the assembly of nociceptive and inflammatory receptors in the environment of lipid rafts regulates nociceptive signaling in DRG neurons and that AIBP can control lipid raft-associated nociceptive processing.
Collapse
Affiliation(s)
| | - Julia Borges Paes Lemes
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Leonardo Gonzalez
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Lauriane Delay
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | | | - Jenny W. Lu
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | | | - Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, Blacksburg, Virginia, USA
| | - Patrick M. Dougherty
- Departments of Anesthesia and Pain Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Tony L. Yaksh
- Department of Anesthesiology, University of California, San Diego, La Jolla, California, USA
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Suzuki I, Matsuda N, Han X, Noji S, Shibata M, Nagafuku N, Ishibashi Y. Large-Area Field Potential Imaging Having Single Neuron Resolution Using 236 880 Electrodes CMOS-MEA Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207732. [PMID: 37088859 PMCID: PMC10369302 DOI: 10.1002/advs.202207732] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/21/2023] [Indexed: 05/03/2023]
Abstract
The electrophysiological technology having a high spatiotemporal resolution at the single-cell level and noninvasive measurements of large areas provide insights on underlying neuronal function. Here, a complementary metal-oxide semiconductor (CMOS)-microelectrode array (MEA) is used that uses 236 880 electrodes each with an electrode size of 11.22 × 11.22 µm and 236 880 covering a wide area of 5.5 × 5.9 mm in presenting a detailed and single-cell-level neural activity analysis platform for brain slices, human iPS cell-derived cortical networks, peripheral neurons, and human brain organoids. Propagation pattern characteristics between brain regions changes the synaptic propagation into compounds based on single-cell time-series patterns, classification based on single DRG neuron firing patterns and compound responses, axonal conduction characteristics and changes to anticancer drugs, and network activities and transition to compounds in brain organoids are extracted. This detailed analysis of neural activity at the single-cell level using the CMOS-MEA provides a new understanding of the basic mechanisms of brain circuits in vitro and ex vivo, on human neurological diseases for drug discovery, and compound toxicity assessment.
Collapse
Affiliation(s)
- Ikuro Suzuki
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Naoki Matsuda
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Xiaobo Han
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Shuhei Noji
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Mikako Shibata
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Nami Nagafuku
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| | - Yuto Ishibashi
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, 35-1 Yagiyama Kasumicho, Taihaku-ku, Sendai, Miyagi, 982-8577, Japan
| |
Collapse
|
23
|
Li L, Li P, Guo J, Wu Y, Zeng Q, Li N, Huang X, He Y, Ai W, Sun W, Liu T, Xiong D, Xiao L, Sun Y, Zhou Q, Kuang H, Wang Z, Jiang C. Up-regulation of oxytocin receptors on peripheral sensory neurons mediates analgesia in chemotherapy-induced neuropathic pain. Br J Pharmacol 2023. [PMID: 36702458 DOI: 10.1111/bph.16042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Chemotherapy-induced neuropathic pain (CINP) currently has limited effective treatment. Although the roles of oxytocin (OXT) and the oxytocin receptor (OXTR) in central analgesia have been well documented, the expression and function of OXTR in the peripheral nervous system remain unclear. Here, we evaluated the peripheral antinociceptive profiles of OXTR in CINP. EXPERIMENTAL APPROACH Paclitaxel (PTX) was used to establish CINP. Quantitative real-time polymerase chain reaction (qRT-PCR), in situ hybridization, and immunohistochemistry were used to observe OXTR expression in dorsal root ganglia (DRG). The antinociceptive effects of OXT were assessed by hot-plate and von Frey tests. Whole-cell patch clamp was performed to record sodium currents, excitability of DRG neurons, and excitatory synapse transmission. KEY RESULTS Expression of OXTR in DRG neurons was enhanced significantly after PTX treatment. Activation of OXTR exhibited antinociceptive effects, by decreasing the hyperexcitability of DRG neurons in PTX-treated mice. Additionally, OXTR activation up-regulated the phosphorylation of protein kinase C (pPKC) and, in turn, impaired voltage-gated sodium currents, particularly the voltage-gated sodium channel 1.7 (NaV 1.7) current, that plays an indispensable role in PTX-induced neuropathic pain. OXT suppressed excitatory transmission in the spinal dorsal horn as well as excitatory inputs from primary afferents in PTX-treated mice. CONCLUSION AND IMPLICATIONS The OXTR in small-sized DRG neurons is up-regulated in CINP and its activation relieved CINP by inhibiting the neural excitability by impairment of NaV 1.7 currents via pPKC. Our results suggest that OXTR on peripheral sensory neurons is a potential therapeutic target to relieve CINP.
Collapse
Affiliation(s)
- Lixuan Li
- Guangdong Medical University, Zhanjiang, Guangdong, China.,Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Pupu Li
- Department of Medical Oncology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Jing Guo
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, Guangdong, China
| | - Yifei Wu
- Department of Medical Neuroscience, Key University Laboratory of Metabolism and Health of Guangdong, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qian Zeng
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Nan Li
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Xiaoting Huang
- Medical Research Center, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yongshen He
- Medical Research Center, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Wen Ai
- Medical Research Center, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Tao Liu
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Donglin Xiong
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Yanyan Sun
- Department of Anesthesiology, Shenzhen University General Hospital and Shenzhen University Academy of Clinical Medical Sciences, Shenzhen University, Shenzhen, Guangdong, China
| | - Qiming Zhou
- Department of Medical Oncology, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Haixia Kuang
- Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zilong Wang
- Department of Medical Neuroscience, Key University Laboratory of Metabolism and Health of Guangdong, SUSTech Center for Pain Medicine, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China.,Medical Research Center, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, Guangdong, China
| |
Collapse
|
24
|
Lu J, Lou Y, Zhang Y, Zhong R, Zhang W, Zhang X, Wang H, Chu T, Han B, Zhong H. Paclitaxel Has a Reduced Toxicity Profile in Healthy Rats After Polymeric Micellar Nanoparticle Delivery. Int J Nanomedicine 2023; 18:263-276. [PMID: 36660338 PMCID: PMC9844231 DOI: 10.2147/ijn.s372961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Background Nanocarrier platforms have been indicated to have great potential in clinical practice to treat non-small cell lung cancer (NSCLC). Our previous Phase III clinical study revealed that polymeric micellar paclitaxel (Pm-Pac) is safe and efficacious in advanced NSCLC patients. However, the histopathological-toxicological profile of Pm-Pac in mammals remains unclear. Methods We examined the Pm-Pac-induced antitumour effect in both A549/H226 cells and A549/H226-derived xenograft tumour models.. And then, we evaluated the short-term and long-term toxicity induced by Pm-Pac in healthy Sprague‒Dawley (SD) rats. The changes in body weight, survival, peripheral neuropathy, haematology, and histopathology were studied in SD rats administered Pm-Pac at different dosages. Results In the A549-derived xenograft tumour model, better therapeutic efficacy was observed in the Pm-Pac group than in the solvent-based paclitaxel (Sb-Pac) group when an equal dosage of paclitaxel was administered. Toxicity assessments in healthy SD rats indicated that Pm-Pac caused toxicity at an approximately 2- to 3-fold greater dose than Sb-Pac when examining animal body weight, survival, peripheral neuropathy, haematology, and histopathology. Interestingly, based on histopathological examinations, we found that Pm-Pac could significantly decrease the incidences of paclitaxel-induced brain and liver injury but could potentially increase the prevalence of paclitaxel-induced male genital system toxicity. Conclusion This study introduces the toxicological profile of the engineered nanoparticle Pm-Pac and provides a novel perspective on the Pm-Pac-induced histopathological-toxicological profile in a rat model.
Collapse
Affiliation(s)
- Jun Lu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China,Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China,Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China,Department of Bio-Bank, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yuqing Lou
- Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yanwei Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Runbo Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Wei Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Xueyan Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Huimin Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Tianqing Chu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China,Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China,Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China,Correspondence: Baohui Han; Hua Zhong, Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People’s Republic of China, Email ; ;
| | - Hua Zhong
- Department of Pulmonary Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China,Translational Medical Research Platform for Thoracic Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| |
Collapse
|
25
|
Teng C, Egger S, Blinman PL, Vardy JL. Evaluating laser photobiomodulation for chemotherapy-induced peripheral neuropathy: a randomised phase II trial. Support Care Cancer 2023; 31:52. [PMID: 36526802 PMCID: PMC9758032 DOI: 10.1007/s00520-022-07463-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE This study aims to evaluate the efficacy and safety of laser photobiomodulation (PBM) for treatment of established chemotherapy-induced peripheral neuropathy (CIPN) in cancer survivors. METHODS We conducted a randomised phase II, non-comparative, sham-controlled, single-blinded clinical trial in 44 cancer survivors reporting CIPN symptoms at least 3 months following completion of neurotoxic chemotherapy. Participants were randomised 2:1 to either PBM laser or sham control delivered twice weekly for 12 sessions. Assessments were conducted at baseline, the end of intervention (6 weeks), and 6 weeks post intervention (12 weeks). Participants completed neuropathy, quality of life and function questionnaires, and a clinical neurological assessment. The primary outcome was proportion of participants with CIPN response, defined as either symptom resolution or reduction of minimally clinically important difference. RESULTS In the laser and control groups, CIPN response rates were - 48% and 53% at 6 weeks and 45% and 33% at 12 weeks, respectively. The null hypothesis that the true response rate is 5% in the laser arm was rejected at both 6 and 12 weeks (p < 0.001 for both). Compared to baseline, patient-reported CIPN improved in both laser and control groups after the intervention. At 12 weeks, improvement was sustained in the laser group and approaching baseline in the control group. Clinical signs, quality of life, and function remained stable in both groups. Low-grade "side-effects" were observed in both arms. CONCLUSION PBM may offer clinically meaningful symptom benefit in cancer survivors with established CIPN with improvement potentially continuing beyond completion of the intervention. A larger study is warranted to evaluate this further.
Collapse
Affiliation(s)
- Christina Teng
- Concord Cancer Centre, Concord, NSW Australia ,Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia ,Central Coast Cancer Centre, Gosford, NSW Australia
| | - Sam Egger
- The Daffodil Centre — a joint venture with Cancer Council NSW and the University of Sydney, Kings Cross, NSW Australia
| | - Prunella L. Blinman
- Concord Cancer Centre, Concord, NSW Australia ,Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia
| | - Janette L. Vardy
- Concord Cancer Centre, Concord, NSW Australia ,Faculty of Medicine and Health, University of Sydney, Camperdown, NSW Australia
| |
Collapse
|
26
|
Zhai J, Sun X, Zhao F, Pan B, Li H, Lv Z, Cao M, Zhao J, Mo H, Ma F, Xu B. Serum sodium ions and chloride ions associated with taxane-induced peripheral neuropathy in Chinese patients with early-stage breast cancer: A nation-wide multicenter study. Breast 2022; 67:36-45. [PMID: 36586272 PMCID: PMC9982268 DOI: 10.1016/j.breast.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/18/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Taxane-induced peripheral neuropathy (TIPN) is a debilitating adverse effect of cancer treatments with taxanes which may require a reduction or discontinuation chemotherapy and affect clinical and survival outcomes. A number of factors have contributed to the increasing prevalence of TIPN. Nonetheless, limited knowledge exists of potential prechemotherapy blood-based biochemical factors associated with TIPN development. METHODS We recruited breast cancer patients at seven cancer institutions in China. Participants aged 18 years or older with stage I to III breast cancer who scheduled to undergo primary neoadjuvant and adjuvant chemotherapy with taxanes were eligible. Eligible patients underwent patient-reported neuropathy assessments using the EORTC-CIPN20 questionnaire. Patients completed the questionnaire before commencing treatment and after every cycle. For every patient, we selected the highest TIPN toxicity score for analysis since the first cycle. The posttreatment TIPN severity was compared with blood-based biochemical factors within 30 days before commencing treatment. Independent samples t tests, Mann-Whitney U tests and linear regression were used to identify blood-based and clinical associations with TIPN development. RESULTS The study included 873 breast cancer participants who received paclitaxel, docetaxel or nanoparticle albumin-bound (nab)-paclitaxel. In the whole cohort, factors associated with higher TIPN toxicity scores were higher cumulative chemotherapy dose (β = 0.005; 95% CI, 0.004 to 0.006; P < .001), lower sodium ions (β = -0.24; 95% CI, -0.39 to -0.09; P = .002) and higher chloride ions (β = 0.30; 95% CI, 0.16 to 0.44; P < .001). CONCLUSIONS The findings suggest that breast cancer patients with a higher cumulative chemotherapy dose, lower pretreatment sodium ions, and higher pretreatment chloride ions receiving taxanes should receive closer monitoring to mitigate the development of short-term and long-term TIPN.
Collapse
Affiliation(s)
- Jingtong Zhai
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoying Sun
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District, Beijing, China
| | - Fang Zhao
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Pan
- Department of Breast Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Huihui Li
- Department of Medical Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Zheng Lv
- Department of Medical Oncology, Cancer Center, The First Hospital of Jilin University, Changchun, China
| | - Mengru Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jiuda Zhao
- Department of Medical Oncology, Affiliated Cancer Hospital of Qinghai University, Xining, China
| | - Hongnan Mo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
27
|
Velasco-González R, Coffeen U. Neurophysiopathological Aspects of Paclitaxel-induced Peripheral Neuropathy. Neurotox Res 2022; 40:1673-1689. [PMID: 36169871 DOI: 10.1007/s12640-022-00582-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 12/31/2022]
Abstract
Chemotherapy is widely used as a primary treatment or adjuvant therapy for cancer. Anti-microtubule agents (such as paclitaxel and docetaxel) are used for treating many types of cancer, either alone or in combination. However, their use has negative consequences that restrict the treatment's ability to continue. The principal negative effect is the so-called chemotherapy-induced peripheral neuropathy (CIPN). CIPN is a complex ailment that depends on diversity in the mechanisms of action of the different chemotherapy drugs, which are not fully understood. In this paper, we review several neurophysiological and pathological characteristics, such as morphological changes, changes in ion channels, mitochondria and oxidative stress, cell death, changes in the immune response, and synaptic control, as well as the characteristics of neuropathic pain produced by paclitaxel.
Collapse
Affiliation(s)
- Roberto Velasco-González
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.,Maestría en Ciencias Biológicas, UNAM, Ciudad de México, México
| | - Ulises Coffeen
- Laboratorio de Neurofisiología Integrativa, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de La Fuente Muñiz, Ciudad de México, México.
| |
Collapse
|
28
|
Tay N, Laakso EL, Schweitzer D, Endersby R, Vetter I, Starobova H. Chemotherapy-induced peripheral neuropathy in children and adolescent cancer patients. Front Mol Biosci 2022; 9:1015746. [PMID: 36310587 PMCID: PMC9614173 DOI: 10.3389/fmolb.2022.1015746] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/20/2022] [Indexed: 11/22/2022] Open
Abstract
Brain cancer and leukemia are the most common cancers diagnosed in the pediatric population and are often treated with lifesaving chemotherapy. However, chemotherapy causes severe adverse effects and chemotherapy-induced peripheral neuropathy (CIPN) is a major dose-limiting and debilitating side effect. CIPN can greatly impair quality of life and increases morbidity of pediatric patients with cancer, with the accompanying symptoms frequently remaining underdiagnosed. Little is known about the incidence of CIPN, its impact on the pediatric population, and the underlying pathophysiological mechanisms, as most existing information stems from studies in animal models or adult cancer patients. Herein, we aim to provide an understanding of CIPN in the pediatric population and focus on the 6 main substance groups that frequently cause CIPN, namely the vinca alkaloids (vincristine), platinum-based antineoplastics (cisplatin, carboplatin and oxaliplatin), taxanes (paclitaxel and docetaxel), epothilones (ixabepilone), proteasome inhibitors (bortezomib) and immunomodulatory drugs (thalidomide). We discuss the clinical manifestations, assessments and diagnostic tools, as well as risk factors, pathophysiological processes and current pharmacological and non-pharmacological approaches for the prevention and treatment of CIPN.
Collapse
Affiliation(s)
- Nicolette Tay
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - E-Liisa Laakso
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Daniel Schweitzer
- Mater Research Institute-The University of Queensland, South Brisbane, QLD, Australia
| | - Raelene Endersby
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- The School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
| | - Hana Starobova
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
- *Correspondence: Hana Starobova,
| |
Collapse
|
29
|
Zhu YF, Kan P, Singh G. Differences and Similarities in Spontaneous Activity Between Animal Models of Cancer-Induced Pain and Neuropathic Pain. J Pain Res 2022; 15:3179-3187. [PMID: 36258759 PMCID: PMC9572504 DOI: 10.2147/jpr.s383373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Background Clinical data on cancer-induced pain (CIP) demonstrate widespread changes in sensory function. It is characterized in humans not only by stimulus-invoked pain, but also by spontaneous pain. In our previous studies in an animal model of CIP, we observed changes in intrinsic membrane properties and excitability of dorsal root ganglion (DRG) sensory neurons corresponding to mechanical allodynia and hyperalgesia, of which abnormal activities of Aβ-fiber sensory neurons are consistent in a rat model of peripheral neuropathic pain (NEP). Objective To investigate whether there are related peripheral neural mechanisms between the CIP and NEP models of spontaneous pain, we compared the electrophysiological properties of DRG sensory neurons at 2–3 weeks after CIP and NEP model induction. Methods CIP models were induced with metastasis tumour-1 rat breast cancer cells implanted into the distal epiphysis of the femur. NEP models were induced with a polyethylene cuff implanted around the sciatic nerve. Spontaneous pain in animals is measured by spontaneous foot lifting (SFL). After measurement of SFL, the animals were prepared for electrophysiological recordings of spontaneous activity (SA) in DRG neurons in vivo. Results Our data showed that SFL and SA occurred in both models. The proportion of SFL and SA of C-fiber sensory neurons in CIP was more significantly increased than in NEP models. There was no difference in duration of SFL and the rate of SA between the two models. The duration of SFL is related to the rate of SA in C-fiber in both models. Conclusion Thus, SFL may result from SA activity in C-fiber neurons in CIP and NEP rats. The differences and similarities in spontaneous pain between CIP and NEP rats is related to the proportion and rate of SA in C-fibers, respectively.
Collapse
Affiliation(s)
- Yong Fang Zhu
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Peter Kan
- Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, ON, Canada,Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada,Correspondence: Gurmit Singh, Email
| |
Collapse
|
30
|
Spera MC, Cesta MC, Zippoli M, Varrassi G, Allegretti M. Emerging Approaches for the Management of Chemotherapy-Induced Peripheral Neuropathy (CIPN): Therapeutic Potential of the C5a/C5aR Axis. Pain Ther 2022; 11:1113-1136. [PMID: 36098939 PMCID: PMC9469051 DOI: 10.1007/s40122-022-00431-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common neurologic complication of chemotherapy, resulting in symptoms like pain, sensory loss, and numbness in the hands and feet that cause lots of uneasiness in patients with cancer. They often suffer from pain so severe that it interrupts the treatment, thus invalidating the entire chemotherapy-based healing process, and significantly reducing their quality of life. In this paper, we underline the role of the complement system in CIPN, highlighting the relevance of the C5a fragment and its receptor C5aR1, whose activation is thought to be involved in triggering a cascade of events that can lead to CIPN onset. Recent experimental data showed the ability of docetaxel and paclitaxel to specifically bind and activate C5aR1, thus shining light on one of the molecular mechanisms by which taxanes may activate a cascade of events leading to neuropathy. According to these new evidence, it was possible to suggest new mechanisms underlying the pathophysiology of CIPN. Hence, the C5a/C5aR1 axis may represent a new target for CIPN treatment, and the use of C5aR1 inhibitors can be proposed as a potential new therapeutic option to manage this high unmet medical need.
Collapse
Affiliation(s)
- Maria C Spera
- Dompé Farmaceutici SpA, Via Campo di Pile, snc, L'Aquila, Italy
| | - Maria C Cesta
- Dompé Farmaceutici SpA, Via Campo di Pile, snc, L'Aquila, Italy.
| | - Mara Zippoli
- Dompé Farmaceutici SpA, Via Tommaso De Amicis, 95, Naples, Italy
| | | | | |
Collapse
|
31
|
Loya-López SI, Duran P, Ran D, Calderon-Rivera A, Gomez K, Moutal A, Khanna R. Cell specific regulation of NaV1.7 activity and trafficking in rat nodose ganglia neurons. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 12:100109. [PMID: 36531612 PMCID: PMC9755031 DOI: 10.1016/j.ynpai.2022.100109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
The voltage-gated sodium NaV1.7 channel sets the threshold for electrogenesis. Mutations in the gene encoding human NaV1.7 (SCN9A) cause painful neuropathies or pain insensitivity. In dorsal root ganglion (DRG) neurons, activity and trafficking of NaV1.7 are regulated by the auxiliary collapsin response mediator protein 2 (CRMP2). Specifically, preventing addition of a small ubiquitin-like modifier (SUMO), by the E2 SUMO-conjugating enzyme Ubc9, at lysine-374 (K374) of CRMP2 reduces NaV1.7 channel trafficking and activity. We previously identified a small molecule, designated 194, that prevented CRMP2 SUMOylation by Ubc9 to reduce NaV1.7 surface expression and currents, leading to a reduction in spinal nociceptive transmission, and culminating in normalization of mechanical allodynia in models of neuropathic pain. In this study, we investigated whether NaV1.7 control via CRMP2-SUMOylation is conserved in nodose ganglion (NG) neurons. This study was motivated by our desire to develop 194 as a safe, non-opioid substitute for persistent pain, which led us to wonder how 194 would impact NaV1.7 in NG neurons, which are responsible for driving the cough reflex. We found functioning NaV1.7 channels in NG neurons; however, they were resistant to downregulation via either CRMP2 knockdown or pharmacological inhibition of CRMP2 SUMOylation by 194. CRMP2 SUMOylation and interaction with NaV1.7 was consered in NG neurons but the endocytic machinery was deficient in the endocytic adaptor protein Numb. Overexpression of Numb rescued CRMP2-dependent regulation on NaV1.7, rendering NG neurons sensitive to 194. Altogether, these data point at the existence of cell-specific mechanisms regulating NaV1.7 trafficking.
Collapse
Affiliation(s)
- Santiago I. Loya-López
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Paz Duran
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Dongzhi Ran
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| | - Aubin Moutal
- School of Medicine, Department of Pharmacology and Physiology, Saint Louis University, Saint Louis, MO 63104, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, USA
- NYU Pain Research Center, 433 First Avenue, New York, NY 10010, USA
| |
Collapse
|
32
|
North RY, Odem MA, Li Y, Tatsui CE, Cassidy RM, Dougherty PM, Walters ET. Electrophysiological Alterations Driving Pain-Associated Spontaneous Activity in Human Sensory Neuron Somata Parallel Alterations Described in Spontaneously Active Rodent Nociceptors. THE JOURNAL OF PAIN 2022; 23:1343-1357. [PMID: 35292377 PMCID: PMC9357108 DOI: 10.1016/j.jpain.2022.02.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 06/10/2023]
Abstract
Neuropathic pain in rodents can be driven by ectopic spontaneous activity (SA) generated by sensory neurons in dorsal root ganglia (DRG). The recent demonstration that SA in dissociated human DRG neurons is associated with reported neuropathic pain in patients enables a detailed comparison of pain-linked electrophysiological alterations driving SA in human DRG neurons to alterations that distinguish SA in nociceptors from SA in low-threshold mechanoreceptors (LTMRs) in rodent neuropathy models. Analysis of recordings from dissociated somata of patient-derived DRG neurons showed that SA and corresponding pain in both sexes were significantly associated with the three functional electrophysiological alterations sufficient to generate SA in the absence of extrinsic depolarizing inputs. These include enhancement of depolarizing spontaneous fluctuations of membrane potential (DSFs), which were analyzed quantitatively for the first time in human DRG neurons. The functional alterations were indistinguishable from SA-driving alterations reported for nociceptors in rodent chronic pain models. Irregular, low-frequency DSFs in human DRG neurons closely resemble DSFs described in rodent nociceptors while differing substantially from the high-frequency sinusoidal oscillations described in rodent LTMRs. These findings suggest that conserved physiological mechanisms of SA in human nociceptor somata can drive neuropathic pain despite documented cellular differences between human and rodent DRG neurons. PERSPECTIVE: Electrophysiological alterations in human sensory neurons associated with patient-reported neuropathic pain include all three of the functional alterations that logically can promote spontaneous activity. The similarity of distinctively altered spontaneous depolarizations in human DRG neurons and rodent nociceptors suggests that spontaneously active human nociceptors can persistently promote neuropathic pain in patients.
Collapse
Affiliation(s)
- Robert Y North
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Max A Odem
- Department of Microbiology and Molecular Genetics, McGovern Medical School at UTHealth, Houston, Texas
| | - Yan Li
- Department of Anesthesia and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Claudio Esteves Tatsui
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Ryan M Cassidy
- M.D. Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Patrick M Dougherty
- Department of Anesthesia and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, Houston, Texas..
| |
Collapse
|
33
|
Ramasamy K, Shanmugasundaram J, Manoharan R, Subramanian V, Kathirvelu P, Vijayaraghavan R. Anti-neuropathic effect of 7,3'-dihydroxyflavone in paclitaxel induced peripheral neuropathy in mice involving GABA A, K ATP channel and adenosine receptors. Neurochem Int 2022; 159:105388. [PMID: 35809719 DOI: 10.1016/j.neuint.2022.105388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/10/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022]
Abstract
Peripheral neuropathy induced by chemotherapeutic agents is the most common dose-limiting adverse effect observed in patients during and after treatment of malignancies. Many flavones have been reported to ameliorate neuropathy of different origin in experimental animals and their possible mode of action explored. The present study aims to investigate 7,3'-dihydroxyflavone for its anti-neuropathic effect against paclitaxel induced peripheral neuropathy in mice by employing behavioural tests such as mechanical allodynia, cold allodynia and thermal hyperalgesia. The possible involvement of GABAA, KATP channels and adenosine receptors in the anti-neuropathic effect of 7,3'-dihydroxyflavone was also studied by employing suitable interacting drugs. Treatment with 7,3'-dihydroxyflavone (50, 100 or 200 mg/kg, s.c) significantly and dose-dependently reduced the paw withdrawal response score in both mechanical and cold allodynia and also increased the tail flick response time in thermal hyperalgesia due to paclitaxel-induced neuropathy. Pre-treatment with glibenclamide (10 mg/kg, i.p), caffeine (50 mg/kg, i.p) or bicuculline (2 mg/kg, i.p) significantly reversed the anti-neuropathic effect of 7,3'-dihydroxyflavone in behavioral tests. In conclusion, the present investigation identified 7,3'-dihydroxyflavone as a potential candidate with anti-neuropathic effect against paclitaxel induced peripheral neuropathy involving KATP channels, adenosine and GABAA receptors.
Collapse
Affiliation(s)
- Kavitha Ramasamy
- Department of Pharmacology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research, Chennai, 600116, India.
| | - Jaikumar Shanmugasundaram
- Department of Pharmacology, Meenakshi Medical College & Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, 631552, India.
| | - Rajesh Manoharan
- Department of Pharmacology, Sri Muthukumaran Medical College & Research Institute, Chennai, 600069, India.
| | - Viswanathan Subramanian
- Department of Pharmacology, Meenakshi Medical College & Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, 631552, India.
| | - Parimala Kathirvelu
- Department of Pharmacology, Meenakshi Medical College & Research Institute, Meenakshi Academy of Higher Education and Research, Kanchipuram, 631552, India.
| | | |
Collapse
|
34
|
Illias AM, Yu KJ, Hwang SH, Solis J, Zhang H, Velasquez JF, Cata JP, Dougherty PM. Dorsal root ganglion toll-like receptor 4 signaling contributes to oxaliplatin-induced peripheral neuropathy. Pain 2022; 163:923-935. [PMID: 34490849 DOI: 10.1097/j.pain.0000000000002454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/10/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Activation of toll-like receptor 4 (TLR4) in the dorsal root ganglion (DRG) and spinal cord contributes to the generation of paclitaxel-related chemotherapy-induced peripheral neuropathy (CIPN). Generalizability of TLR4 signaling in oxaliplatin-induced CIPN was tested here. Mechanical hypersensitivity developed in male SD rats by day 1 after oxaliplatin treatment, reached maximum intensity by day 14, and persisted through day 35. Western blot revealed an increase in TLR4 expression in the DRG of oxaliplatin at days 1 and 7 after oxaliplatin treatment. Cotreatment of rats with the TLR4 antagonist lipopolysaccharide derived from Rhodobacter sphaeroides ultrapure or with the nonspecific immunosuppressive minocycline with oxaliplatin resulted in significantly attenuated hyperalgesia on day 7 and 14 compared with rats that received oxaliplatin plus saline vehicle. Immunostaining of DRGs revealed an increase in the number of neurons expressing TLR4, its canonical downstream signal molecules myeloid differentiation primary response gene 88 (MyD88) and TIR-domain-containing adapter-inducing interferon-β, at both day 7 and day 14 after oxaliplatin treatment. These increases were blocked by cotreatment with either lipopolysaccharide derived from Rhodobacter sphaeroides or minocycline. Double staining showed the localization of TLR4, MyD88, and TIR-domain-containing adapter-inducing interferon-β in subsets of DRG neurons. Finally, there was no significant difference in oxaliplatin-induced mechanical hypersensitivity between male and female rats when observed for 2 weeks. Furthermore, upregulation of TLR4 was detected in both sexes when tested 14 days after treatment with oxaliplatin. These findings suggest that the activation of TLR4 signaling in DRG neurons is a common mechanism in CIPN induced by multiple cancer chemotherapy agents.
Collapse
Affiliation(s)
- Amina M Illias
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Jie Yu
- Department of Urology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Seon-Hee Hwang
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jacob Solis
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Hongmei Zhang
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Jose F Velasquez
- Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Juan P Cata
- Department of Anesthesiology and Perioperative Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| | - Patrick M Dougherty
- Department of Anesthesiology and Pain Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
35
|
Villalba‐Riquelme E, de la Torre‐Martínez R, Fernández‐Carvajal A, Ferrer‐Montiel A. Paclitaxel in vitro reversibly sensitizes the excitability of IB4(-) and IB4(+) sensory neurons from male and female rats. Br J Pharmacol 2022; 179:3693-3710. [PMID: 35102580 PMCID: PMC9311666 DOI: 10.1111/bph.15809] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/03/2022] [Accepted: 01/23/2022] [Indexed: 11/27/2022] Open
Affiliation(s)
- Eva Villalba‐Riquelme
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE)Universitas Miguel HernándezElcheSpain
| | | | - Asia Fernández‐Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE)Universitas Miguel HernándezElcheSpain
| | - Antonio Ferrer‐Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE)Universitas Miguel HernándezElcheSpain
| |
Collapse
|
36
|
Wang X, Zhang B, Li X, Liu X, Wang S, Xie Y, Pi J, Yang Z, Li J, Jia Q, Zhang Y. Mechanisms Underlying Gastrodin Alleviating Vincristine-Induced Peripheral Neuropathic Pain. Front Pharmacol 2022; 12:744663. [PMID: 34975470 PMCID: PMC8716817 DOI: 10.3389/fphar.2021.744663] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/30/2021] [Indexed: 12/16/2022] Open
Abstract
Gastrodin (GAS) is the main bioactive ingredient of Gastrodia, a famous Chinese herbal medicine widely used as an analgesic, but the underlying analgesic mechanism is still unclear. In this study, we first observed the effects of GAS on the vincristine-induced peripheral neuropathic pain by alleviating the mechanical and thermal hyperalgesia. Further studies showed that GAS could inhibit the current density of NaV1.7 and NaV1.8 channels and accelerate the inactivation process of NaV1.7 and NaV1.8 channel, thereby inhibiting the hyperexcitability of neurons. Additionally, GAS could significantly reduce the over-expression of NaV1.7 and NaV1.8 on DRG neurons from vincristine-treated rats according to the analysis of Western blot and immunofluorescence results. Moreover, based on the molecular docking and molecular dynamic simulation, the binding free energies of the constructed systems were calculated, and the binding sites of GAS on the sodium channels (NaV1.7 and NaV1.8) were preliminarily determined. This study has shown that modulation of NaV1.7 and NaV1.8 sodium channels by GAS contributing to the alleviation of vincristine-induced peripheral neuropathic pain, thus expanding the understanding of complex action of GAS as a neuromodulator.
Collapse
Affiliation(s)
- Xiangyu Wang
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Boxuan Zhang
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Xuedong Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, China.,Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Xingang Liu
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Songsong Wang
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Yuan Xie
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Jialing Pi
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Zhiyuan Yang
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Jincan Li
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Qingzhong Jia
- Departments of Pharmacology, Hebei Medical University, Shijiazhuang, China.,School of Pharmacy, Hebei Medical University, Shijiazhuang, China.,Key Laboratory of Innovative Drug Research and Evaluation of Hebei Province, Shijiazhuang, China.,Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Yang Zhang
- School of Pharmacy, Hebei Medical University, Shijiazhuang, China.,Laboratory of Neural and Vascular Biology of Ministry of Education, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
37
|
Sharma A, Johnson KB, Bie B, Rhoades EE, Sen A, Kida Y, Hockings J, Gatta A, Davenport J, Arcangelini C, Ritzu J, DeVecchio J, Hughen R, Wei M, Thomas Budd G, Lynn Henry N, Eng C, Foss J, Rotroff DM. A Multimodal Approach to Discover Biomarkers for Taxane-Induced Peripheral Neuropathy (TIPN): A Study Protocol. Technol Cancer Res Treat 2022; 21:15330338221127169. [PMID: 36172750 PMCID: PMC9523841 DOI: 10.1177/15330338221127169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction: Taxanes are a class of chemotherapeutics commonly used to treat various solid tumors, including breast and ovarian cancers. Taxane-induced peripheral neuropathy (TIPN) occurs in up to 70% of patients, impacting quality of life both during and after treatment. TIPN typically manifests as tingling and numbness in the hands and feet and can cause irreversible loss of function of peripheral nerves. TIPN can be dose-limiting, potentially impacting clinical outcomes. The mechanisms underlying TIPN are poorly understood. As such, there are limited treatment options and no tools to provide early detection of those who will develop TIPN. Although some patients may have a genetic predisposition, genetic biomarkers have been inconsistent in predicting chemotherapy-induced peripheral neuropathy (CIPN). Moreover, other molecular markers (eg, metabolites, mRNA, miRNA, proteins) may be informative for predicting CIPN, but remain largely unexplored. We anticipate that combinations of multiple biomarkers will be required to consistently predict those who will develop TIPN. Methods: To address this clinical gap of identifying patients at risk of TIPN, we initiated the Genetics and Inflammatory Markers for CIPN (GENIE) study. This longitudinal multicenter observational study uses a novel, multimodal approach to evaluate genomic variation, metabolites, DNA methylation, gene expression, and circulating cytokines/chemokines prior to, during, and after taxane treatment in 400 patients with breast cancer. Molecular and patient reported data will be collected prior to, during, and after taxane therapy. Multi-modal data will be used to develop a set of comprehensive predictive biomarker signatures of TIPN. Conclusion: The goal of this study is to enable early detection of patients at risk of developing TIPN, provide a tool to modify taxane treatment to minimize morbidity from TIPN, and improved patient quality of life. Here we provide a brief review of the current state of research into CIPN and TIPN and introduce the GENIE study design.
Collapse
Affiliation(s)
- Anukriti Sharma
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Ken B. Johnson
- Department of Anesthesiology, University of Utah, UT, USA
| | - Bihua Bie
- Department of Anesthesiology, Cleveland Clinic, OH, USA
| | | | - Alper Sen
- Department of Anesthesiology, University of Utah, UT, USA
| | - Yuri Kida
- Department of Anesthesiology, University of Utah, UT, USA
| | - Jennifer Hockings
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA
- Department of Pharmacy, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Alycia Gatta
- Taussig Cancer Institute, Cleveland Clinic, OH, USA
| | | | | | | | - Jennifer DeVecchio
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA
| | - Ron Hughen
- Department of Anesthesiology, University of Utah, UT, USA
| | - Mei Wei
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - G. Thomas Budd
- Taussig Cancer Institute, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - N. Lynn Henry
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Charis Eng
- Taussig Cancer Institute, Cleveland Clinic, OH, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Joseph Foss
- Department of Anesthesiology, Cleveland Clinic, OH, USA
| | - Daniel M. Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, OH, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
38
|
Saraboon C, Siriphorn A. Effects of foam pad balance exercises on cancer patients undergoing chemotherapy: A randomized control trial. J Bodyw Mov Ther 2021; 28:164-171. [PMID: 34776136 DOI: 10.1016/j.jbmt.2021.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/01/2021] [Accepted: 07/12/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND This study sought to investigate the effects of foam pad balance exercises on balance, physical performance, peripheral neuropathy symptoms, and quality of life in cancer patients undergoing taxane-based chemotherapy. METHODS Thirty cancer patients receiving chemotherapy were randomly divided into 2 groups (n = 15/group): control group (CG) and balance exercise group (BG). The BG were asked to perform foam pad balance exercises 60 min/day, twice/week for 6 weeks, along with conventional therapy. The CG only received conventional therapy. The Fullerton Advanced Balance (FAB) Score, Short Physical Performance Battery (SPPB), Michigan Diabetic Neuropathy Score (MDNS), and Functional Assessment of Cancer Therapy-Taxane (FACT-Taxane) were used to assess balance, physical performance, peripheral neuropathy symptoms, and quality of life, respectively, at baseline and after 4 and 6 weeks of treatment. RESULTS At 4 and/or 6 weeks, the CG showed a decline in FAB and SPPB Scores, while the BG maintained their baseline levels. There were significant differences in the FAB Scores between the groups at the 4th and 6th week (p = 0.04 and p < 0.01, respectively) and significant differences in SPPB Scores at only the 6th week (p = 0.03). MDNS showed no significant changes between or within groups. For FACT-Taxane between groups, the CG and BG showed significant decreases (p < 0.01) and increases (p < 0.01), respectively, at 6th week. CONCLUSIONS Foam pad balance exercises during chemotherapy can be used to alleviate declining balance and enhance physical performance and quality of life of cancer patients.
Collapse
Affiliation(s)
- Chanatsupang Saraboon
- Human Movement Performance Enhancement Research Unit, Department of Physical Therapy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Akkradate Siriphorn
- Human Movement Performance Enhancement Research Unit, Department of Physical Therapy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
39
|
Considerations for a Reliable In Vitro Model of Chemotherapy-Induced Peripheral Neuropathy. TOXICS 2021; 9:toxics9110300. [PMID: 34822690 PMCID: PMC8620674 DOI: 10.3390/toxics9110300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/13/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is widely recognized as a potentially severe toxicity that often leads to dose reduction or discontinuation of cancer treatment. Symptoms may persist despite discontinuation of chemotherapy and quality of life can be severely compromised. The clinical symptoms of CIPN, and the cellular and molecular targets involved in CIPN, are just as diverse as the wide variety of anticancer agents that cause peripheral neurotoxicity. There is an urgent need for extensive molecular and functional investigations aimed at understanding the mechanisms of CIPN. Furthermore, a reliable human cell culture system that recapitulates the diversity of neuronal modalities found in vivo and the pathophysiological changes that underlie CIPN would serve to advance the understanding of the pathogenesis of CIPN. The demonstration of experimental reproducibility in a human peripheral neuronal cell system will increase confidence that such an in vitro model is clinically useful, ultimately resulting in deeper exploration for the prevention and treatment of CIPN. Herein, we review current in vitro models with a focus on key characteristics and attributes desirable for an ideal human cell culture model relevant for CIPN investigations.
Collapse
|
40
|
Cai S, Moutal A, Yu J, Chew LA, Isensee J, Chawla R, Gomez K, Luo S, Zhou Y, Chefdeville A, Madura C, Perez-Miller S, Bellampalli SS, Dorame A, Scott DD, François-Moutal L, Shan Z, Woodward T, Gokhale V, Hohmann AG, Vanderah TW, Patek M, Khanna M, Hucho T, Khanna R. Selective targeting of NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces pain in rodents. Sci Transl Med 2021; 13:eabh1314. [PMID: 34757807 PMCID: PMC11729770 DOI: 10.1126/scitranslmed.abh1314] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The voltage-gated sodium NaV1.7 channel, critical for sensing pain, has been actively targeted by drug developers; however, there are currently no effective and safe therapies targeting NaV1.7. Here, we tested whether a different approach, indirect NaV1.7 regulation, could have antinociceptive effects in preclinical models. We found that preventing addition of small ubiquitin-like modifier (SUMO) on the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 functions and had antinociceptive effects in rodents. In silico targeting of the SUMOylation site in CRMP2 (Lys374) identified >200 hits, of which compound 194 exhibited selective in vitro and ex vivo NaV1.7 engagement. Orally administered 194 was not only antinociceptive in preclinical models of acute and chronic pain but also demonstrated synergy alongside other analgesics—without eliciting addiction, rewarding properties, or neurotoxicity. Analgesia conferred by 194 was opioid receptor dependent. Our results demonstrate that 194 is a first-in-class protein-protein inhibitor that capitalizes on CRMP2-NaV1.7 regulation to deliver safe analgesia in rodents.
Collapse
Affiliation(s)
- Song Cai
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Aubin Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Jie Yu
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Lindsey A. Chew
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, University Cologne, Joseph-Stelzmann-Str 9, Cologne D-50931, Germany
| | - Reena Chawla
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
| | - Kimberly Gomez
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Shizhen Luo
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Yuan Zhou
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Cynthia Madura
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Samantha Perez-Miller
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Shreya Sai Bellampalli
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Angie Dorame
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - David D. Scott
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Liberty François-Moutal
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Zhiming Shan
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Taylor Woodward
- Department of Psychological and Brain Sciences, Program in Neuroscience and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405-2204, USA
| | - Vijay Gokhale
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
- College of Pharmacy, University of Arizona, 1703 East Mabel Street, Tucson, AZ 85721, USA
| | - Andrea G. Hohmann
- Department of Psychological and Brain Sciences, Program in Neuroscience and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47405-2204, USA
| | - Todd W. Vanderah
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ 85724, USA
| | - Marcel Patek
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
- Bright Rock Path LLC, Tucson, AZ 85724, USA
| | - May Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, USA
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Translational Pain Research, University Hospital of Cologne, University Cologne, Joseph-Stelzmann-Str 9, Cologne D-50931, Germany
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
- BIO5 Institute, 1657 East Helen Street, Tucson, AZ 85721, USA
- Center for Innovation in Brain Sciences, University of Arizona, Tucson, AZ 85721, USA
- Comprehensive Pain and Addiction Center, The University of Arizona, Tucson, AZ 85724, USA
- Regulonix LLC, 1555 E. Entrada Segunda, Tucson, AZ 85718, USA
| |
Collapse
|
41
|
Wang GJ, Zhang X, Huang LD, Xiao Y. Involvement of the Sodium Channel Nav1.7 in Paclitaxel-induced Peripheral Neuropathy through ERK1/2 Signaling in Rats. Curr Neurovasc Res 2021; 17:267-274. [PMID: 32407275 DOI: 10.2174/1567202617666200514113441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Paclitaxel treatment is a major cause of chemotherapy-induced peripheral neuropathy. The sodium channel Nav1.7 plays a critical role in pain perception. However, whether Nav1.7 in the dorsal root ganglion (DRG) is involved in paclitaxel-induced peripheral neuropathy remains unclear. Thus, our study aimed to evaluate whether Nav1.7 participates in the pathogenesis of paclitaxel-induced neuropathy. METHODS Paclitaxel-induced peripheral neuropathy was generated by intraperitoneal administration of paclitaxel on four alternate days. RESULTS The results showed that DRG mRNA and protein expression levels of Nav1.7 were upregulated between days 7 and 21 after the administration of paclitaxel. Besides, paclitaxel upregulated extracellular signal-regulated kinase (ERK1/2) phosphorylation in DRG. Intrathecal injection of U0126 (a MEK inhibitor) blocking ERK1/2 phosphorylation blunted up-regulation of Nav1.7 in the DRG and correspondingly attenuated hyperalgesia. CONCLUSION These results indicated that the sodium channel Nav1.7 in the DRG exerted an important function in paclitaxel-induced neuropathy, which was associated with ERK phosphorylation in neurons.
Collapse
Affiliation(s)
- Guang Jie Wang
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xi Zhang
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Li-De Huang
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yun Xiao
- Department of Anesthesiology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| |
Collapse
|
42
|
Merheb D, Dib G, Zerdan MB, Nakib CE, Alame S, Assi HI. Drug-Induced Peripheral Neuropathy: Diagnosis and Management. Curr Cancer Drug Targets 2021; 22:49-76. [PMID: 34288840 DOI: 10.2174/1568009621666210720142542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 01/09/2023]
Abstract
Peripheral neuropathy comes in all shapes and forms and is a disorder which is found in the peripheral nervous system. It can have an acute or chronic onset depending on the multitude of pathophysiologic mechanisms involving different parts of nerve fibers. A systematic approach is highly beneficial when it comes to cost-effective diagnosis. More than 30 causes of peripheral neuropathy exist ranging from systemic and auto-immune diseases, vitamin deficiencies, viral infections, diabetes, etc. One of the major causes of peripheral neuropathy is drug induced disease, which can be split into peripheral neuropathy caused by chemotherapy or by other medications. This review deals with the latest causes of drug induced peripheral neuropathy, the population involved, the findings on physical examination and various workups needed and how to manage each case.
Collapse
Affiliation(s)
- Diala Merheb
- Department of Internal Medicine, Saint George Hospital University Medical Center, Beirut, Lebanon
| | - Georgette Dib
- Department of Internal Medicine, Division of Neurology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maroun Bou Zerdan
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Clara El Nakib
- Department of Internal Medicine, Division of Hematology and Oncology, Naef K. Basile Cancer Institute, American University of Beirut Medical Center, Beirut, Lebanon
| | - Saada Alame
- Department of Pediatrics, Clemenceau Medical Center, Faculty of Medical Sciences, Lebanese University, Beirut,, Lebanon
| | - Hazem I Assi
- Department of Internal Medicine Naef K. Basile Cancer Institute American University of Beirut Medical Center Riad El Solh 1107 2020 Beirut, Lebanon
| |
Collapse
|
43
|
Chiang JCB, Goldstein D, Park SB, Krishnan AV, Markoulli M. Corneal nerve changes following treatment with neurotoxic anticancer drugs. Ocul Surf 2021; 21:221-237. [PMID: 34144206 DOI: 10.1016/j.jtos.2021.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Survival rates of cancer has improved with the development of anticancer drugs including systemic chemotherapeutic agents. However, long-lasting side effects could impact treated patients. Neurotoxic anticancer drugs are specific agents which cause chemotherapy-induced peripheral neuropathy (CIPN), a debilitating condition that severely deteriorates quality of life of cancer patients and survivors. The ocular surface is also prone to neurotoxicity but investigation into the effects of neurotoxic chemotherapy on the ocular surface has been more limited compared to other systemic etiologies such as diabetes. There is also no standardized protocol for CIPN diagnosis with an absence of a reliable, objective method of observing nerve damage structurally. As the cornea is the most densely innervated region of the body, researchers have started to focus on corneal neuropathic changes that are associated with neurotoxic chemotherapy treatment. In-vivo corneal confocal microscopy enables rapid and objective structural imaging of ocular surface microscopic structures such as corneal nerves, while esthesiometers provide means of functional assessment by examining corneal sensitivity. The current article explores the current guidelines and gaps in our knowledge of CIPN diagnosis and the potential role of in-vivo corneal confocal microscopy as a diagnostic or prognostic tool. Corneal neuropathic changes with neurotoxic anticancer drugs from animal research progressing through to human clinical studies are also discussed, with a focus on how these data inform our understanding of CIPN.
Collapse
Affiliation(s)
- Jeremy Chung Bo Chiang
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia.
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia; Department of Medical Oncology, Prince of Wales Hospital, Sydney, Australia
| | - Susanna B Park
- Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Arun V Krishnan
- Prince of Wales Clinical School, University of New South Wales, Sydney, Australia
| | - Maria Markoulli
- School of Optometry & Vision Science, Faculty of Medicine and Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
44
|
Omran M, Belcher EK, Mohile NA, Kesler SR, Janelsins MC, Hohmann AG, Kleckner IR. Review of the Role of the Brain in Chemotherapy-Induced Peripheral Neuropathy. Front Mol Biosci 2021; 8:693133. [PMID: 34179101 PMCID: PMC8226121 DOI: 10.3389/fmolb.2021.693133] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common, debilitating, and dose-limiting side effect of many chemotherapy regimens yet has limited treatments due to incomplete knowledge of its pathophysiology. Research on the pathophysiology of CIPN has focused on peripheral nerves because CIPN symptoms are felt in the hands and feet. However, better understanding the role of the brain in CIPN may accelerate understanding, diagnosing, and treating CIPN. The goals of this review are to (1) investigate the role of the brain in CIPN, and (2) use this knowledge to inform future research and treatment of CIPN. We identified 16 papers using brain interventions in animal models of CIPN and five papers using brain imaging in humans or monkeys with CIPN. These studies suggest that CIPN is partly caused by (1) brain hyperactivity, (2) reduced GABAergic inhibition, (3) neuroinflammation, and (4) overactivation of GPCR/MAPK pathways. These four features were observed in several brain regions including the thalamus, periaqueductal gray, anterior cingulate cortex, somatosensory cortex, and insula. We discuss how to leverage this knowledge for future preclinical research, clinical research, and brain-based treatments for CIPN.
Collapse
Affiliation(s)
- Maryam Omran
- University of Rochester Medical Center, Rochester, NY, United States
| | | | - Nimish A Mohile
- University of Rochester Medical Center, Rochester, NY, United States
| | - Shelli R Kesler
- The University of Texas at Austin, Austin, TX, United States
| | | | - Andrea G Hohmann
- Psychological and Brain Sciences, Program in Neuroscience and Gill Center for Biomolecular Science, Indiana University Bloomington, Bloomington, IN, United States
| | - Ian R Kleckner
- University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
45
|
Zhao YX, Yu XC, Gao JH, Yao MJ, Zhu B. Acupuncture for Paclitaxel-Induced Peripheral Neuropathy: A Review of Clinical and Basic Studies. J Pain Res 2021; 14:993-1005. [PMID: 33883931 PMCID: PMC8055287 DOI: 10.2147/jpr.s296150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/17/2021] [Indexed: 11/23/2022] Open
Abstract
Paclitaxel-induced peripheral neuropathy (PIPN) is a common and intractable side effect of the conventional chemotherapeutic agent paclitaxel. Acupuncture has been reported as an effective alternative therapy in treatment of PIPN in both basic studies and clinical trials. However, there is a lack of comprehensive surveys to summarize the action of acupuncture in management of PIPN. In this review, we briefly demonstrate the basic pathology of PIPN, which includes the activation of ion channels, mitochondrial dysfunction, disruption of axonal transport and also neuro-inflammatory involvement. Meanwhile, we review both the clinical and basic studies as an emphasis to give a general overview of the therapeutic effect of acupuncture against PIPN. Finally, we summarize the current known mechanisms underlying the action of acupuncture against PIPN mainly at peripheral and spinal levels, which include various neurotransmitters, multiple receptors, different types of enzymes and molecules. In conclusion, acupuncture could be considered as a potential alternative therapy in treatment of PIPN, and further clinical and experimental studies are called for in the future.
Collapse
Affiliation(s)
- Yu-Xue Zhao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Xiao-Chun Yu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jun-Hong Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Ming-Jiang Yao
- Institute of Basic Medical Sciences, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, People's Republic of China.,Key Laboratory of Pharmacology of Chinese Materia Medica, Beijing, 100091, People's Republic of China
| | - Bing Zhu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| |
Collapse
|
46
|
Cho C, Deol HK, Martin LJ. Bridging the Translational Divide in Pain Research: Biological, Psychological and Social Considerations. Front Pharmacol 2021; 12:603186. [PMID: 33935700 PMCID: PMC8082136 DOI: 10.3389/fphar.2021.603186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Abstract
A gap exists between translating basic science research into effective pain therapies in humans. While preclinical pain research has primarily used animal models to understand biological processes, a lesser focus has been toward using animal models to fully consider other components of the pain experience, such as psychological and social influences. Herein, we provide an overview of translational studies within pain research by breaking them down into purely biological, psychological and social influences using a framework derived from the biopsychosocial model. We draw from a wide landscape of studies to illustrate that the pain experience is highly intricate, and every attempt must be made to address its multiple components and interactors to aid in fully understanding its complexity. We highlight our work where we have developed animal models to assess the cognitive and social effects on pain modulation while conducting parallel experiments in people that provide proof-of-importance for human pain modulation. In some instances, human pain research has sparked the development of novel animal models, with these animal models used to better understand the complexity of phenomena considered to be uniquely human such as placebo responses and empathy.
Collapse
Affiliation(s)
- Chulmin Cho
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Harashdeep K Deol
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| |
Collapse
|
47
|
Paniagua N, Sánchez-Robles EM, Bagues A, Martín-Fontelles MI, Goicoechea C, Girón R. Behavior and electrophysiology studies of the peripheral neuropathy induced by individual and co-administration of paclitaxel and oxaliplatin in rat. Life Sci 2021; 277:119397. [PMID: 33794249 DOI: 10.1016/j.lfs.2021.119397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/17/2021] [Accepted: 03/21/2021] [Indexed: 11/26/2022]
Abstract
AIMS Antitumor agents, as taxanes and platinum compounds, induce peripheral neuropathies which can hamper their use for cancer treatment. The study of chemotherapy-induced neuropathies in humans is difficult because of ethical reasons, differences among administration protocols and intrinsic characteristics of patients. The aim of the present study is to compare the neuropathic signs induced by individual or combined administration of paclitaxel and oxaliplatin. MAIN METHODS Oxaliplatin and paclitaxel were administered individually and combined to induce peripheral neuropathy in rats, sensory neuropathic signs were assessed in the hind limbs and orofacial area. The in vitro skin-saphenous nerve preparation was used to record the axonal activity of Aδ sensory neurons. KEY FINDINGS Animals treated with the combination developed mechanical allodynia in the paws and muscular hyperalgesia in the orofacial area, which was similar to that in animals treated with monotherapy, the latter also developed cold allodynia in the paws. Aδ-fibers of the rats treated with the combination were hyperexcited and presented hypersensitivity to pressure stimulation of the innervated skin, also similar to that recorded in the fibers of the animals treated with monotherapy. SIGNIFICANCE Our work objectively demonstrates that the combination of a platinum compound with a taxane does not worsen the development of sensorial neuropathies in rats, which is an interesting data to take into account when the combination of antitumor drugs is necessary. Co-administration of antitumor drugs is more effective in cancer treatment without increasing the risk of the disabling neuropathic side effects.
Collapse
Affiliation(s)
- N Paniagua
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - E M Sánchez-Robles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - A Bagues
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain.
| | - M I Martín-Fontelles
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - C Goicoechea
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| | - R Girón
- Área de Farmacología, Nutrición y Bromatología, Dpto. C.C. Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Unidad Asociada CSIC-IQM, High Performance Research Group in Experimental Pharmacology (PHARMAKOM), Alcorcón, Spain
| |
Collapse
|
48
|
Akin EJ, Alsaloum M, Higerd GP, Liu S, Zhao P, Dib-Hajj FB, Waxman SG, Dib-Hajj SD. Paclitaxel increases axonal localization and vesicular trafficking of Nav1.7. Brain 2021; 144:1727-1737. [PMID: 33734317 PMCID: PMC8320304 DOI: 10.1093/brain/awab113] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/09/2021] [Accepted: 03/04/2021] [Indexed: 01/15/2023] Open
Abstract
The microtubule-stabilizing chemotherapy drug paclitaxel (PTX) causes dose-limiting chemotherapy-induced peripheral neuropathy (CIPN), which is often accompanied by pain. Among the multifaceted effects of PTX is an increased expression of sodium channel Nav1.7 in rat and human sensory neurons, enhancing their excitability. However, the mechanisms underlying this increased Nav1.7 expression have not been explored, and the effects of PTX treatment on the dynamics of trafficking and localization of Nav1.7 channels in sensory axons have not been possible to investigate to date. In this study we used a recently developed live imaging approach that allows visualization of Nav1.7 surface channels and long-distance axonal vesicular transport in sensory neurons to fill this basic knowledge gap. We demonstrate concentration and time-dependent effects of PTX on vesicular trafficking and membrane localization of Nav1.7 in real-time in sensory axons. Low concentrations of PTX increase surface channel expression and vesicular flux (number of vesicles per axon). By contrast, treatment with a higher concentration of PTX decreases vesicular flux. Interestingly, vesicular velocity is increased for both concentrations of PTX. Treatment with PTX increased levels of endogenous Nav1.7 mRNA and current density in dorsal root ganglion neurons. However, the current produced by transfection of dorsal root ganglion neurons with Halo-tag Nav1.7 was not increased after exposure to PTX. Taken together, this suggests that the increased trafficking and surface localization of Halo-Nav1.7 that we observed by live imaging in transfected dorsal root ganglion neurons after treatment with PTX might be independent of an increased pool of Nav1.7 channels. After exposure to inflammatory mediators to mimic the inflammatory condition seen during chemotherapy, both Nav1.7 surface levels and vesicular transport are increased for both low and high concentrations of PTX. Overall, our results show that PTX treatment increases levels of functional endogenous Nav1.7 channels in dorsal root ganglion neurons and enhances trafficking and surface distribution of Nav1.7 in sensory axons, with outcomes that depend on the presence of an inflammatory milieu, providing a mechanistic explanation for increased excitability of primary afferents and pain in CIPN.
Collapse
Affiliation(s)
- Elizabeth J Akin
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Matthew Alsaloum
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.,MD/PhD Program, Yale University, New Haven, CT 06510, USA
| | - Grant P Higerd
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA.,MD/PhD Program, Yale University, New Haven, CT 06510, USA
| | - Shujun Liu
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Peng Zhao
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Fadia B Dib-Hajj
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Stephen G Waxman
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| | - Sulayman D Dib-Hajj
- Department of Neurology, Yale University, New Haven, CT 06510, USA.,Center for Neuroscience and Regeneration Research, Yale University, New Haven, CT 06510, USA.,Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA
| |
Collapse
|
49
|
Bonomo R, Cavaletti G. Clinical and biochemical markers in CIPN: A reappraisal. Rev Neurol (Paris) 2021; 177:890-907. [PMID: 33648782 DOI: 10.1016/j.neurol.2020.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/11/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
The increased survival of cancer patients has raised growing public health concern on associated long-term consequences of antineoplastic treatment. Chemotherapy-induced peripheral neuropathy (CIPN) is a primarily sensory polyneuropathy, which may be accompanied by pain, autonomic disturbances, and motor deficit. About 70% of treated cancer patients might develop CIPN during or after the completion of chemotherapy, and in most of them such complication persists after six months from the treatment. The definition of the potential risk of development and resolution of CIPN according to a clinical and biochemical profile would be certainly fundamental to tailor chemotherapy regimen and dosage on individual susceptibility. In recent years, patient-reported and clinician-related tools along with quality of life instruments have been featured as primary outcomes in clinical setting and randomized trials. New studies on metabolomics markers are further pursuing accurate and easily accessible indicators of peripheral nerve damage. The aim of this review is to outline the strengths and pitfalls of current knowledge on CIPN, and to provide a framework for future potential developments of standardized protocols involving clinical and biochemical markers for CIPN assessment and monitoring.
Collapse
Affiliation(s)
- R Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - G Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
50
|
Laforgia M, Laface C, Calabrò C, Ferraiuolo S, Ungaro V, Tricarico D, Gadaleta CD, Nardulli P, Ranieri G. Peripheral Neuropathy under Oncologic Therapies: A Literature Review on Pathogenetic Mechanisms. Int J Mol Sci 2021; 22:1980. [PMID: 33671327 PMCID: PMC7922628 DOI: 10.3390/ijms22041980] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
Peripheral neurologic complications are frequent adverse events during oncologic treatments and often lead to dose reduction, administration delays with time elongation of the therapeutic plan and, not least, worsening of patients' quality of life. Experience skills are required to recognize symptoms and clinical evidences and the collaboration between different health professionals, in particular oncologists and hospital pharmacists, grants a correct management of this undesirable occurrence. Some classes of drugs (platinates, vinca alkaloids, taxanes) typically develop this kind of side effect, but the genesis of chemotherapy-induced peripheral neuropathy is not linked to a single mechanism. This paper aims from one side at summarizing and explaining all the scattering mechanisms of chemotherapy-induced peripheral neuropathy through a detailed literature revision, on the other side at finding new approaches to possible treatments, in order to facilitate the collaboration between oncologists, hematologists and hospital pharmacists.
Collapse
Affiliation(s)
- Mariarita Laforgia
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Carmelo Laface
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco65, 70124 Bari, Italy; (C.L.); (C.D.G.)
- Department of Biomedical Sciences and Human Oncology, University of Bari ‘Aldo Moro’, 70121 Bari, Italy
| | - Concetta Calabrò
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Simona Ferraiuolo
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Valentina Ungaro
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Domenico Tricarico
- Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari, Via Orabona 4, 70125 Bari, Italy;
| | - Cosmo Damiano Gadaleta
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco65, 70124 Bari, Italy; (C.L.); (C.D.G.)
| | - Patrizia Nardulli
- Pharmacy Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy; (M.L.); (C.C.); (S.F.); (V.U.); (P.N.)
| | - Girolamo Ranieri
- Interventional and Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco65, 70124 Bari, Italy; (C.L.); (C.D.G.)
| |
Collapse
|