1
|
Birnhuber A, Biasin V, Jain PP, Kwiatkowski G, Boiarina E, Wilhelm J, Ahrens K, Nagaraj C, Olschewski A, Witzenrath M, Chlopicki S, Marsh LM, Tabeling C, Kwapiszewska G. Pulmonary vascular remodeling in Fra-2 transgenic mice is driven by type 2 inflammation and accompanied by pulmonary vascular hyperresponsiveness. Am J Physiol Lung Cell Mol Physiol 2025; 328:L413-L429. [PMID: 39903186 DOI: 10.1152/ajplung.00274.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/04/2024] [Accepted: 01/17/2025] [Indexed: 02/06/2025] Open
Abstract
Lung vessel remodeling leads to increased pulmonary vascular resistance, causing pulmonary arterial hypertension (PAH), and consequently right ventricular hypertrophy and failure. In patients suffering from systemic sclerosis (SSc), PAH can occur and is a life-threatening complication. Dysregulation of immune processes plays a crucial role in pulmonary vascular remodeling, as has previously been shown in Fos-related antigen-2 (Fra-2) transgenic (TG) mice, a model of SSc-PAH. Here, we investigate whether vascular remodeling in the Fra-2 TG model is driven by type 2 inflammation and is associated with vascular hyperresponsiveness, an important feature of PAH pathobiology. Basal pulmonary arterial pressure and pulmonary vascular responsiveness to hypoxic ventilation and serotonin were increased in isolated, perfused, and ventilated lungs of Fra-2 TG mice compared with wild-type (WT) littermates. Similarly, contractile responses of isolated intrapulmonary arteries were elevated in Fra-2 TG mice. We also observed increased expression of contractile genes in Fra-2 overexpressing human pulmonary arterial smooth muscle cells (PASMCs) with elevated intracellular calcium levels after interleukin (IL)-13 stimulation. These findings were corroborated by transcriptomic data highlighting dysregulation of vascular smooth muscle cell contraction and type 2 inflammation in Fra-2 TG mice. In vivo, type 2-specific anti-inflammatory treatment with IL-13 neutralizing antibodies improved vascular remodeling in Fra-2 TG mice, similar to corticosteroid treatment with budesonide. Our results underscore the importance of type 2 inflammation and its potential therapeutic value in PAH-associated pulmonary vascular remodeling and hyperresponsiveness in SSc-PAH.NEW & NOTEWORTHY In patients suffering from systemic sclerosis (SSc), pulmonary arterial hypertension (PAH) is a life-threatening complication linked to immune dysregulation. Preclinical analyses in Fos-related antigen-2 (Fra-2) transgenic (TG) mice, a model of SSc-PAH, identify type 2 inflammation as a key driver of vascular remodeling. Anti-inflammatory treatment targeting type 2 inflammation via IL-13 neutralizing antibodies improved pulmonary vascular remodeling. Thus, type 2-specific anti-inflammatory treatment may be a promising therapeutic approach in SSc-PAH.
Collapse
MESH Headings
- Animals
- Mice, Transgenic
- Vascular Remodeling
- Fos-Related Antigen-2/genetics
- Fos-Related Antigen-2/metabolism
- Mice
- Humans
- Pulmonary Artery/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Inflammation/pathology
- Inflammation/metabolism
- Hypertension, Pulmonary/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Disease Models, Animal
- Lung/pathology
- Lung/blood supply
- Lung/metabolism
- Scleroderma, Systemic/complications
- Mice, Inbred C57BL
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Male
Collapse
Affiliation(s)
- Anna Birnhuber
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
- Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
| | - Valentina Biasin
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
- Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
- Division of Physiology and Pathophysiology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Pritesh P Jain
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
| | - Ekaterina Boiarina
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jochen Wilhelm
- Institute for Lung Health, Cardio-Pulmonary Institute, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katharina Ahrens
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
- Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Graz, Austria
| | - Martin Witzenrath
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Berlin, Germany
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Krakow, Poland
- Faculty of Medicine, Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland
| | - Leigh M Marsh
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
- Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
| | - Christoph Tabeling
- Department of Infectious Diseases, Respiratory Medicine and Critical Care, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research Graz, Graz, Austria
- Otto Loewi Research Center, Lung Research Cluster, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Cardio-Pulmonary Institute, German Center for Lung Research, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
2
|
Song Y, Jia H, Ma Q, Zhang L, Lai X, Wang Y. The causes of pulmonary hypertension and the benefits of aerobic exercise for pulmonary hypertension from an integrated perspective. Front Physiol 2024; 15:1461519. [PMID: 39483752 PMCID: PMC11525220 DOI: 10.3389/fphys.2024.1461519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/26/2024] [Indexed: 11/03/2024] Open
Abstract
Pulmonary hypertension is a progressive disease of the pulmonary arteries that begins with increased pulmonary artery pressure, driven by progressive remodeling of the small pulmonary arteries, and ultimately leads to right heart failure and death. Vascular remodeling is the main pathological feature of pulmonary hypertension, but treatments for pulmonary hypertension are lacking. Determining the process of vascular proliferation and dysfunction may be a way to decipher the pathogenesis of pulmonary hypertension. In this review, we summarize the important pathways of pulmonary hypertension pathogenesis. We show how these processes are integrated and emphasize the benign role of aerobic exercise, which, as an adjunctive therapy, may be able to modify vascular remodeling in pulmonary hypertension.
Collapse
Affiliation(s)
- Yinping Song
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Hao Jia
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| | - Qing Ma
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Lulu Zhang
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Xiangyi Lai
- School of Physical Education, Xi’an Fanyi University, Xi’an, China
| | - Youhua Wang
- School of Physical Education, Shaanxi Normal University, Xi’an, China
| |
Collapse
|
3
|
Corboz MR, Nguyen TL, Stautberg A, Cipolla D, Perkins WR, Chapman RW. Current Overview of the Biology and Pharmacology in Sugen/Hypoxia-Induced Pulmonary Hypertension in Rats. J Aerosol Med Pulm Drug Deliv 2024; 37:241-283. [PMID: 39388691 PMCID: PMC11502635 DOI: 10.1089/jamp.2024.0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/03/2024] [Indexed: 10/12/2024] Open
Abstract
The Sugen 5416/hypoxia (Su/Hx) rat model of pulmonary arterial hypertension (PAH) demonstrates most of the distinguishing features of PAH in humans, including increased wall thickness and obstruction of the small pulmonary arteries along with plexiform lesion formation. Recently, significant advancement has been made describing the epidemiology, genomics, biochemistry, physiology, and pharmacology in Su/Hx challenge in rats. For example, there are differences in the overall reactivity to Su/Hx challenge in different rat strains and only female rats respond to estrogen treatments. These conditions are also encountered in human subjects with PAH. Also, there is a good translation in both the biochemical and metabolic pathways in the pulmonary vasculature and right heart between Su/Hx rats and humans, particularly during the transition from the adaptive to the nonadaptive phase of right heart failure. Noninvasive techniques such as echocardiography and magnetic resonance imaging have recently been used to evaluate the progression of the pulmonary vascular and cardiac hemodynamics, which are important parameters to monitor the efficacy of drug treatment over time. From a pharmacological perspective, most of the compounds approved clinically for the treatment of PAH are efficacious in Su/Hx rats. Several compounds that show efficacy in Su/Hx rats have advanced into phase II/phase III studies in humans with positive results. Results from these drug trials, if successful, will provide additional treatment options for patients with PAH and will also further validate the excellent translation that currently exists between Su/Hx rats and the human PAH condition.
Collapse
|
4
|
Nasr VG, DiNardo JA. Perioperative considerations for non-cardiac procedures in patients with congenital heart disease: A practical overview. Semin Pediatr Surg 2024; 33:151461. [PMID: 39427368 DOI: 10.1016/j.sempedsurg.2024.151461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Providing thorough care for children with congenital heart disease (CHD) undergoing non-cardiac surgery requires a strong understanding of common heart defects and the procedures used to treat them. To care for these patients, multidisciplinary teams must consider the severity of the underlying cardiac disease, comorbid conditions, and preoperative severity of illness. The American Heart Association's Scientific Statement on Perioperative Considerations for Pediatric Patients with Congenital Heart Disease Presenting for Noncardiac Procedures offers valuable guidance.
Collapse
Affiliation(s)
- Viviane G Nasr
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - James A DiNardo
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Du D, Qiu JY, Zhao J, Yuan YD. Causal relationship between immune cells and pulmonary arterial hypertension: Mendelian randomization analysis. Medicine (Baltimore) 2024; 103:e39670. [PMID: 39287266 PMCID: PMC11404942 DOI: 10.1097/md.0000000000039670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Immunity and inflammation in pulmonary arterial hypertension (PAH) has gained more attention. This research aimed to investigate the potential causal connections between 731 immunophenotypes and the likelihood of developing PAH. We obtained immunocyte data and PAH from openly accessible database and used Mendelian randomization (MR) analysis to evaluate the causal association between each immunophenotype and PAH. Various statistical methods were employed: the MR-Egger, weighted median, inverse variance weighted (IVW), simple mode, and weighted mode. In the study of 731 different types of immune cells, it was found that 9 showed a potential positive connection (IVW P < .05) with increased risk of PAH, while 19 had a possible negative link to decreased risk. Following false discovery rate (FDR) adjustment, the analysis using the IVW method demonstrated that 5 immune phenotypes were significantly associated with PAH (FDR < 0.05, OR > 1). Conversely, there was a negative correlation between PAH and 4 immune cell types (FDR < 0.05, OR < 1). Sensitivity analyses suggested the robustness of all MR findings. This research, for the first time, has revealed indicative evidence of a causal link between circulating immune cell phenotypes and PAH through genetic mechanisms. These results underscore the importance of immune cells in the pathogenesis of PAH.
Collapse
Affiliation(s)
- Dan Du
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jia-Yong Qiu
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Zhao
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya-Dong Yuan
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Luo T, Wu H, Zhu W, Zhang L, Huang Y, Yang X. Emerging therapies: Potential roles of SGLT2 inhibitors in the management of pulmonary hypertension. Respir Med 2024; 227:107631. [PMID: 38631526 DOI: 10.1016/j.rmed.2024.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024]
Abstract
Pulmonary hypertension (PH) is a pathophysiological disorder that may involve multiple clinical conditions and may be associated with a variety of cardiovascular and respiratory diseases. Pulmonary hypertension due to left heart disease (PH-LHD) currently lacks targeted therapies, while Pulmonary arterial hypertension (PAH), despite approved treatments, carries considerable residual risk. Metabolic dysfunction has been linked to the pathogenesis and prognosis of PH through various studies, with emerging metabolic agents offering a potential avenue for improving patient outcomes. Sodium-glucose cotransporter 2 inhibitor (SGLT-2i), a novel hypoglycemic agent, could ameliorate metabolic dysfunction and exert cardioprotective effects. Recent small-scale studies suggest SGLT-2i treatment may improve pulmonary artery pressure in patients with PH-LHD, and the PAH animal model shows that SGLT-2i can reduce pulmonary vascular remodeling and prevent progression in PAH, suggesting potential benefits for patients with PH-LHD and perhaps PAH. This review aims to succinctly review PH's pathophysiology, and the connection between metabolic dysfunction and PH, and investigate the prospective mechanisms of action of SGLT-2i in PH-LHD and PAH management.
Collapse
Affiliation(s)
- Taimin Luo
- Department of Pharmacy, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, 610000, China
| | - Hui Wu
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Wanlong Zhu
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; Department of Pharmacy, Panzhihua Second People's Hospital, Panzhihua, 617000, China
| | - Liaoyun Zhang
- Department of Pharmacy, Sichuan Provincial Maternity and Child Health Care Hospital & Women's and Children's Hospital, Chengdu, 610000, China
| | - Yilan Huang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| | - Xuping Yang
- Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, China; School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
7
|
Braga CL, Santos RT, da Silva CM, de Novaes Rocha N, Felix NS, Medeiros M, Melo MM, Silva JD, Teixeira DE, Neves CC, Rocco PRM, Cruz FF, Silva PL. Therapeutic effects of hypoxia-preconditioned bone marrow-derived mesenchymal stromal cells and their extracellular vesicles in experimental pulmonary arterial hypertension. Life Sci 2023; 329:121988. [PMID: 37517581 DOI: 10.1016/j.lfs.2023.121988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
AIMS To evaluate BM-MSCs and their extracellular vesicles (EVs) preconditioned with hypoxia or normoxia in experimental pulmonary arterial hypertension (PAH). MAIN METHODS BM-MSCs were isolated and cultured under normoxia (MSC-N, 21%O2) or hypoxia (MSC-H, 1%O2) for 48 h. EVs were then isolated from MSCs under normoxia (EV-N) or hypoxia (EV-H). PAH was induced in male Wistar rats (n = 35) with monocrotaline (60 mg/kg); control animals (CTRL, n = 7) were treated with saline. On day 14, PAH animals received MSCs or EVs under normoxia or hypoxia, intravenously (n = 7/group). On day 28, right ventricular systolic pressure (RVSP), pulmonary acceleration time (PAT)/pulmonary ejection time (PET), and right ventricular hypertrophy (RVH) index were evaluated. Perivascular collagen content, vascular wall thickness, and endothelium-mesenchymal transition were analyzed. KEY FINDINGS PAT/PET was lower in the PAH group (0.26 ± 0.02, P < 0.001) than in CTRLs (0.43 ± 0.02) and only increased in the EV-H group (0.33 ± 0.03, P = 0.014). MSC-N (32 ± 6 mmHg, P = 0.036), MSC-H (31 ± 3 mmHg, P = 0.019), EV-N (27 ± 4 mmHg, P < 0.001), and EV-H (26 ± 5 mmHg, P < 0.001) reduced RVSP compared with the PAH group (39 ± 4 mmHg). RVH was higher in the PAH group than in CTRL and reduced after all therapies. All therapies decreased perivascular collagen fiber content, vascular wall thickness, and the expression of endothelial markers remained unaltered; only MSC-H and EV-H decreased expression of mesenchymal markers in pulmonary arterioles. SIGNIFICANCE MSCs and EVs, under normoxia or hypoxia, reduced right ventricular hypertrophy, perivascular collagen, and vessel wall thickness. Under hypoxia, MSCs and EVs were more effective at improving endothelial to mesenchymal transition in experimental PAH.
Collapse
Affiliation(s)
- Cássia Lisboa Braga
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Renata Trabach Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Carla Medeiros da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Nazareth de Novaes Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niteroi, Brazil
| | - Nathane Santanna Felix
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mayck Medeiros
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Monique Martins Melo
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Johnatas Dutra Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Douglas Esteves Teixeira
- Laboratory of Biochemistry and Cell Signaling, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, RJ, Brazil
| | - Celso Caruso Neves
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil; Laboratory of Biochemistry and Cell Signaling, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, RJ, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Pulmonary Vascular Remodeling in Pulmonary Hypertension. J Pers Med 2023; 13:jpm13020366. [PMID: 36836600 PMCID: PMC9967990 DOI: 10.3390/jpm13020366] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Pulmonary vascular remodeling is the critical structural alteration and pathological feature in pulmonary hypertension (PH) and involves changes in the intima, media and adventitia. Pulmonary vascular remodeling consists of the proliferation and phenotypic transformation of pulmonary artery endothelial cells (PAECs) and pulmonary artery smooth muscle cells (PASMCs) of the middle membranous pulmonary artery, as well as complex interactions involving external layer pulmonary artery fibroblasts (PAFs) and extracellular matrix (ECM). Inflammatory mechanisms, apoptosis and other factors in the vascular wall are influenced by different mechanisms that likely act in concert to drive disease progression. This article reviews these pathological changes and highlights some pathogenetic mechanisms involved in the remodeling process.
Collapse
|
9
|
Liu X, Zhang L, Zhang W. Metabolic reprogramming: A novel metabolic model for pulmonary hypertension. Front Cardiovasc Med 2022; 9:957524. [PMID: 36093148 PMCID: PMC9458918 DOI: 10.3389/fcvm.2022.957524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Pulmonary arterial hypertension, or PAH, is a condition that is characterized by pulmonary artery pressures above 20 mmHg (at rest). In the treatment of PAH, the pulmonary vascular system is regulated to ensure a diastolic and contraction balance; nevertheless, this treatment does not prevent or reverse pulmonary vascular remodeling and still causes pulmonary hypertension to progress. According to Warburg, the link between metabolism and proliferation in PAH is similar to that of cancer, with a common aerobic glycolytic phenotype. By activating HIF, aerobic glycolysis is enhanced and cell proliferation is triggered. Aside from glutamine metabolism, the Randle cycle is also present in PAH. Enhanced glutamine metabolism replenishes carbon intermediates used by glycolysis and provides energy to over-proliferating and anti-apoptotic pulmonary vascular cells. By activating the Randle cycle, aerobic oxidation is enhanced, ATP is increased, and myocardial injury is reduced. PAH is predisposed by epigenetic dysregulation of DNA methylation, histone acetylation, and microRNA. This article discusses the abnormal metabolism of PAH and how metabolic therapy can be used to combat remodeling.
Collapse
|
10
|
Donaire-Arias A, Montagut AM, Puig de la Bellacasa R, Estrada-Tejedor R, Teixidó J, Borrell JI. 1 H-Pyrazolo[3,4- b]pyridines: Synthesis and Biomedical Applications. Molecules 2022; 27:2237. [PMID: 35408636 PMCID: PMC9000541 DOI: 10.3390/molecules27072237] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/29/2022] Open
Abstract
Pyrazolo[3,4-b]pyridines are a group of heterocyclic compounds presenting two possible tautomeric forms: the 1H- and 2H-isomers. More than 300,000 1H-pyrazolo[3,4-b]pyridines have been described which are included in more than 5500 references (2400 patents) up to date. This review will cover the analysis of the diversity of the substituents present at positions N1, C3, C4, C5, and C6, the synthetic methods used for their synthesis, starting from both a preformed pyrazole or pyridine, and the biomedical applications of such compounds.
Collapse
Affiliation(s)
| | | | | | | | | | - José I. Borrell
- Grup de Química Farmacèutica, IQS School of Engineering, Universitat Ramon Llull, Via Augusta 390, E-08017 Barcelona, Spain; (A.D.-A.); (A.M.M.); (R.P.d.l.B.); (R.E.-T.); (J.T.)
| |
Collapse
|
11
|
Funk-Hilsdorf TC, Behrens F, Grune J, Simmons S. Dysregulated Immunity in Pulmonary Hypertension: From Companion to Composer. Front Physiol 2022; 13:819145. [PMID: 35250621 PMCID: PMC8891568 DOI: 10.3389/fphys.2022.819145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension (PH) represents a grave condition associated with high morbidity and mortality, emphasizing a desperate need for innovative and targeted therapeutic strategies. Cumulative evidence suggests that inflammation and dysregulated immunity interdependently affect maladaptive organ perfusion and congestion as hemodynamic hallmarks of the pathophysiology of PH. The role of altered cellular and humoral immunity in PH gains increasing attention, especially in pulmonary arterial hypertension (PAH), revealing novel mechanistic insights into the underlying immunopathology. Whether these immunophysiological aspects display a universal character and also hold true for other types of PH (e.g., PH associated with left heart disease, PH-LHD), or whether there are unique immunological signatures depending on the underlying cause of disease are points of consideration and discussion. Inflammatory mediators and cellular immune circuits connect the local inflammatory landscape in the lung and heart through inter-organ communication, involving, e.g., the complement system, sphingosine-1-phosphate (S1P), cytokines and subsets of, e.g., monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs), and T- and B-lymphocytes with distinct and organ-specific pro- and anti-inflammatory functions in homeostasis and disease. Perivascular macrophage expansion and monocyte recruitment have been proposed as key pathogenic drivers of vascular remodeling, the principal pathological mechanism in PAH, pinpointing toward future directions of anti-inflammatory therapeutic strategies. Moreover, different B- and T-effector cells as well as DCs may play an important role in the pathophysiology of PH as an imbalance of T-helper-17-cells (TH17) activated by monocyte-derived DCs, a potentially protective role of regulatory T-cells (Treg) and autoantibody-producing plasma cells occur in diverse PH animal models and human PH. This article highlights novel aspects of the innate and adaptive immunity and their interaction as disease mediators of PH and its specific subtypes, noticeable inflammatory mediators and summarizes therapeutic targets and strategies arising thereby.
Collapse
Affiliation(s)
- Teresa C. Funk-Hilsdorf
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Felix Behrens
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jana Grune
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Szandor Simmons
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- *Correspondence: Szandor Simmons,
| |
Collapse
|
12
|
Foley A, Steinberg BE, Goldenberg NM. Inflammasome Activation in Pulmonary Arterial Hypertension. Front Med (Lausanne) 2022; 8:826557. [PMID: 35096915 PMCID: PMC8792742 DOI: 10.3389/fmed.2021.826557] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/20/2021] [Indexed: 01/01/2023] Open
Abstract
Inflammasomes are multi-protein complexes that sense both infectious and sterile inflammatory stimuli, launching a cascade of responses to propagate danger signaling throughout an affected tissue. Recent studies have implicated inflammasome activation in a variety of pulmonary diseases, including pulmonary arterial hypertension (PAH). Indeed, the end-products of inflammasome activation, including interleukin (IL)-1β, IL-18, and lytic cell death (“pyroptosis”) are all key biomarkers of PAH, and are potentially therapeutic targets for human disease. This review summarizes current knowledge of inflammasome activation in immune and vascular cells of the lung, with a focus on the role of these pathways in the pathogenesis of PAH. Special emphasis is placed on areas of potential drug development focused on inhibition of inflammasomes and their downstream effectors.
Collapse
Affiliation(s)
- Anna Foley
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Benjamin E Steinberg
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| | - Neil M Goldenberg
- Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
13
|
Yang X, Wang C, Lin Y, Zhang P. Identification of Crucial Hub Genes and Differential T Cell Infiltration in Idiopathic Pulmonary Arterial Hypertension Using Bioinformatics Strategies. Front Mol Biosci 2022; 9:800888. [PMID: 35127829 PMCID: PMC8811199 DOI: 10.3389/fmolb.2022.800888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Idiopathic pulmonary arterial hypertension (IPAH) is a life-threatening disease. Growing evidence indicated that IPAH is a chronic immune disease. This study explored the molecular mechanisms and T cell infiltration of IPAH using integrated bioinformatics methods. Methods: Gene expression profiles of dataset GSE113439 were downloaded from the Gene Expression Omnibus and analyzed using R. Protein-protein interaction (PPI) network and gene set enrichment analysis (GSEA) were established by NetworkAnalyst. Gene Ontology enrichment analysis was performed using ClueGO. Transcription factors of differentially expressed genes (DEGs) were estimated using iRegulon. Transcription factors and selected hub genes were verified by real-time polymerase chain reaction (qPCR) in the lung tissues of rats with pulmonary artery hypertension. The least absolute shrinkage and selection operator regression model and the area under the receiver operating characteristic curve (AUC) were applied jointly to identify the crucial hub genes. Moreover, immune infiltration in IPAH was calculated using ImmuCellAI, and the correlation between key hub genes and immune cells was analyzed using R. Results: A total of 512 DEGs were screened, and ten hub genes and three transcription factors were filtered by the DEG PPI network. The DEGs were mainly enriched in mitotic nuclear division, chromosome organization, and nucleocytoplasmic transport. The ten hub genes and three transcription factors were confirmed by qPCR. Moreover, MAPK6 was identified as the most potent biomarker with an AUC of 100%, and ImmuCellAI immune infiltration analysis showed that a higher proportion of CD4-naive T cells and central memory T cells (Tcm) was apparent in the IPAH group, whereas the proportions of cytotoxic T cells (Tc), exhausted T cells (Tex), type 17 T helper cells, effector memory T cells, natural killer T cells (NKT), natural killer cells, gamma-delta T cells, and CD8 T cells were lower. Finally, MAPK6 was positively correlated with Tex and Tcm, and negatively correlated with Tc and NKT. Conclusion:MAPK6 was identified as a crucial hub gene to discriminate IPAH from the normal group. Dysregulated immune reactions were identified in the lung tissue of patients with IPAH.
Collapse
Affiliation(s)
- Xiaomei Yang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
- School of Medicine, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| | - Cheng Wang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| | - Yicheng Lin
- Department of Neurology, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
| | - Peng Zhang
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Ji’nan, China
- *Correspondence: Peng Zhang,
| |
Collapse
|
14
|
Yu Z, Xiao J, Chen X, Ruan Y, Chen Y, Zheng X, Wang Q. Bioactivities and mechanisms of natural medicines in the management of pulmonary arterial hypertension. Chin Med 2022; 17:13. [PMID: 35033157 PMCID: PMC8760698 DOI: 10.1186/s13020-022-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and rare disease without obvious clinical symptoms that shares characteristics with pulmonary vascular remodeling. Right heart failure in the terminal phase of PAH seriously threatens the lives of patients. This review attempts to comprehensively outline the current state of knowledge on PAH its pathology, pathogenesis, natural medicines therapy, mechanisms and clinical studies to provide potential treatment strategies. Although PAH and pulmonary hypertension have similar pathological features, PAH exhibits significantly elevated pulmonary vascular resistance caused by vascular stenosis and occlusion. Currently, the pathogenesis of PAH is thought to involve multiple factors, primarily including genetic/epigenetic factors, vascular cellular dysregulation, metabolic dysfunction, even inflammation and immunization. Yet many issues regarding PAH need to be clarified, such as the "oestrogen paradox". About 25 kinds monomers derived from natural medicine have been verified to protect against to PAH via modulating BMPR2/Smad, HIF-1α, PI3K/Akt/mTOR and eNOS/NO/cGMP signalling pathways. Yet limited and single PAH animal models may not corroborate the efficacy of natural medicines, and those natural compounds how to regulate crucial genes, proteins and even microRNA and lncRNA still need to put great attention. Additionally, pharmacokinetic studies and safety evaluation of natural medicines for the treatment of PAH should be undertaken in future studies. Meanwhile, methods for validating the efficacy of natural drugs in multiple PAH animal models and precise clinical design are also urgently needed to promote advances in PAH.
Collapse
Affiliation(s)
- Zhijie Yu
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jun Xiao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiao Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yi Ruan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yang Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China.
| | - Qiang Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
15
|
King NE, Brittain E. Emerging therapies: The potential roles SGLT2 inhibitors, GLP1 agonists, and ARNI therapy for ARNI pulmonary hypertension. Pulm Circ 2022; 12:e12028. [PMID: 35506082 PMCID: PMC9052991 DOI: 10.1002/pul2.12028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a highly morbid condition. PH due to left heart disease (PH-LHD) has no specific therapies and pulmonary arterial hypertension (PAH) has substantial residual risk despite several approved therapies. Multiple lines of experimental evidence link metabolic dysfunction to the pathogenesis and outcomes in PH-LHD and PAH, and novel metabolic agents hold promise to improve outcomes in these populations. The antidiabetic sodium-glucose cotransporter 2 (SGLT2) inhibitors and glucagon-like peptide-1 (GLP1) agonists targeting metabolic dysfunction and improve outcomes in patients with LHD but have not been tested specifically in patients with PH. The angiotensin receptor/neprilysin inhibitors (ARNIs) produce significant improvements in cardiac hemodynamics and may improve metabolic dysfunction that could benefit the pulmonary circulation and right ventricle function. On the basis of promising preclinical work with these medications and clinical rationale, we explore the potential of SGLT2 inhibitors, GLP1 agonists, and ARNIs as therapies for both PH-LHD and PAH.
Collapse
Affiliation(s)
| | - Evan Brittain
- Department of Medicine, Division of Cardiovascular MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
16
|
Huang R, Zheng X, Wang J. Bioinformatic exploration of the immune related molecular mechanism underlying pulmonary arterial hypertension. Bioengineered 2021; 12:3137-3147. [PMID: 34252346 PMCID: PMC8806844 DOI: 10.1080/21655979.2021.1944720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022] Open
Abstract
This study aimed to explore the molecular mechanisms related to immune and hub genes related to pulmonary arterial hypertension (PAH). The differentially expressed genes (DEGs) of GSE15197 were identified as filters with adjusted P value <0.05, and |Log2 fold change|> 1. Biofunctional and pathway enrichment annotation of DEGs indicated that immunity and inflammation may play an important role in the molecular mechanism of PAH. The CIBERSORT algorithm further analyzed the immune cell infiltration characteristics of the PAH and control samples. Subsequently, 16 hub genes were identified from DEGs using the least absolute shrinkage and selection operator (LASSO) algorithm. An immune related gene CX3CR1 was further selected from the intersection results of the 16 hub genes and the top 20 genes with the most adjacent nodes in the protein-protein interaction (PPI) network. GSE113439, GSE48149, and GSE33463 datasets were used to validate and proved CX3CR1 with a remarkable score of AUC to distinguish PAH samples caused by various reasons from the control group.
Collapse
Affiliation(s)
- Ruina Huang
- Department of Cardiology in Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Xifeng Zheng
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| | - Junxian Wang
- Department of Geriatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People’s Republic of China
| |
Collapse
|
17
|
Ito T, Zhang E, Omori A, Kabwe J, Kawai M, Maruyama J, Okada A, Yokochi A, Sawada H, Mitani Y, Maruyama K. Model difference in the effect of cilostazol on the development of experimental pulmonary hypertension in rats. BMC Pulm Med 2021; 21:377. [PMID: 34801000 PMCID: PMC8605570 DOI: 10.1186/s12890-021-01710-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Preventing pulmonary vascular remodeling is a key strategy for pulmonary hypertension (PH). Causes of PH include pulmonary vasoconstriction and inflammation. This study aimed to determine whether cilostazol (CLZ), a phosphodiesterase-3 inhibitor, prevents monocrotaline (MCT)- and chronic hypoxia (CH)-induced PH development in rats. METHODS Fifty-one male Sprague-Dawley rats were fed rat chow with (0.3% CLZ) or without CLZ for 21 days after a single injection of MCT (60 mg/kg) or saline. Forty-eight rats were fed rat chow with and without CLZ for 14 days under ambient or hypobaric (air at 380 mmHg) CH exposure. The mean pulmonary artery pressure (mPAP), the right ventricle weight-to-left ventricle + septum weight ratio (RV/LV + S), percentages of muscularized peripheral pulmonary arteries (%Muscularization) and medial wall thickness of small muscular arteries (%MWT) were assessed. Levels of the endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (peNOS), AKT, pAKT and IκB proteins in lung tissue were measured using Western blotting. Monocyte chemotactic protein (MCP)-1 mRNA in lung tissue was also assessed. RESULTS mPAP [35.1 ± 1.7 mmHg (MCT) (n = 9) vs. 16.6 ± 0.7 (control) (n = 9) (P < 0.05); 29.1 ± 1.5 mmHg (CH) (n = 10) vs. 17.5 ± 0.5 (control) (n = 10) (P < 0.05)], RV/LV + S [0.40 ± 0.01 (MCT) (n = 18) vs. 0.24 ± 0.01 (control) (n = 10) (P < 0.05); 0.41 ± 0.03 (CH) (n = 13) vs. 0.27 ± 0.06 (control) (n = 10) (P < 0.05)], and %Muscularization and %MWT were increased by MCT injection and CH exposure. CLZ significantly attenuated these changes in the MCT model [mPAP 25.1 ± 1.1 mmHg (n = 11) (P < 0.05), RV/LV + S 0.30 ± 0.01 (n = 14) (P < 0.05)]. In contrast, these CLZ effects were not observed in the CH model. Lung eNOS protein expression was unchanged in the MCT model and increased in the CH model. Lung protein expression of AKT, phosphorylated AKT, and IκB was downregulated by MCT, which was attenuated by CLZ; the CH model did not change these proteins. Lung MCP-1 mRNA levels were increased in MCT rats but not CH rats. CONCLUSIONS We found model differences in the effect of CLZ on PH development. CLZ might exert a preventive effect on PH development in an inflammatory PH model but not in a vascular structural change model of PH preceded by vasoconstriction. Thus, the preventive effect of CLZ on PH development might depend on the PH etiology.
Collapse
Affiliation(s)
- Toshikazu Ito
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Erquan Zhang
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Fuzhou Children's Hospital of Fujian Province Affiliated with Fujian Medical University, 145-817-Middle Road, Gulou, Fuzhou, 350005, Fujian, China
| | - Ayaka Omori
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Jane Kabwe
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masako Kawai
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, 510-0293, Japan
| | - Junko Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Faculty of Health Science, Suzuka University of Medical Science, Suzuka, Mie, 510-0293, Japan
| | - Amphone Okada
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Ayumu Yokochi
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Hirofumi Sawada
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.,Department of Pediatrics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Yoshihide Mitani
- Department of Pediatrics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Kazuo Maruyama
- Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| |
Collapse
|
18
|
Scott TE, Qin CX, Drummond GR, Hobbs AJ, Kemp-Harper BK. Innovative Anti-Inflammatory and Pro-resolving Strategies for Pulmonary Hypertension: High Blood Pressure Research Council of Australia Award 2019. Hypertension 2021; 78:1168-1184. [PMID: 34565184 DOI: 10.1161/hypertensionaha.120.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary hypertension is a rare, ostensibly incurable, and etiologically diverse disease with an unacceptably high 5-year mortality rate (≈50%), worse than many cancers. Irrespective of pathogenic origin, dysregulated immune processes underlie pulmonary hypertension pathobiology, particularly pertaining to pulmonary vascular remodeling. As such, a variety of proinflammatory pathways have been mooted as novel therapeutic targets. One such pathway involves the family of innate immune regulators known as inflammasomes. In addition, a new and emerging concept is differentiating between anti-inflammatory approaches versus those that promote pro-resolving pathways. This review will briefly introduce inflammasomes and examine recent literature concerning their role in pulmonary hypertension. Moreover, it will explore the difference between inflammation-suppressing and pro-resolution approaches and how this links to inflammasomes. Finally, we will investigate new avenues for targeting inflammation in pulmonary hypertension via more targeted anti-inflammatory or inflammation resolving strategies.
Collapse
Affiliation(s)
- Tara E Scott
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute (T.E.S., B.K.K.-H.), Monash University, Parkville, VIC, Australia
- Monash University, Clayton, VIC, Australia and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (T.E.S., C.X.Q.), Monash University, Parkville, VIC, Australia
| | - Cheng Xue Qin
- Monash University, Clayton, VIC, Australia and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (T.E.S., C.X.Q.), Monash University, Parkville, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (C.X.Q.)
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia (G.R.D.)
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.J.H.)
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute (T.E.S., B.K.K.-H.), Monash University, Parkville, VIC, Australia
| |
Collapse
|
19
|
ROCK Inhibition as Potential Target for Treatment of Pulmonary Hypertension. Cells 2021; 10:cells10071648. [PMID: 34209333 PMCID: PMC8303917 DOI: 10.3390/cells10071648] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Pulmonary hypertension (PH) is a cardiovascular disease caused by extensive vascular remodeling in the lungs, which ultimately leads to death in consequence of right ventricle (RV) failure. While current drugs for PH therapy address the sustained vasoconstriction, no agent effectively targets vascular cell proliferation and tissue inflammation. Rho-associated protein kinases (ROCKs) emerged in the last few decades as promising targets for PH therapy, since ROCK inhibitors demonstrated significant anti-remodeling and anti-inflammatory effects. In this review, current aspects of ROCK inhibition therapy are discussed in relation to the treatment of PH and RV dysfunction, from cell biology to preclinical and clinical studies.
Collapse
|
20
|
Feng W, Wang J, Yan X, Zhang Q, Chai L, Wang Q, Shi W, Chen Y, Liu J, Qu Z, Li S, Xie X, Li M. ERK/Drp1-dependent mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension. Cell Prolif 2021; 54:e13048. [PMID: 33948998 PMCID: PMC8168414 DOI: 10.1111/cpr.13048] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES High-mobility group box-1 (HMGB1) and aberrant mitochondrial fission mediated by excessive activation of GTPase dynamin-related protein 1 (Drp1) have been found to be elevated in patients with pulmonary arterial hypertension (PAH) and critically implicated in PAH pathogenesis. However, it remains unknown whether Drp1-mediated mitochondrial fission and which downstream targets of mitochondrial fission mediate HMGB1-induced pulmonary arterial smooth muscle cells (PASMCs) proliferation and migration leading to vascular remodelling in PAH. This study aims to address these issues. METHODS Primary cultured PASMCs were obtained from male Sprague-Dawley (SD) rats. We detected RNA levels by qRT-PCR, protein levels by Western blotting, cell proliferation by Cell Counting Kit-8 (CCK-8) and EdU incorporation assays, migration by wound healing and transwell assays. SD rats were injected with monocrotaline (MCT) to establish PAH. Hemodynamic parameters were measured by closed-chest right heart catheterization. RESULTS HMGB1 increased Drp1 phosphorylation and Drp1-dependent mitochondrial fragmentation through extracellular signal-regulated kinases 1/2 (ERK1/2) signalling activation, and subsequently triggered autophagy activation, which further led to bone morphogenetic protein receptor 2 (BMPR2) lysosomal degradation and inhibitor of DNA binding 1 (Id1) downregulation, and eventually promoted PASMCs proliferation/migration. Inhibition of ERK1/2 cascade, knockdown of Drp1 or suppression of autophagy restored HMGB1-induced reductions of BMPR2 and Id1, and diminished HMGB1-induced PASMCs proliferation/migration. In addition, pharmacological inhibition of HMGB1 by glycyrrhizin, suppression of mitochondrial fission by Mdivi-1 or blockage of autophagy by chloroquine prevented PAH development in MCT-induced rats PAH model. CONCLUSIONS HMGB1 promotes PASMCs proliferation/migration and pulmonary vascular remodelling by activating ERK1/2/Drp1/Autophagy/BMPR2/Id1 axis, suggesting that this cascade might be a potential novel target for management of PAH.
Collapse
Affiliation(s)
- Wei Feng
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Jian Wang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Xin Yan
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Limin Chai
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Yuqian Chen
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Jin Liu
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Zhan Qu
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicinethe First Affiliated Hospital of Xi’an Jiaotong UniversityXi’an, ShaanxiChina
| |
Collapse
|
21
|
Guihaire J, Deuse T, Wang D, Spin JM, Blankenberg FG, Fadel E, Reichenspurner H, Schrepfer S. Immunomodulation Therapy Using Tolerogenic Macrophages in a Rodent Model of Pulmonary Hypertension. Stem Cells Dev 2021; 30:515-525. [PMID: 33726521 DOI: 10.1089/scd.2021.0007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Inflammation plays a major role in the pathogenesis of pulmonary hypertension (PH). We sought to investigate the effects of a cell-based immunomodulation in a dysimmune model of PH. PH was induced in athymic nude rats using semaxinib (Su group, n = 6). Tolerogenic macrophages (toM) were generated from monocyte isolation and then injected either the day before semaxinib injection (Prevention group, n = 6) or 3 weeks after (Reversion group, n = 6). Six athymic nude rats were used as controls. In vivo trafficking of toM was investigated with bioluminescence imaging showing that toM were mainly located into the lungs until 48 h after injection. Right ventricular (RV) end-systolic pressure and RV systolic function were assessed at 4 weeks using echocardiography. Morphometric analysis and RNA sequencing of the lungs were realized at 4 weeks. Rats treated with toM (Prevention and Reversion groups) had a significantly lower RV end-systolic pressure at 4 weeks (respectively, 25 ± 8 and 30 ± 6 mmHg vs. 67 ± 9 mmHg, P < 0.001), while RV systolic dysfunction was observed in Su and Reversion groups. Mean medial wall thickness of small arterioles was lower in Prevention and Reversion groups compared with the Su group (respectively, 10.9% ± 0.8% and 16.4% ± 1.3% vs. 28.2% ± 2.1%, P < 0.001). Similarly, cardiomyocyte area was decreased in rats treated with toM (150 ± 18 and 160 ± 86 μm2 vs. 279 ± 50 μm2, P < 0.001). A trend toward upregulation of genes involved in pulmonary arterial hypertension pathobiology was found in Su rats, while KCNK3 was significantly downregulated (fold-change = 9.8, P < 0.001). Injection of toM was associated with a less severe phenotype of PH in rats exposed to angioproliferative stress. Preserved expression of KCNK3 may explain the protective effect of toM.
Collapse
Affiliation(s)
- Julien Guihaire
- Transplant and Stem Cells Immunobiology (TSI) Lab, University Heart Center of Hamburg, Hamburg, Germany
- Department of Cardiac Surgery, Inserm UMR_S 999, Pulmonary Hypertension: Pathophysiology and Novel Therapies, Marie Lannelongue Hospital, Groupe Hospitalier Paris Saint Joseph, University of Paris-Saclay School of Medicine, Le Plessis Robinson, France
| | - Tobias Deuse
- Transplant and Stem Cells Immunobiology (TSI) Lab, University Heart Center of Hamburg, Hamburg, Germany
- Transplant and Stem Cells Immunobiology (TSI) Lab, Department of Surgery, University of California San Francisco, San Francisco, California, USA
| | - Dong Wang
- Transplant and Stem Cells Immunobiology (TSI) Lab, University Heart Center of Hamburg, Hamburg, Germany
- Transplant and Stem Cells Immunobiology (TSI) Lab, Department of Surgery, University of California San Francisco, San Francisco, California, USA
- Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| | - Joshua M Spin
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Francis G Blankenberg
- Division of Pediatric Radiology, Department of Radiology/MIPS, Lucile Salter Packard Children's Hospital, Stanford University, Palo Alto, California, USA
| | - Elie Fadel
- Thoracic and Vascular Surgery, Heart and Lung Transplantation, Marie Lannelongue Hospital, Groupe Hospitalier Paris Saint Joseph, University of Paris-Saclay School of Medicine, Le Plessis Robinson, France
| | - Hermann Reichenspurner
- Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
- Department of Cardiovascular Surgery, University Heart Center of Hamburg, Hamburg, Germany
| | - Sonja Schrepfer
- Transplant and Stem Cells Immunobiology (TSI) Lab, University Heart Center of Hamburg, Hamburg, Germany
- Transplant and Stem Cells Immunobiology (TSI) Lab, Department of Surgery, University of California San Francisco, San Francisco, California, USA
- Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), Partner Site Hamburg/Kiel/Luebeck, Hamburg, Germany
| |
Collapse
|
22
|
Hu Y, Chi L, Kuebler WM, Goldenberg NM. Perivascular Inflammation in Pulmonary Arterial Hypertension. Cells 2020; 9:cells9112338. [PMID: 33105588 PMCID: PMC7690279 DOI: 10.3390/cells9112338] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Perivascular inflammation is a prominent pathologic feature in most animal models of pulmonary hypertension (PH) as well as in pulmonary arterial hypertension (PAH) patients. Accumulating evidence suggests a functional role of perivascular inflammation in the initiation and/or progression of PAH and pulmonary vascular remodeling. High levels of cytokines, chemokines, and inflammatory mediators can be detected in PAH patients and correlate with clinical outcome. Similarly, multiple immune cells, including neutrophils, macrophages, dendritic cells, mast cells, T lymphocytes, and B lymphocytes characteristically accumulate around pulmonary vessels in PAH. Concomitantly, vascular and parenchymal cells including endothelial cells, smooth muscle cells, and fibroblasts change their phenotype, resulting in altered sensitivity to inflammatory triggers and their enhanced capacity to stage inflammatory responses themselves, as well as the active secretion of cytokines and chemokines. The growing recognition of the interaction between inflammatory cells, vascular cells, and inflammatory mediators may provide important clues for the development of novel, safe, and effective immunotargeted therapies in PAH.
Collapse
Affiliation(s)
- Yijie Hu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B1W8, Canada;
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Leon Chi
- Department of Physiology, University of Toronto, Toronto, ON M5B1W8, Canada;
| | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B1W8, Canada;
- Departments of Physiology and Surgery, University of Toronto, Toronto, ON M5B1W8, Canada
- Institute of Physiology, Charité Universitäts Medizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-501
| | - Neil M. Goldenberg
- Departments of Physiology and Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5B1W8, Canada;
- Department of Anesthesia and Pain Medicine, Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5B1W8, Canada
| |
Collapse
|
23
|
Li S, Ma X, Xie J, Yan X, Sun W. MicroRNA-206, IL-4, IL-13, and INF-γ levels in lung tissue and plasma are increased by the stimulation of particulate matter with a diameter of ≤2.5μm, and are associated with the poor prognosis of asthma induced pulmonary arterial hypertension patients. Clin Exp Hypertens 2020; 43:181-188. [PMID: 33086901 DOI: 10.1080/10641963.2020.1836192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND This study aimed to explore the prognostic value of particulate matter with a diameter of ≤2.5 μm (PM2.5)-related microRNA-206 combined with interleukin (IL)-4, IL-13 and interferon-γ (INF-γ) in asthma induced pulmonary arterial hypertension (PAH). METHODS Fifty SPF BALB/c mice were divided into 5 groups: control group, asthma + PAH group, low-toxic asthma + PAH group, moderately-exposed asthma + PAH group, highly-exposed asthma + PAH group. Differences of microRNA-206, IL-4, IL-13, and INF-γ expression in lung tissue and plasma were detected. A total of 98 patients with asthma induced PAH and 98 healthy persons were collected. Patients were followed up for 12 months. RESULTS Based on microarray analyses, we found that microRNA-206 may be involved in asthma induced PAH stimulated by PM2.5. Compared with healthy people, plasma microRNA-206, IL-4, IL-13, and INF-γ levels in asthma induced PAH patients were significantly higher (P< .05). Compared with survivors, plasma microRNA-206, IL-4, IL-13, and INF-γ levels in non-survivors were significantly higher (P< .05). Survival analyses showed that compared with low microRNA-206, low IL-4, low IL-13 and low INF-γ groups, survival rate of patients in high microRNA-206 (χ2 = 4.864, P= .013), high IL-4 (χ2 = 3.774, P= .038), high IL-13 (χ2 = 8.375, P< .001) and high INF-γ groups (χ2 = 9.007, P< .001) were significantly reduced. Established prognostic evaluation model was built and the estimated probability was 0.473. Compared with estimated probability ≤ 0.473, survival rate of patients in estimated probability> 0.473 was significantly reduced (χ2 = 17.377, P< .001). CONCLUSION Current model combining plasma microRNA-206, IL-4, IL-13, and INF-γ has potential significance for prognosis of asthma induced PAH.
Collapse
Affiliation(s)
- Shaohua Li
- Department of Respiratory and Critical Care Medical, The Second Hospital of Hebei Medical University , Shijiazhuang, Hebei, China.,Department of Respiratory and Critical Care Medical, The First Hospital of Hebei Medical University , Shijiazhuang, Hebei, China
| | - Xiaoning Ma
- Intensive Care Unit of Shijiazhuang First Hospital, People's Hospital in Shijiazhuang , Shijiazhuang, Hebei, China
| | - Jianli Xie
- Rheumatology and Immunology Department, The Third Hospital of Hebei Medical University , Shijiazhuang, Hebei, China
| | - Xixin Yan
- Department of Respiratory and Critical Care Medical, The Second Hospital of Hebei Medical University , Shijiazhuang, Hebei, China
| | - Wuzhuang Sun
- Department of Respiratory and Critical Care Medical, The First Hospital of Hebei Medical University , Shijiazhuang, Hebei, China
| |
Collapse
|
24
|
Zemskova M, McClain N, Niihori M, Varghese MV, James J, Rafikov R, Rafikova O. Necrosis-Released HMGB1 (High Mobility Group Box 1) in the Progressive Pulmonary Arterial Hypertension Associated With Male Sex. Hypertension 2020; 76:1787-1799. [PMID: 33012199 DOI: 10.1161/hypertensionaha.120.16118] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Damage-associated molecular patterns, such as HMGB1 (high mobility group box 1), play a well-recognized role in the development of pulmonary arterial hypertension (PAH), a progressive fatal disease of the pulmonary vasculature. However, the contribution of the particular type of vascular cells, type of cell death, or the form of released HMGB1 in PAH remains unclear. Moreover, although male patients with PAH show a higher level of circulating HMGB1, its involvement in the severe PAH phenotype reported in males is unknown. In this study, we aimed to investigate the sources and active forms of HMGB1 released from damaged vascular cells and their contribution to the progressive type of PAH in males. Our results showed that HMGB1 is released by either pulmonary artery human endothelial cells or human pulmonary artery smooth muscle cells that underwent necrotic cell death, although only human pulmonary artery smooth muscle cells produce HMGB1 during apoptosis. Moreover, only human pulmonary artery smooth muscle cell death induced a release of dimeric HMGB1, found to be mitochondrial reactive oxygen species dependent, and TLR4 (toll-like receptor 4) activation. The modified Sugen/Hypoxia rat model replicates the human sexual dimorphism in PAH severity (right ventricle systolic pressure in males versus females 54.7±2.3 versus 44.6±2 mm Hg). By using this model, we confirmed that necroptosis and necrosis are the primary sources of circulating HMGB1 in the male rats, although only necrosis increased circulation of HMGB1 dimers. Attenuation of necrosis but not apoptosis or necroptosis prevented TLR4 activation in males and blunted the sex differences in PAH severity. We conclude that necrosis, through the release of HMGB1 dimers, predisposes males to a progressive form of PAH.
Collapse
Affiliation(s)
- Marina Zemskova
- From the Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson
| | - Nolan McClain
- From the Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson
| | - Maki Niihori
- From the Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson
| | - Mathews V Varghese
- From the Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson
| | - Joel James
- From the Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson
| | - Ruslan Rafikov
- From the Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson
| | - Olga Rafikova
- From the Division of Endocrinology, Department of Medicine, University of Arizona College of Medicine, Tucson
| |
Collapse
|