1
|
van Oosten JP, Goedendorp N, Mousa A, Flink RC, Schaart R, Flinsenberg M, Somhorst P, Gommers DAMPJ, Heunks L, Jonkman AH. Solid-state esophageal pressure sensor for the estimation of pleural pressure: a bench and first-in-human validation study. Crit Care 2025; 29:47. [PMID: 39871347 PMCID: PMC11773869 DOI: 10.1186/s13054-025-05279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/15/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Advanced respiratory monitoring through the measurement of esophageal pressure (Pes) as a surrogate of pleural pressure helps guiding mechanical ventilation in ICU patients. Pes measurement with an esophageal balloon catheter, the current clinical reference standard, needs complex calibrations and a multitude of factors influence its reliability. Solid-state pressure sensors might be able to overcome these limitations. OBJECTIVES To evaluate the accuracy of a new solid-state Pes transducer (Pessolid). We hypothesized that measurements are non-inferior to those obtained with a properly calibrated balloon catheter (Pesbal). METHODS Absolute and relative solid-state sensor Pes measurements were compared to a reference pressure in a 5-day bench setup, and to simultaneously placed balloon catheters in 15 spontaneously breathing healthy volunteers and in 16 mechanically ventilated ICU patients. Bland-Altman analysis was performed using mixed effects modelling with bootstrapping to estimate bias and upper and lower limits of agreement (LoA) and their confidence intervals. RESULTS Bench study: Solid-state pressure transducers had a positive bias (Psolid - Pref) of around 1 cmH2O for the absolute minimal and maximum pressures, and no bias for pressure swings. Healthy volunteers: the solid-state transducer revealed a bias (i.e., Pessolid - Pesbal) [upper LoA; lower LoA] of 1.59 [8.21; - 5.02], - 2.32 [4.27; - 8.92] and 3.91 [11.04; - 3.23] cmH2O for end-expiratory, end-inspiratory and ΔPes values, respectively. ICU patients: the solid-state transducer showed a bias (Pessolid-Pesbal) [upper LoA; lower LoA] during controlled/assisted ventilation of: - 0.15 [1.41; - 1.72]/- 0.19 [5.23; - 5.62], 0.32 [3.45; - 2.82]/- 0.54 [4.81; - 5.90] and 0.47 [3.90; - 2.96]/0.35 [4.01; - 3.31] cmH2O for end-expiratory, end-inspiratory and ΔPes values, respectively. LoA were ≤ 2cmH2O for static measurements on controlled ventilation. CONCLUSIONS The novel solid-state pressure transducer showed good accuracy on the bench, in healthy volunteers and in ventilated ICU-patients. This could contribute to the implementation of Pes as advanced respiratory monitoring technique. TRIAL REGISTRATION Clinicaltrials.gov identifier: NCT05817968 (patient study). Registered on 18 April 2023.
Collapse
Affiliation(s)
- Julien P van Oosten
- Intensive Care, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Nico Goedendorp
- Intensive Care, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Amne Mousa
- Intensive Care, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | | | | | - Merel Flinsenberg
- Intensive Care, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Peter Somhorst
- Intensive Care, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Diederik A M P J Gommers
- Intensive Care, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Leo Heunks
- Intensive Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Annemijn H Jonkman
- Intensive Care, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Florio G, Carlesso E, Mojoli F, Madotto F, Vivona L, Minaudo C, Battistin M, Colombo SM, Gatti S, Sosio S, Pesenti A, Grasselli G, Zanella A. Esophageal pressure as estimation of pleural pressure: a study in a model of eviscerated chest. BMC Anesthesiol 2024; 24:415. [PMID: 39543495 PMCID: PMC11562330 DOI: 10.1186/s12871-024-02806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024] Open
Abstract
BACKGROUND Transpulmonary pressure is the effective pressure across the lung parenchyma and has been proposed as a guide for mechanical ventilation. The pleural pressure is challenging to directly measure in clinical setting and esophageal manometry using esophageal balloon catheters was suggested for estimation. However, the accuracy of using esophageal pressure to estimate pleural pressure is debated due to variability in the mechanical properties of respiratory system, esophagus and esophageal catheter. Furthermore, while a vertical pleural pressure gradient exists across lung regions, esophageal pressure balloon provides a single value, representing, at most, the pressure surrounding the esophagus. METHODS In a swine model with a preserved esophagus and a single homogenous, easily measurable intrathoracic pressure, we evaluated esophageal pressure's agreement with intrathoracic pressure at different positive end-expiratory pressure (PEEP) levels (0, 5, 10, 15 cmH2O). We assessed the improvement of measurement accuracy by correcting absolute esophageal values using a previously described technique, that accounts for the pressure generated by the esophageal wall in response to esophageal balloon inflation. The study involved five swine, wherein two different esophageal catheters were used alongside the four distinct PEEP levels. Swings, uncorrected and corrected absolute esophageal pressures (end-inspiratory, end-expiratory) were compared with their respective intrathoracic pressures. The effect of correction technique was assessed with manual incremental step inflation procedure. RESULTS We found that both catheters significantly overestimated absolute esophageal pressure compared to intrathoracic pressure (5.01 ± 3.32 and 6.06 ± 5.62 cmH2O at end-expiration and end-inspiration, respectively), with error increasing at higher positive end-expiratory pressure levels (end-expiration: 2.36 ± 2.03, 3.77 ± 1.37, 6.24 ± 2.51 and 7.69 ± 4.02 for each PEEP level, P < 0.0001; end-inspiration: 1.71 ± 2.10, 3.70 ± 1.73, 7.67 ± 3.62 and 11.14 ± 7.60 for each PEEP level, P = 0.0004). Applying the correction technique significantly improved agreement for absolute values (0.82 ± 1.62 and 1.86 ± 3.94 cmH2O at end-expiration and end-inspiration, respectively). Esophageal pressure swings accurately estimated intrathoracic pressure swings at low-medium intrathoracic pressures (-0.64 ± 0.62, -0.07 ± 0.53, 1.43 ± 1.51, and 3.45 ± 3.94 at PEEP 0, 5, 10 and 15 cmH2O, respectively; P = 0.0197). CONCLUSIONS The correction technique, based on the mechanical response of esophageal wall to the balloon inflation, is fundamental for obtaining reliable estimations of absolute intrathoracic pressure values, and for ensuring its correct application in clinical setting.
Collapse
Affiliation(s)
- Gaetano Florio
- Dipartimento Area Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Eleonora Carlesso
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Francesco Mojoli
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
- Dipartimento Scienze Clinico-Chirurgiche, Diagnostiche E Pediatriche, University of Pavia, Pavia, Italy
| | - Fabiana Madotto
- Dipartimento Area Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luigi Vivona
- Dipartimento Area Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Anaesthesia and Intensive Care, San Giuseppe Hospital, IRCCS MultiMedica, Milan, Italy
| | - Chiara Minaudo
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Michele Battistin
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Sebastiano Maria Colombo
- Dipartimento Area Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Gatti
- Center for Preclinical Research, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Simone Sosio
- Anesthesia and Intensive Care Unit, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Antonio Pesenti
- Dipartimento Area Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giacomo Grasselli
- Dipartimento Area Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, Milan, 20122, Italy
| | - Alberto Zanella
- Dipartimento Area Emergenza Urgenza, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, Milan, 20122, Italy.
| |
Collapse
|
3
|
Cammarota G, Vaschetto R, Vetrugno L, Maggiore SM. Monitoring lung recruitment. Curr Opin Crit Care 2024; 30:268-274. [PMID: 38690956 DOI: 10.1097/mcc.0000000000001157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
PURPOSE OF REVIEW This review explores lung recruitment monitoring, covering techniques, challenges, and future perspectives. RECENT FINDINGS Various methodologies, including respiratory system mechanics evaluation, arterial bold gases (ABGs) analysis, lung imaging, and esophageal pressure (Pes) measurement are employed to assess lung recruitment. In support to ABGs analysis, the assessment of respiratory mechanics with hysteresis and recruitment-to-inflation ratio has the potential to evaluate lung recruitment and enhance mechanical ventilation setting. Lung imaging tools, such as computed tomography scanning, lung ultrasound, and electrical impedance tomography (EIT) confirm their utility in following lung recruitment with the advantage of radiation-free and repeatable application at the bedside for sonography and EIT. Pes enables the assessment of dorsal lung tendency to collapse through end-expiratory transpulmonary pressure. Despite their value, these methodologies may require an elevated expertise in their application and data interpretation. However, the information obtained by these methods may be conveyed to build machine learning and artificial intelligence algorithms aimed at improving the clinical decision-making process. SUMMARY Monitoring lung recruitment is a crucial component of managing patients with severe lung conditions, within the framework of a personalized ventilatory strategy. Although challenges persist, emerging technologies offer promise for a personalized approach to care in the future.
Collapse
Affiliation(s)
- Gianmaria Cammarota
- Department of Translational Medicine, Università del Piemonte Orientale, Novara
| | - Rosanna Vaschetto
- Department of Translational Medicine, Università del Piemonte Orientale, Novara
| | - Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences
| | - Salvatore M Maggiore
- Department of Anesthesiology and Intensive Care, Ospedale SS Annunziata & Department of Innovative Technologies in Medicine and Odonto-stomatology, Università Gabriele D'Annunzio di Chieti-Pescara, Chieti, Italy
| |
Collapse
|
4
|
Simonte R, Cammarota G, Vetrugno L, De Robertis E, Longhini F, Spadaro S. Advanced Respiratory Monitoring during Extracorporeal Membrane Oxygenation. J Clin Med 2024; 13:2541. [PMID: 38731069 PMCID: PMC11084162 DOI: 10.3390/jcm13092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Advanced respiratory monitoring encompasses a diverse range of mini- or noninvasive tools used to evaluate various aspects of respiratory function in patients experiencing acute respiratory failure, including those requiring extracorporeal membrane oxygenation (ECMO) support. Among these techniques, key modalities include esophageal pressure measurement (including derived pressures), lung and respiratory muscle ultrasounds, electrical impedance tomography, the monitoring of diaphragm electrical activity, and assessment of flow index. These tools play a critical role in assessing essential parameters such as lung recruitment and overdistention, lung aeration and morphology, ventilation/perfusion distribution, inspiratory effort, respiratory drive, respiratory muscle contraction, and patient-ventilator synchrony. In contrast to conventional methods, advanced respiratory monitoring offers a deeper understanding of pathological changes in lung aeration caused by underlying diseases. Moreover, it allows for meticulous tracking of responses to therapeutic interventions, aiding in the development of personalized respiratory support strategies aimed at preserving lung function and respiratory muscle integrity. The integration of advanced respiratory monitoring represents a significant advancement in the clinical management of acute respiratory failure. It serves as a cornerstone in scenarios where treatment strategies rely on tailored approaches, empowering clinicians to make informed decisions about intervention selection and adjustment. By enabling real-time assessment and modification of respiratory support, advanced monitoring not only optimizes care for patients with acute respiratory distress syndrome but also contributes to improved outcomes and enhanced patient safety.
Collapse
Affiliation(s)
- Rachele Simonte
- Department of Medicine and Surgery, Università degli Studi di Perugia, 06100 Perugia, Italy; (R.S.); (E.D.R.)
| | - Gianmaria Cammarota
- Department of Translational Medicine, Università del Piemonte Orientale, 28100 Novara, Italy;
| | - Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Edoardo De Robertis
- Department of Medicine and Surgery, Università degli Studi di Perugia, 06100 Perugia, Italy; (R.S.); (E.D.R.)
| | - Federico Longhini
- Department of Medical and Surgical Sciences, Università della Magna Graecia, 88100 Catanzaro, Italy
- Anesthesia and Intensive Care Unit, “R. Dulbecco” University Hospital, 88100 Catanzaro, Italy
| | - Savino Spadaro
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44100 Ferrara, Italy;
| |
Collapse
|
5
|
Barbarot N, Tinelli A, Fillatre P, Debarre M, Magalhaes E, Massart N, Wallois J, Legay F, Mari A. The depth of neuromuscular blockade is not related to chest wall elastance and respiratory mechanics in moderate to severe acute respiratory distress syndrome patients. A prospective cohort study. J Crit Care 2024; 80:154505. [PMID: 38141458 DOI: 10.1016/j.jcrc.2023.154505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/04/2023] [Accepted: 12/01/2023] [Indexed: 12/25/2023]
Abstract
BACKGROUND Data concerning the depth of neuromuscular blockade (NMB) required for effective relaxation of the respiratory muscles in ARDS are scarce. We hypothesised that complete versus partial NMB can modify respiratory mechanics. METHOD Prospective study to compare the respiratory mechanics of ARDS patients according to the NMB depth. Each patient was analysed at two times: deep NMB (facial train of four count (TOFC) = 0) and intermediate NMB (TOFC >0). The primary endpoint was the comparison of chest wall elastance (ELCW) according to the NMB level. RESULTS 33 ARDS patients were analysed. There was no statistical difference between the ELCW at TOFC = 0 compared to TOFC >0: 7 cmH2O/l [5.7-9.5] versus 7 cmH2O/l [5.3-10.8] (p = 0.36). The depth of NMB did not modify the expiratory nor inspiratory oesophageal pressure (Pesexp = 8 cmH2O [5-9.5] at TOFC = 0 versus 7 cmH2O [5-10] at TOFC >0; (p = 0.16) and Pesinsp = 10 cmH2O [8.2-13] at TOFC = 0 versus 10 cmH2O [8-13] at TOFC >0; (p = 0.12)). CONCLUSION In ARDS, the relaxation of the respiratory muscles seems to be independent of the NMB level.
Collapse
|
6
|
Esposito T, Fregonese M, Morettini G, Carboni P, Tardioli C, Messina A, Vaschetto R, Della Corte F, Vetrugno L, Navalesi P, De Robertis E, Azzolina D, Piriyapatsom A, Tucci MR, Wrigge H, Simon P, Bignami E, Maggiore SM, Simonte R, Cammarota G. Intraoperative individualization of positive-end-expiratory pressure through electrical impedance tomography or esophageal pressure assessment: a systematic review and meta-analysis of randomized controlled trials. J Clin Monit Comput 2024; 38:89-100. [PMID: 37863862 DOI: 10.1007/s10877-023-01094-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
PURPOSE This systematic review of randomized-controlled trials (RCTs) with meta-analyses aimed to compare the effects on intraoperative arterial oxygen tension to inspired oxygen fraction ratio (PaO2/FiO2), exerted by positive end-expiratory pressure (PEEP) individualized trough electrical impedance tomography (EIT) or esophageal pressure (Pes) assessment (intervention) vs. PEEP not tailored on EIT or Pes (control), in patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach. METHODS PUBMED®, EMBASE®, and Cochrane Controlled Clinical trials register were searched for observational studies and RCTs from inception to the end of August 2022. Inclusion criteria were: RCTs comparing PEEP titrated on EIT/Pes assessment vs. PEEP not individualized on EIT/Pes and reporting intraoperative PaO2/FiO2. Two authors independently extracted data from the enrolled investigations. Data are reported as mean difference and 95% confidence interval (CI). RESULTS Six RCTs were included for a total of 240 patients undergoing general anesthesia for surgery, of whom 117 subjects in the intervention group and 123 subjects in the control group. The intraoperative mean PaO2/FiO2 was 69.6 (95%CI 32.-106.4 ) mmHg higher in the intervention group as compared with the control group with 81.4% between-study heterogeneity (p < 0.01). However, at meta-regression, the between-study heterogeneity diminished to 44.96% when data were moderated for body mass index (estimate 3.45, 95%CI 0.78-6.11, p = 0.011). CONCLUSIONS In patients undergoing abdominal or pelvic surgery with an open or laparoscopic/robotic approach, PEEP personalized by EIT or Pes allowed the achievement of a better intraoperative oxygenation compared to PEEP not individualized through EIT or Pes. PROSPERO REGISTRATION NUMBER CRD 42021218306, 30/01/2023.
Collapse
Affiliation(s)
- Teresa Esposito
- Department of Anesthesiology and Intensive Care, 'Maggiore della Carità' Hospital, Novara, Italy
| | - Martina Fregonese
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Giulio Morettini
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Paloma Carboni
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Cecilia Tardioli
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Antonio Messina
- Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Rosanna Vaschetto
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Francesco Della Corte
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Luigi Vetrugno
- Department of Medical, Oral and Biotechnological Sciences, Università Gabriele D'Annunzio di Chieti-Pescara, Chieti, Italy
| | - Paolo Navalesi
- Department of Medicine, Università degli Studi Di Padova, Padova, Italy
| | - Edoardo De Robertis
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Danila Azzolina
- Department of Ambiental Science and Prevention, Università degli Studi di Ferrara, Ferrara, Italy
| | - Annop Piriyapatsom
- Department of Anesthesiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Mauro R Tucci
- Service of Pneumology, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Hermann Wrigge
- Integrated Research and Treatment Centre Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Department of Anesthesiology, Intensive Care and Emergency Medicine, Pain Therapy, Bergmannstrost Hospital, Halle, Germany
- Medical Faculty, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | - Philipp Simon
- Integrated Research and Treatment Centre Adiposity Diseases, University of Leipzig, Leipzig, Germany
- Anesthesiology and Operative Intensive Care, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Elena Bignami
- Anesthesiology, Critical Care and Pain Medicine Division, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Salvatore M Maggiore
- Department of Anesthesiology and Intensive Care, Ospedale SS Annunziata & Department of Innovative Technologies in Medicine and Odonto-stomatology, Università Gabriele D'Annunzio di Chieti-Pescara, Chieti, Italy
| | - Rachele Simonte
- Department of Anesthesiology and Intensive Care, 'Maggiore della Carità' Hospital, Novara, Italy
| | - Gianmaria Cammarota
- Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy.
- Dipartimento di Medicina Traslazionale, Università degli Studi del Piemonte Orientale, Novara, Italy.
| |
Collapse
|
7
|
Xia YHW, Victor MH, Morais CCA, Costa ELV, Amato MBP. Esophageal balloon catheter system identification to improve respiratory effort time features and amplitude determination. Physiol Meas 2024; 45:015002. [PMID: 38086063 DOI: 10.1088/1361-6579/ad14aa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024]
Abstract
Objective. Understanding a patient's respiratory effort and mechanics is essential for the provision of individualized care during mechanical ventilation. However, measurement of transpulmonary pressure (the difference between airway and pleural pressures) is not easily performed in practice. While airway pressures are available on most mechanical ventilators, pleural pressures are measured indirectly by an esophageal balloon catheter. In many cases, esophageal pressure readings take other phenomena into account and are not a reliable measure of pleural pressure.Approach.A system identification approach was applied to provide accurate pleural measures from esophageal pressure readings. First, we used a closed pressurized chamber to stimulate an esophageal balloon and model its dynamics. Second, we created a simplified version of an artificial lung and tried the model with different ventilation configurations. For validation, data from 11 patients (five male and six female) were used to estimate respiratory effort profile and patient mechanics.Main results.After correcting the dynamic response of the balloon catheter, the estimates of resistance and compliance and the corresponding respiratory effort waveform were improved when compared with the adjusted quantities in the test bench. The performance of the estimated model was evaluated using the respiratory pause/occlusion maneuver, demonstrating improved agreement between the airway and esophageal pressure waveforms when using the normalized mean squared error metric. Using the corrected muscle pressure waveform, we detected start and peak times 130 ± 50 ms earlier and a peak amplitude 2.04 ± 1.46 cmH2O higher than the corresponding estimates from esophageal catheter readings.Significance.Compensating the acquired measurements with system identification techniques makes the readings more accurate, possibly better portraying the patient's situation for individualization of ventilation therapy.
Collapse
Affiliation(s)
- Yu Hao Wang Xia
- Laboratório de Pneumologia LIM-09, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Medical Electrical Devices Laboratory (LabMed), Electronics Engineering, Aeronautics Institute of Technology, Sao Jose dos Campos, SP, Brazil
| | - Marcus Henrique Victor
- Laboratório de Pneumologia LIM-09, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Medical Electrical Devices Laboratory (LabMed), Electronics Engineering, Aeronautics Institute of Technology, Sao Jose dos Campos, SP, Brazil
| | - Caio César Araújo Morais
- Laboratório de Pneumologia LIM-09, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eduardo Leite Vieira Costa
- Laboratório de Pneumologia LIM-09, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marcelo Britto Passos Amato
- Laboratório de Pneumologia LIM-09, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
8
|
Mojoli F, Pozzi M, Arisi E, Mongodi S, Orlando A, Maggio G, Capra Marzani F, Brochard L. Tidal lung hysteresis to interpret PEEP-induced changes in compliance in ARDS patients. Crit Care 2023; 27:233. [PMID: 37312187 PMCID: PMC10261834 DOI: 10.1186/s13054-023-04506-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/23/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND In ARDS, the PEEP level associated with the best respiratory system compliance is often selected; however, intra-tidal recruitment can increase compliance, falsely suggesting improvement in baseline mechanics. Tidal lung hysteresis increases with intra-tidal recruitment and can help interpreting changes in compliance. This study aims to assess tidal recruitment in ARDS patients and to test a combined approach, based on tidal hysteresis and compliance, to interpret decremental PEEP trials. METHODS A decremental PEEP trial was performed in 38 COVID-19 moderate to severe ARDS patients. At each step, we performed a low-flow inflation-deflation manoeuvre between PEEP and a constant plateau pressure, to measure tidal hysteresis and compliance. RESULTS According to changes of tidal hysteresis, three typical patterns were observed: 10 (26%) patients showed consistently high tidal-recruitment, 12 (32%) consistently low tidal-recruitment and 16 (42%) displayed a biphasic pattern moving from low to high tidal-recruitment below a certain PEEP. Compliance increased after 82% of PEEP step decreases and this was associated to a large increase of tidal hysteresis in 44% of cases. Agreement between best compliance and combined approaches was accordingly poor (K = 0.024). The combined approach suggested to increase PEEP in high tidal-recruiters, mainly to keep PEEP constant in biphasic pattern and to decrease PEEP in low tidal-recruiters. PEEP based on the combined approach was associated with lower tidal hysteresis (92.7 ± 20.9 vs. 204.7 ± 110.0 mL; p < 0.001) and lower dissipated energy per breath (0.1 ± 0.1 vs. 0.4 ± 0.2 J; p < 0.001) compared to the best compliance approach. Tidal hysteresis ≥ 100 mL was highly predictive of tidal recruitment at next PEEP step reduction (AUC 0.97; p < 0.001). CONCLUSIONS Assessment of tidal hysteresis improves the interpretation of decremental PEEP trials and may help limiting tidal recruitment and energy dissipated into the respiratory system during mechanical ventilation of ARDS patients.
Collapse
Affiliation(s)
- Francesco Mojoli
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, Unit of Anesthesia, University of Pavia, Pavia, Italy.
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy.
| | - Marco Pozzi
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Eric Arisi
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Silvia Mongodi
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Anita Orlando
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | - Giuseppe Maggio
- Anesthesia and Intensive Care, Fondazione IRCCS Policlinico S. Matteo, Pavia, Italy
| | | | - Laurent Brochard
- Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Tharp WG, Neilson MR, Breidenstein MW, Harned RG, Chatfield SE, Friend AF, Nunez D, Abnet KR, Farhang B, Klick JC, Horn N, Bender SP, Bates JHT, Dixon AE. Effects of obesity, pneumoperitoneum, and body position on mechanical power of intraoperative ventilation: an observational study. J Appl Physiol (1985) 2023; 134:1390-1402. [PMID: 37022962 PMCID: PMC10211461 DOI: 10.1152/japplphysiol.00551.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/07/2023] Open
Abstract
Mechanical power can describe the complex interaction between the respiratory system and the ventilator and may predict lung injury or pulmonary complications, but the power associated with injury of healthy human lungs is unknown. Body habitus and surgical conditions may alter mechanical power but the effects have not been measured. In a secondary analysis of an observational study of obesity and lung mechanics during robotic laparoscopic surgery, we comprehensively quantified the static elastic, dynamic elastic, and resistive energies comprising mechanical power of ventilation. We stratified by body mass index (BMI) and examined power at four surgical stages: level after intubation, with pneumoperitoneum, in Trendelenburg, and level after releasing the pneumoperitoneum. Esophageal manometry was used to estimate transpulmonary pressures. Mechanical power of ventilation and its bioenergetic components increased over BMI categories. Respiratory system and lung power were nearly doubled in subjects with class 3 obesity compared with lean at all stages. Power dissipated into the respiratory system was increased with class 2 or 3 obesity compared with lean. Increased power of ventilation was associated with decreasing transpulmonary pressures. Body habitus is a prime determinant of increased intraoperative mechanical power. Obesity and surgical conditions increase the energies dissipated into the respiratory system during ventilation. The observed elevations in power may be related to tidal recruitment or atelectasis, and point to specific energetic features of mechanical ventilation of patients with obesity that may be controlled with individualized ventilator settings.NEW & NOTEWORTHY Mechanical power describes the complex interaction between a patient's lungs and the ventilator and may be useful in predicting lung injury. However, its behavior in obesity and during dynamic surgical conditions is not understood. We comprehensively quantified ventilation bioenergetics and effects of body habitus and common surgical conditions. These data show body habitus is a prime determinant of intraoperative mechanical power and provide quantitative context for future translation toward a useful perioperative prognostic measurement.
Collapse
Affiliation(s)
- William G Tharp
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Anesthesiology, University of Vermont Medical Center, Burlington, Vermont, United States
| | - Maegan R Neilson
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Max W Breidenstein
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Anesthesiology, University of Vermont Medical Center, Burlington, Vermont, United States
| | - Ryan G Harned
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Anesthesiology, University of Vermont Medical Center, Burlington, Vermont, United States
| | - Sydney E Chatfield
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
| | - Alexander F Friend
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Anesthesiology, University of Vermont Medical Center, Burlington, Vermont, United States
| | - Denis Nunez
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Anesthesiology, University of Vermont Medical Center, Burlington, Vermont, United States
| | - Kevin R Abnet
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Anesthesiology, University of Vermont Medical Center, Burlington, Vermont, United States
| | - Borzoo Farhang
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Anesthesiology, University of Vermont Medical Center, Burlington, Vermont, United States
| | - John C Klick
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Anesthesiology, University of Vermont Medical Center, Burlington, Vermont, United States
| | - Nathan Horn
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Anesthesiology, University of Vermont Medical Center, Burlington, Vermont, United States
| | - S Patrick Bender
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Anesthesiology, University of Vermont Medical Center, Burlington, Vermont, United States
| | - Jason H T Bates
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Medicine, University of Vermont Medical Center, Burlington, Vermont, United States
| | - Anne E Dixon
- Larner College of Medicine, University of Vermont, Burlington, Vermont, United States
- Department of Medicine, University of Vermont Medical Center, Burlington, Vermont, United States
| |
Collapse
|
10
|
Shimatani T, Kyogoku M, Ito Y, Takeuchi M, Khemani RG. Fundamental concepts and the latest evidence for esophageal pressure monitoring. J Intensive Care 2023; 11:22. [PMID: 37217973 DOI: 10.1186/s40560-023-00671-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Transpulmonary pressure is an essential physiologic concept as it reflects the true pressure across the alveoli, and is a more precise marker for lung stress. To calculate transpulmonary pressure, one needs an estimate of both alveolar pressure and pleural pressure. Airway pressure during conditions of no flow is the most widely accepted surrogate for alveolar pressure, while esophageal pressure remains the most widely measured surrogate marker for pleural pressure. This review will cover important concepts and clinical applications for esophageal manometry, with a particular focus on how to use the information from esophageal manometry to adjust or titrate ventilator support. The most widely used method for measuring esophageal pressure uses an esophageal balloon catheter, although these measurements can be affected by the volume of air in the balloon. Therefore, when using balloon catheters, it is important to calibrate the balloon to ensure the most appropriate volume of air, and we discuss several methods which have been proposed for balloon calibration. In addition, esophageal balloon catheters only estimate the pleural pressure over a certain area within the thoracic cavity, which has resulted in a debate regarding how to interpret these measurements. We discuss both direct and elastance-based methods to estimate transpulmonary pressure, and how they may be applied for clinical practice. Finally, we discuss a number of applications for esophageal manometry and review many of the clinical studies published to date which have used esophageal pressure. These include the use of esophageal pressure to assess lung and chest wall compliance individually which can provide individualized information for patients with acute respiratory failure in terms of setting PEEP, or limiting inspiratory pressure. In addition, esophageal pressure has been used to estimate effort of breathing which has application for ventilator weaning, detection of upper airway obstruction after extubation, and detection of patient and mechanical ventilator asynchrony.
Collapse
Affiliation(s)
- Tatsutoshi Shimatani
- Department of Emergency and Critical Care Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, Japan.
- Department of Critical Care Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.
| | - Miyako Kyogoku
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Osaka, Izumi, Japan
- Department of Critical Care Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Yukie Ito
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Osaka, Izumi, Japan
| | - Muneyuki Takeuchi
- Department of Intensive Care Medicine, Osaka Women's and Children's Hospital, 840 Murodo-cho, Osaka, Izumi, Japan
- Department of Critical Care Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Robinder G Khemani
- Pediatric ICU, Department of Anesthesiology and Critical Care Medicine, Children's Hospital Los Angeles, 4650 Sunset Blvd., CA, Los Angeles, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA, 1975, USA
| |
Collapse
|
11
|
Abstract
Advanced respiratory monitoring involves several mini- or noninvasive tools, applicable at bedside, focused on assessing lung aeration and morphology, lung recruitment and overdistention, ventilation-perfusion distribution, inspiratory effort, respiratory drive, respiratory muscle contraction, and patient-ventilator asynchrony, in dealing with acute respiratory failure. Compared to a conventional approach, advanced respiratory monitoring has the potential to provide more insights into the pathologic modifications of lung aeration induced by the underlying disease, follow the response to therapies, and support clinicians in setting up a respiratory support strategy aimed at protecting the lung and respiratory muscles. Thus, in the clinical management of the acute respiratory failure, advanced respiratory monitoring could play a key role when a therapeutic strategy, relying on individualization of the treatments, is adopted.
Collapse
|
12
|
Esophageal Pressure Measurement in Acute Hypercapnic Respiratory Failure Due to Severe COPD Exacerbation Requiring NIV-A Pilot Safety Study. J Clin Med 2022; 11:jcm11226810. [PMID: 36431287 PMCID: PMC9699291 DOI: 10.3390/jcm11226810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Esophageal pressure (Pes) measurements could optimise ventilator parameters in acute respiratory failure (ARF) patients requiring noninvasive ventilation (NIV). Consequently, the objectives of our study were to evaluate the safety and accuracy of applying a Pes measuring protocol in ARF patients with AECOPD under NIV in our respiratory intermediate care unit (RICU). An observational cohort study was undertaken. The negative inspiratory swing of Pes (ΔPes) was measured: in an upright/supine position in the presence/absence of NIV at D1 (day of admission), D3 (3rd day of NIV), and DoD (day of discharge). A digital filter for artefact removal was developed. We included 15 patients. The maximum values for ∆Pes were recorded at admission (mean ∆Pes 23.2 cm H2O) in the supine position. ∆Pes decreased from D1 to D3 (p < 0.05), the change being BMI-dependent (p < 0.01). The addition of NIV decreased ∆Pes at D1 and D3 (p < 0.01). The reduction of ∆Pes was more significant in the supine position at D1 (8.8 cm H2O, p < 0.01). Under NIV, ∆Pes values remained higher in the supine versus upright position. Therefore, the measurement of Pes in AECOPD patients requiring NIV can be safely done in an RICU. Under NIV, ∆Pes reduction is most significant within the first 24 h of admission.
Collapse
|
13
|
Pettenuzzo T, Sella N, Zarantonello F, De Cassai A, Geraldini F, Persona P, Pistollato E, Boscolo A, Navalesi P. How to recognize patients at risk of self-inflicted lung injury. Expert Rev Respir Med 2022; 16:963-971. [PMID: 36154791 DOI: 10.1080/17476348.2022.2128335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Patient self-inflicted lung injury (P-SILI) has been proposed as a form of lung injury caused by strong inspiratory efforts consequent to a high respiratory drive in patients with hypoxemic acute respiratory failure (hARF). Increased respiratory drive and effort may lead to variable combinations of deleterious phenomena, such as excessive transpulmonary pressure, pendelluft, intra-tidal recruitment, local lung volutrauma, and pulmonary edema. Gas exchange and respiratory mechanics derangements further increase respiratory drive and effort, thus inducing a vicious circle. Forms of partial ventilatory support may further add to the detrimental effects of P-SILI. Since P-SILI may worsen patient outcome, strategies aimed at identifying and preventing P-SILI would be of great importance. AREAS COVERED We systematically searched Pubmed since inception until 15 April 2022 to review the patho-physiological mechanisms of P-SILI and the strategies to identify those patients at risk of P-SILI. EXPERT OPINION Although the concept of P-SILI has been increasingly supported by experimental and clinical data, no study has insofar demonstrated the efficacy of any strategy to identify it in the clinical setting. Further research is thus needed to ascertain the detrimental effects of spontaneous breathing and identify patients with hARF at high risk of developing P-SILI.
Collapse
Affiliation(s)
- Tommaso Pettenuzzo
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Nicolò Sella
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Francesco Zarantonello
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Alessandro De Cassai
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Federico Geraldini
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Paolo Persona
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Elisa Pistollato
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy.,Department of Medicine, University of Padua, Padua, Italy
| | - Annalisa Boscolo
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy
| | - Paolo Navalesi
- Department of Surgery, Institute of Anesthesiology and Intensive Care, Padua University Hospital, Padua, Italy.,Department of Medicine, University of Padua, Padua, Italy
| |
Collapse
|
14
|
Cammarota G, Santangelo E, Lauro G, Verdina F, Boniolo E, De Vita N, Tarquini R, Spinelli E, Garofalo E, Bruni A, Zanoni M, Messina A, Pesenti A, Corte FD, Navalesi P, Vaschetto R, Mauri T. Esophageal balloon calibration during Sigh: A physiologic, randomized, cross-over study. J Crit Care 2020; 61:125-132. [PMID: 33157308 DOI: 10.1016/j.jcrc.2020.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022]
Abstract
PURPOSE Optimal esophageal balloon filling volume (Vbest) depends on the intrathoracic pressure. During Sigh breath delivered by the ventilator machine, esophageal balloon is surrounded by elevated intrathoracic pressure that might require higher filling volume for accurate measure of tidal changes in esophageal pressure (Pes). The primary aim of our investigation was to evaluate and compare Vbest during volume controlled and pressure support breaths vs. Sigh breath. MATERIALS AND METHODS Twenty adult patients requiring invasive volume-controlled ventilation (VCV) for hypoxemic acute respiratory failure were enrolled. After the insertion of a naso-gastric catheter equipped with 10 ml esophageal balloon, each patient underwent three 30-min trials as follows: VCV, pressure support ventilation (PSV), and PSV + Sigh. Sigh was added to PSV as 35 cmH2O pressure-controlled breath over 4 s, once per minute. PSV and PSV + Sigh were randomly applied and, at the end of each step, esophageal balloon calibration was performed. RESULTS Vbest was higher for Sigh breath (4.5 [3.0-6.8] ml) compared to VCV (1.5 [1.0-2.9] ml, P = 0.0004) and PSV tidal breath (1.0 [0.5-2.4] ml, P < 0.0001). CONCLUSIONS During Sigh breath, applying a calibrated approach for Pes assessment, a higher Vbest was required compared to VCV and PSV tidal breath.
Collapse
Affiliation(s)
- Gianmaria Cammarota
- Anesthesia and General Intensive Care, "Maggiore della Carità" University Hospital, Novara, Italy.
| | - Erminio Santangelo
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Gianluigi Lauro
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Federico Verdina
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Ester Boniolo
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Nello De Vita
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Riccardo Tarquini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Elena Spinelli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eugenio Garofalo
- Department of Medical and Surgical Science, Università Magna Greacia, Catanzaro, Italy
| | - Andrea Bruni
- Department of Medical and Surgical Science, Università Magna Greacia, Catanzaro, Italy
| | - Marta Zanoni
- Anesthesia and General Intensive Care, "Maggiore della Carità" University Hospital, Novara, Italy
| | - Antonio Messina
- Humanitas Clinical and Research Center - IRCCS - Rozzano, Milano, Italy
| | - Antonio Pesenti
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Della Corte
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | | | - Rosanna Vaschetto
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Tommaso Mauri
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
15
|
Perlini S, Canevari F, Cortesi S, Sgromo V, Brancaglione A, Contri E, Pettenazza P, Salinaro F, Speciale F, Sechi G, Mare C, Cutti S, Novelli V, Marena C, Muzzi A, Bruno R, Palo A. Emergency Department and Out-of-Hospital Emergency System (112-AREU 118) integrated response to Coronavirus Disease 2019 in a Northern Italy centre. Intern Emerg Med 2020; 15:825-833. [PMID: 32507926 PMCID: PMC7276336 DOI: 10.1007/s11739-020-02390-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023]
Abstract
Since December 2019, the world has been facing the life-threatening disease, named Coronavirus disease-19 (COVID-19), recognized as a pandemic by the World Health Organization. The response of the Emergency Medicine network, integrating "out-of-hospital" and "hospital" activation, is crucial whenever the health system has to face a medical emergency, being caused by natural or human-derived disasters as well as by a rapidly spreading epidemic outbreak. We here report the Pavia Emergency Medicine network response to the COVID-19 outbreak. The "out-of-hospital" response was analysed in terms of calls, rescues and missions, whereas the "hospital" response was detailed as number of admitted patients and subsequent hospitalisation or discharge. The data in the first 5 weeks of the Covid-19 outbreak (February 21-March 26, 2020) were compared with a reference time window referring to the previous 5 weeks (January 17-February 20, 2020) and with the corresponding historical average data from the previous 5 years (February 21-March 26). Since February 21, 2020, a sudden and sustained increase in the calls to the AREU 112 system was noted (+ 440%). After 5 weeks, the number of calls and missions was still higher as compared to both the reference pre-Covid-19 period (+ 48% and + 10%, respectively) and the historical control (+ 53% and + 22%, respectively). Owing to the overflow from the neighbouring hospitals, which rapidly became overwhelmed and had to temporarily close patient access, the population served by the Pavia system more than doubled (from 547.251 to 1.135.977 inhabitants, + 108%). To minimize the possibility of intra-hospital spreading of the infection, a separate "Emergency Department-Infective Disease" was created, which evaluated 1241 patients with suspected infection (38% of total ED admissions). Out of these 1241 patients, 58.0% (n = 720) were admitted in general wards (n = 629) or intensive care unit (n = 91). To allow this massive number of admissions, the hospital reshaped many general ward Units, which became Covid-19 Units (up to 270 beds) and increased the intensive care unit beds from 32 to 60. In the setting of a long-standing continuing emergency like the present Covid-19 outbreak, the integration, interaction and team work of the "out-of-hospital" and "in-hospital" systems have a pivotal role. The present study reports how the rapid and coordinated reorganization of both might help in facing such a disaster. AREU-112 and the Emergency Department should be ready to finely tune their usual cooperation to respond to a sudden and overwhelming increase in the healthcare needs brought about by a pandemia like the current one. This lesson should shape and reinforce the future.
Collapse
Affiliation(s)
- Stefano Perlini
- Emergency Medicine Unit and Emergency Medicine Postgraduate Training Program, IRCCS Policlinico San Matteo Foundation, Department of Internal Medicine, University of Pavia, Pavia, Italy.
| | - Fabrizio Canevari
- SOREU Pianura, AREU (Azienda Regionale Emergenza Urgenza), Pavia, Italy
| | - Sergio Cortesi
- SOREU Pianura, AREU (Azienda Regionale Emergenza Urgenza), Pavia, Italy
| | - Vito Sgromo
- SOREU Pianura, AREU (Azienda Regionale Emergenza Urgenza), Pavia, Italy
| | | | - Enrico Contri
- SOREU Pianura, AREU (Azienda Regionale Emergenza Urgenza), Pavia, Italy
| | - Pietro Pettenazza
- Emergency Medicine Unit and Emergency Medicine Postgraduate Training Program, IRCCS Policlinico San Matteo Foundation, Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Francesco Salinaro
- Emergency Medicine Unit and Emergency Medicine Postgraduate Training Program, IRCCS Policlinico San Matteo Foundation, Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Francesco Speciale
- Emergency Medicine Unit and Emergency Medicine Postgraduate Training Program, IRCCS Policlinico San Matteo Foundation, Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Giuseppe Sechi
- AREU (Azienda Regionale Emergenza Urgenza), Milan, Italy
| | - Claudio Mare
- AREU (Azienda Regionale Emergenza Urgenza), Milan, Italy
| | - Sara Cutti
- Medical Direction, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Viola Novelli
- Medical Direction, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Carlo Marena
- Medical Direction, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Alba Muzzi
- Medical Direction, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Raffaele Bruno
- Infectious Disease Unit, IRCCS Policlinico San Matteo Foundation, University of Pavia, Pavia, Italy
| | - Alessandra Palo
- AAT 118 Pavia, AREU (Azienda Regionale Emergenza Urgenza), Department of Intensive Medicine, Policlinico San Matteo Foundation, Pavia, Italy
| |
Collapse
|